高频电磁双脉冲TIG焊电弧行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钨极惰性气体保护弧焊(简称TIG焊)作为一种重要的焊接方法以其稳定的焊接电弧,优质的焊接成形,通用于各种金属连接,并属于非熔化极引弧过程无飞溅,但其电弧能量不集中,使得焊缝熔深浅(通常只能用于薄板焊接),焊接效率低等问题目前尚未得到圆满解决。焊接工作者针对其特点做了很多改进,如活性剂TIG焊、热丝TIG焊、超音频TIG焊等,然而其仍有其各自的局限性。如活性剂TIG焊的焊剂污染问题,热丝TIG焊不能用于铜、铝焊丝问题、超音频TIG焊的焊接电流小并且设备昂贵等问题。本文在阅读大量文献与前期大量实验的基础上,分析了TIG焊接电弧的特点,继而提出施加外加高频纵向磁场可以使电弧产生“压缩效应”,配合高频电流焊接设备更能提高焊接电弧能量,增大焊缝熔深的创新工艺;此种工艺附加装置成本低,体积小,使用方便,而且能够改善电弧形态与电弧行为。论文围绕这种新工艺主要进行了以下几方面的工作:
     论文提出一种电、磁双脉冲钨极氩弧焊接设备实现了大参数范围的电脉冲与磁脉冲共同作用,设备基本参数为:焊接电流0~500A;焊接电流频率:0~500Hz;激磁电流调节范围0~15A;激磁频率0~8kHz;占空比调节范围:50%;具有直流及交变方波输出功能。配备了与TIG焊焊枪配套的磁头结构。
     采用高速摄像对高频电、磁双脉冲控制下的电弧形态变化进行拍摄,通过光谱分析测定高频电、磁脉冲作用下的焊接电弧温度、利用自制环形同心裂极装置测定高频电、磁脉冲作用下电弧热量分布,采用探针法测试高频电、磁脉作用下电弧电流密度径向分布。实验结果表明:高频磁脉冲作用下焊接电弧旋转半径明显减小,形态由原来的锥形被压缩成为柱状,施加高频电路脉冲后电弧进一步被压缩。当焊接电流有效值为80A,电流脉冲频率为500Hz,磁感应强度为30mT,磁脉冲频率为1500Hz左右时,电弧温度由自由电弧时的13402.21K提升到14958.3K,热量分布系数从39.52%升高到66.07%,电弧压力与电流密度呈单峰分布,中心压力由0.35KPa增加到0.54KPa,电流密度由20A/mm2提高到30.9A/mm2。
     高频电、磁双脉冲作用下焊缝成形实验结果表明:高频电、磁脉冲作用使得焊缝成形良好,熔宽减小,熔深显著增大,且电流脉冲频率越大,效果越明显,而磁场却存在着一个最佳的参数范围。
     首次对高频电、磁脉冲作用下TIG焊电弧行为进行了理论分析,采用三维模型进行纵向磁场对焊接电弧温度场与流场分布计算。并建立高频磁场压缩焊接电弧的数学理论模型,系统解释高频磁场对焊接电弧气动压力变化规律(由环形双峰分布到柱形分布)为高频电、磁场控制TIG焊接过程提供新的研究思路。
Inert gas shielded tungsten arc welding(TIG welding for short),as an important weldingtechnology, has stable welding arc without any spatter and high quality which is in commonuse on kinds of metal connection. It belongs to gas metal arc welding, but the low welding arcenergy concentration makes low welding penetration (usually used only in thin plates welding)and and the low welding efficiency, which has not yet been satisfactorily resolved. Weldingworkers made many improvements, such as active flux TIG welding, hot wire TIG welding,ultrasonic frequency TIG welding and so on, but they have respective limitations. For example,the pollution problems of active flux TIG welding, hot wire TIG welding can’t be used incopper or aluminum wire, the welding current of ultrasonic frequency TIG welding is smallwith high device cost. Under the basis of many documents and large numbers of experiments,in this paper, the characteristics of TIG welding arc was analyzed, then imposed externalhigh-frequency longitudinal magnetic field on welding arc to produce “pinch effects”, whichcombined with high frequency current welding equipment could improve the welding arcenergy and increase welding penetration as an innovative processes. This technology withadditional device has low cost, small size, convenient use and can improve arc shape and arcbehavior. The paper around this new technology contains following works:
     The paper developed a electricity magnetism double-pulsed TIG welding controlequipment with electrical and magnetic pulse work together in range of adjustable parameters.The basic parameters as following: welding current:0~500A;welding current frequency:0~500Hz;magnetizing current adjustment range:0~15A; frequency of exciting current0~8kHz; duty ratio:50%,which has the function of direct and alternating square-wave output,equipped with a TIG welding torch head structure.
