三倍体毛白杨木素结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国现有的以草为主的原料结构已经成为我国造纸业发展的严重障碍,发展木材造纸已经成为各方的共识。培育适宜纸浆基地林的树种成为当前最紧迫的任务之一。“速生、质优、成熟期短”是纸浆基地林对树种的基本要求。
     三倍体毛白杨是北京林业大学毛白杨研究室运用染色体加倍技术和部分染色体替换技术培育成功的一系列新品种。它们具有明显的速生优势,是优良的制浆造纸用材。为了深入了解三倍体毛白杨的制浆漂白性能,本研究用硝基苯氧化法分析了三倍体毛白杨的木素结构单元,用红外光谱(IR)、核磁共振碳谱(~(13)C-NMR)对三倍体毛白杨的磨木木素(MWL),木素-碳水化合物复合体(LCC)进行了研究,并对三倍体毛白杨进行了硫酸盐法(KP法)和碱性亚钠—蒽醌法(AS-AQ法)制浆,提取了两种未漂浆的浆中残留木素,用红外光谱和~(13)C-NMR详细分析了其结构,最后得到了如下的主要结论:
     三倍体毛白杨的木素结构中对羟基苯丙烷结构占2.22%,愈创木基丙烷结构占44.16%,紫丁香基丙烷结构占53.62%。与普通毛白杨相比,三倍体毛白杨木素含有较少的对羟基苯丙烷结构和紫丁香基丙烷结构,含有较多的愈创木基丙烷结构。因此三倍体毛白杨的木素降解应略难于普通毛白杨。
     三倍体毛白杨LCC中碳水化合物主要是由木聚糖以及葡萄糖醛酸组成,其他单糖含量较少;碳水化合物与木素的联接主要是碳水化合物和愈创木基的联接,其中纤维素和木素有可能产生的化学键联接将会使制浆及漂白过程中脱木素更为困难。
     硫酸盐法制得的三倍体毛白杨未漂木浆,浆中含有较多的缩合性木素结构和木素与碳水化合物复合体,不太利于后续漂白,而碱性亚钠-蒽醌制浆法对比硫酸盐法,缩合性木素结构和木素与碳水化合物连接较少,因此理论上分析,碱性亚钠法制得的三倍体毛白杨木浆可漂性较硫酸盐法好。
     总的来说,三倍体毛白杨略为复杂的木素结构和其存在较多的LCC可能是造成制浆及漂白过程中脱木素难的原因;就制浆方法来说,碱性亚钠-蒽醌法制得的未漂浆可漂性较硫酸盐法好,较适用于三倍体毛白杨。
All kinds of nonwood plant fibers occupy a great proportion in raw material structure in the paper industry of our country. It now has become an obstacle for the further development of paper industry. Increasing wood fibers for paper-making is understood and recognized by all sides related. So cultivating superior trees which suite to plant in pulp forest base is one of the most urgent tasks for now. "Grow fast, quality high and mature early" is the basic requirements for those trees.
    Triploid clones of populus tomentosa carr. are a series of new tree-types which cultivated by the Research Room of White Polar, BJFU. They grow fast because they have 1 more chromosome than normal clone, and they are excellent trees for pulping. In order to understand the detailed properties of pulping and bleatching about one of triploid clones Populus tomentosa Carr. , we extracted the MWL and LCC from triploid clone Populus tomentosa Carr. and the residual lignins in unbleached pulp by KP and AS-AQ, then the lignin building unit of it was analysed by nitrobenzene oxidation, and the MWL and lignin-carbonhydrate complex (LCC) and the residual lignins were analysed by means of FT-IR and 13C-NMR , The main results are as follows:
    Lignin is made up by three types of unit, p-hydroxyphenylpropane unit, guaiacylpropane unit and syringylpropane unit. The percent of these units in lignin of triploid clones is 2.22%, 44.16% and 53.62% respectively, There are less p-hydroxyphenylpropane units and syringylpropane units, but more guaiacylpropane units in the lignin structure of triploid clones than normal clone. So the lignin of triploid clones degrades a little more difficult than the normal clone.
    The carbohydrate in LCC of triploid clone of populus tomentosa carr. is mainly made up of xylan and glucuronic acid, and the content of other monosaccharide is little. The chemical bonds between lignin and carbohydrate are majority bonds of carbohydrate and guaiacyl, among them the chemical bonds produced between cellulose and lignin may make delignification more difficult in the process of pulping and bleaching.
    
    
    
    The pulp by AS-AQ had less condensed lignin structure , lignin-carbonhydrate complex (LCC) and carboxy group as compared with pulp by KP . we can infer that the bleachability of AS-AQ pulp is better than that of KP pulp.
    Sum up, the complex lignin structure and LCC of triploid clone of populus tomentosa carr. may be the reason that delignification is difficult in the process of pulping and bleaching. For the means of pulping, the bleachability of unbleached pulp by means of AS-AQ is better than that of pulp by means of KP.
引文
[1]陈嘉翔.植物纤维化学结构的研究方法.广州华南理工大学出版社,1989:4~5
    [2]陈振华等.三倍体毛白杨的特性.《纸和造纸》,2000,9:52~53
    [3]陈振华.三倍体毛白杨特性及山西造纸发展的思考.国际造纸,2000,19(5):53~58
    [4]陈振华等.三倍体毛白杨特性及其制浆造纸.中华纸业,2000,21(10):17~20
    [5]付时雨等.31P核磁共振光谱在木素结构分析中的应用.中国造纸学报,1999,14,121~125
    [6]顾民达.关于加快发展木材造纸的几点看法.中华纸业,1999,(4):5~9
    [7]顾瑞军等.木素—碳水化合物复合体的形成机理及化学结构的研究.造纸科学与技术,2001,20(5):1~6
    [8]《国际造纸》编辑部.中国造纸工业21世纪议程-中国纸业“九五”计划及2010年发展远景.国际造纸,1997,(1):1-12
    [9]国家计委经济预测司轻纺处.造纸业:告别传统求发展.国际造纸,1999,18(2):18
    [10]胡宗渊.加入世贸组织(WTO)会带给我国造纸行业什么影响.国际造纸,2000,(1):1-3
    [11]李忠正.木素化学研究与制浆技术的进展.纤维科学与技术,1994,2(3~4):1~23
    [12]李忠正.林纸一体化与中国主要速生人工造纸树种的制浆造纸性能.中华纸业,2001,22(7):6~12
    [13]蒋忠道等.阔叶木制浆造纸的探讨.湖北造纸,2000,3:10~12
    [14]康向阳等.三倍体毛白杨在我国纸浆生产中的地位与作用.北京林业大学学报,2002,24.51~56
    [15]刘贵生等.~1H,~(13)C NMR光谱在木素化学研究中的应用.吉林林学院学报,1996,12(4),239~244
    [16]刘秋娟等.毛白杨杂种无性系的制浆造纸性能及其在造纸工业应用的展望.北京林业大学学报,1992,14:78~84
    [17]赖文衡等.爆破法制浆技术研究.北京林业大学学报,1995,17(5):72~82
    [18]林文耀.林纸结合是振兴福建纸业的必由之路.国际造纸,1999,18(6)
    [19]蒲俊文等.三倍体毛白杨木质素结构特性研究.北京林业大学学报,2002,24(5/6):211~215
    [20]蒲俊文等.三倍体毛白杨化学成分径向变异的研究.造纸科学与技术,2002,21(3):1~4
    [21]蒲俊文等.三倍体毛白杨无性系纸浆材的选优.造纸科学与技术,2001,20(5):11~13
    [22]蒲俊文等.三倍体毛白杨纤维形态变异的研究.北京林业大学学报,2002,24(2):62~66
    [23]宋先亮等.三倍体毛白杨爆破浆的可漂性研究.北京林业大学学报,2000,22(6):55~58
    [24]陕西林业研究所.毛白杨.北京,中国林业出版社.1981.1~15
    
    
    [25] 邰瓞生等.禾草木素的化学特性.中国造纸,1989,(1):10~15
    [26] 王明麻等.黑杨派新无性系木材性状的遗传改良.南京林业大学学报,1989,13(3):9~16