     A high-speed camera was used to obtain the changes of arc shape under the control ofhigh frequency electric pulse and magnetic pulse.A spectra measurement was used to measurearc temperature under high-frequency electro-magnetic pulse. Homemade ring concentriccracking device was used to measure arc heat distribution under high-frequencyelectro-magnetic pulse and the probe method was used to measure arc current density radialdistribution under high-frequency electro-magnetic pulse. Experimental results showed thatarc turning radius significantly reduced under high frequency Magnetic pulse, the arc shape changed from the cone-shaped to compressed columnar, the arc was compressed more withinhigh frequency current pulse. When the effective welding current was80A, current pulsefrequency was500Hz, the magnetic flux density was30mT, magnetic pulse frequency was1500Hz, arc temperature raised from13402.21K in free arc up to14958.3K, heat distributioncoefficient increased from39.52%to66.07%, the arc current pressure and density wereunimodal distributions, central pressure increased from0.35KPa to0.54KPa, current densityincreased from20A/mm2to30.9A/mm2.
     The welding experimental results under the effect of high-frequency electric andmagnetic double pulse showed that, the weld formation was well under high frequencyelectro-magnetic pulse, when melt width decreased, penetration increased significantly, andthe greater of current pulse frequency, the greater of the effect, and there was an optimumrange of parameters of magnetic field.
     It was the first time to analysis TIG welding arc behavior under high frequencyelectro-magnetic pulse, using a three dimensional mathematical model calculate arctemperature field and flow field distribution under vertical magnetic field. Then thecompressed arc mathematical model of high frequency magnetic field was constructed tosystemly explain arc air pressure variation law under high frequency magnetic field(from acircle bimodal distribution to a column-shaped distribution),and provided new research ideason TIG welding process within high-frequency electric and magnetic fields.
引文
[1] Stoeckinger G R. Pulsed DC high frequency GTA welding of aluminum plate[J]. Welding Journal,1973,53(12):558-567.
    [2]莫文凯.高频脉冲TIG焊机及其应用[J].电焊机,2004(10):10-14.
    [3] Hsu K C, Etenadi K, Pfender E. Study of the free-burning high-intensity argon arc[J]. J.Appl. Phys,1983,54(3):1293-1299.
    [4] Hsu K C, Pfender E. Two-temperature modeling of free-burning high-intensity arc[J]. J.Appl. Phys,1983,54(8):4359-4366.
    [5] Mckelliget J, Szekely J. Heat transfer and fluid flow in the welding arc[J]. Metal Trans A,1986,17A(6):1139-1148.
    [6] Choo R T C, Szekely J. On the calculation of the free surface temperature of gas tungsten arc weldpools from first principle: part1. Modeling the welding arc[J]. Metal Trans B,1922,23B(6):357-369.
    [7] Gonzalez J J, Gleizes A. Mathematical modeling of a free-burning arc in the presence of metalvapor[J]. Appl. Phys,1993(74):3065-3070.
    [8] Ushio M, Tanaka M, Wu C S. Analytical approach to anode boundary layer of gas tungsten arc[J]. Theoretical Prediction in Joining and Welding,1996,25(2):11-25.
    [9] Etemadi K, Pfender E. Impact of anode evaporation on the anode region of a high intensity argon arc[J]. Plasma Chemistry and Plasma Processing,1985,5(2):175-182.
    [10] Fan H G, Shi Y W, Na S J. Numerical analysis of the arc in pulsed current gas tungsten arc weldingusing a boundary-fitted coordinate[J]. Material Processing Technology,1997(72):437-445.
    [11] Tsai M C, Kou S. Heat transfer and fluid flow in welding arc produced by sharpened and flatelectrodes[J]. Heat Transfer,1990,33(10):175-182.
    [12] Wu C S, Ushio M, Tanaka M. Analysis of the TIG welding arc behavior [J]. Computational MaterialScience,1997(7):308-314.
    [13] Zhu P Y, Lowke J J. Prediction of anode temperature of free burning arcs [J]. Appl. Phys,1995(28):1369-1376.
    [14] Murphy A B. Modified fowler-milne method for the spectroscopic measurement of temperature andcomposition of multielement thermal plasmas[J]. Review of Scientific Instruments,1994,65(11):3423-3427.
    [15] Simonik A G. The effect of contraction of the arc discharge upon the introduction of theeletro-negative elements[J]. Welding Production,1976(3):49-51.
    [16] Howse D S, Lucas W. Investigation into arc constriction by active fluxs for Tungsten inert gaswelding [J]. Seience and Technology of Welding and Joining,2000,5(3):189-193.
    [17] Tanaka M, Ushio M. Approach to understanding of TIG welding with activating flux [J].Transactions of JWRI,2000,29(2):41-49.