    [27] 谢益民.木素-碳水化合物复合体的形成机理及化学结构的研究.造纸科学与技术,2001,20(4),7~10
    [28] 谢益民等.桉木的化学组成及材性对KP法制浆特性的影响[J].中国造纸,1998,17(5):7~11
    [29] 肖友智.林纸结合的有关思考.林业经济问题,2001,21(4):108~110
    [30] 姚春丽等.三倍体毛白杨化学组分、纤维形态及制浆性能的研究.北京林业大学学报,1998,20(5):18~21
    [31] 杨懋暹.当机立断,从零开始,造纸工业可持续发展的一个科研问题.国际造纸,1999,18(5):13
    [32] 余贻骥.审视国情、放眼世界、抓住机遇,加速中国造纸工业现代化-关于中国造纸工业可持续发展战略的探讨,中华纸业,1999,(3):1~6
    [33] 中国林科院林产化工研究所.三倍体毛白杨、黑杨APMP工艺技术中试研究报告.1998,3
    [34] 中国造纸年鉴.北京.轻工业出版社,1996.114.
    [35] 中国造纸学会.关于加快人工林建设、振兴中国纸业的建议.国际造纸,1999,18(1):27
    [36] 赵泾峰等,三倍体毛白杨的木材构造与材性的研究.陕西林业科技,2001,4:1~3
    [37] 张宪嵋.三倍体毛白杨简介.中国林业,1998,10:42
    [38] 中野隼三.木素的化学-基础与应用.中国轻工出版社,1989
    [39] 朱之悌.我国造纸国情的若干特点及解决对策.中华纸业,2001,22(12):17~20
    [40] Bjorkman A. . Svenskpap perstidn, 1956, 59: 447
    [41] Bjorkman A. . Svenskpap perstidn, 1957, 60: 243
    [42] Brownell H. H. et al. . PPMC, 1961, 62:374
    [43] Cellulose Chemistry and Technology, 11, 313, 1977
    [44] Chang H-m, et al. Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce[J]. Holzforschung, 1975, 29:153~159
    [45] Faix O. . Holzforschung[J]. 1991, 45(supple): 21~27
    [46] Gellersteat G. et al. . Structural and Molecular Properties of Residual Birch Kraft Lignins. J. of wood Chemistry. and Technology, 1994, 14(4): 467~482
    [47] Pew JC. Properties of powered wood and isolation of lignin by cellulytic enzymes[J]. TAPPI, 1957, 40: 553~558
    [48] Ralph S. et al. . NMR Database of Lignin and Cell Wall Model Compounds[M]. Available at URL U. S. Forest Products Lab., Madison, WI. 1996
    [49] Robert D. . Carbon-13 Nuclear Magnetic-Resonance Spectrometry., in: Lin S. Y. Dence C. W.
    
    (Eds), Methods in LigninChemistry[M], Springer Verlag Berlin, Heidelberg, 1992:251~273
    [50]Sarkanen K. V. et al., Species Variation in Lignins. Tappi, 1967, 50(12): 583~590
    [51]Stephen Y. Lin et al., Methods in lignin chemistry, Springer-Verlag, 1992
    [52]Xie Y M et al. . Selective carbon 13-enrichment of side chain cabons of oleander lignin traced by cabon 13 nuclear magnetic resonance[J]. Mokuzai Gakkaishi, , 1994, 40(20): 191~198
    [53]Yimin Xie. The structure of lignin- carbohydrate complexes by the specific ~(13)C tracer method. Journal ofWoodScience, 2000, 46(2), 130~136
    [54]Yimin Xie et al. . Mokuzai Gakkaishi, 1994, 40(20): 191~198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700