    [18] Sire S, Marya S. Contribution to A-TIG and FBTIG welding processes flux optimization forenhanced weld penetrations in aluminium5086[J]. Transactions of JWRI,2002,31(2):31-39.
    [19] Tanaka M, Shimizu T, Terasaki H, et al. Effects of activating flux on arc phenomena in gas tungstenarc welding [J]. Science and Technology of Welding and Joining,2000(5):397-402.
    [20] Schmidt H P.Experimental and theoretical investigation of high-pressure arcs-Part I: the cylindricalare column (two-dimensional modeling)[J]. IEEE Transaetions Plasma Seienee,1996(24):1229-1238.
    [21] Suga Y. On the arc welding under high pressure argon and helium atmosphere[C]//Welding UnderExtreme Conditions. Oxford: Pergamon Press,1989:207-214.
    [22] Steen W M. Arc augom ented laser processing of materials[J]. Appl. Phys,1980(51):5636-5641.
    [23] Avilov V V, Decker I, Pursch H, et al. Study of a laser-enhanced welding arc using advanced splitanode technique[J]. Welding Journal,1994,11(2):112-123.
    [24] Liu A H, Tang X H, Lu F G. Arc profile characteristics of Al alloy in double-pulsed GMAW[J]. TheInternational Iournal of Advanced Manufacturing Technology[J].2012(10):11-17.
    [25] Grill A. Effect of Current Pulses on the Temperature Distribution and Microstructure in TIGTantalum Welds[J]. The Metallurgical Society of Aime,1980,12(1):187-192.
    [26] Katayama N, Mizutani K. Liguid flow inside molten pool during TIG welding and formationmechanism of bubble and porosity[J]. Proc.7th Symp. Kobe,2001(10):125-130.
    [27] Padmanaban G, Balasubramanian V. Influences of pulsed current parameters on mechanical andmetallurgical properties of gas tungsten arc welded AZ31B magnesium alloy[J]. Met Mater Int,2011,17(4):679-687.
    [28] Cai Z P, Duan X J, Lin J, et al. Magnetostriction varieties and stress relief caused by pulsed magneticfeld[J]. Higher Education Press and Springer-Verlag Berlin Heidelberg,2011,6(3):354-358.
    [29] Rajesh M, Dwivedi D K, Agarwal A. Microstructure and hardness of Al-Mg-Si weldments producedby pulse GTA welding[J]. International Journal of Advanced Manufacturing Technology,2008(36):263-269.
    [30] Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arcwelded additive layer manufactured Ti6Al4V alloy[J]. International Journal of AdvancedManufacturing Technology,2011(57):597-603.
    [31] Balasubramanian M, Jayabalan V, Balasubramanian V. Prediction and optimization of pulsed currentgas tungsten arc welding process parameters to obtain sound weld pool geometry in titanium alloyusing lexicographic method[J]. ASM International,2009(18):871-877.
    [32] Tanaka M, Tashiro S, Tsujimura Y. Visualizations and predictions of welding arc[J]. Transactions ofJWRI,2012,41(2):1-5.
    [33] Traidia A, Roger F, Transient A. Unified model of arc-weld pool couplings during Pulsed Spot gastungsten arc welding[C]//the Proceedings of COMSOL Conference2010. Boston:[s.n.],2010:503-512.
    [34] Bauchire J M, Emilie L B, Charles d I. Numerical Modelling of a Free-Burning Arc in Argon[C]//the Proceedings of COMSOL Conference2009. Milan:[s.n.],2009:232-238.
    [35]宋永伦.焊接电弧等离子体的光谱诊断法及其应用的研究[D].天津:天津大学,1990.
    [36]李俊岳,宋永伦,李桓等.焊接电弧光谱信息的基本理论和基本方法[J].焊接学报,2002,23(6):5-8.
    [37]宋永伦,李俊岳.焊接等离子体的平衡性质[J].焊接学报,1994,15(2):138-145.
    [38]宋永伦,李俊岳.弧焊区图像信息的光谱传感技术[J].焊接学报,1994,13(2):127-132.
    [39]李俊岳.焊接电弧信息测控技术及其应用[J].中国工程科学,2001,3(7):45-50.
    [40]赵家瑞.微机图象处理法对高频脉冲TIG焊电弧的诊断研究[J].焊接学报,1987,8(4):213-219.
    [41]徐晨明.氩氦混合气体保护焊接电弧光谱诊断[D].黑龙江:哈尔滨工业大学,2005.
    [42]胡坤平.交流TIG电弧的过零现象及其特征[D].北京:北京工业大学,2008.
    [43]胡坤平,宋永伦,夏源等.交流TIG电弧的过零过程及其状态特征[J].焊接学报,2006,27(12):29-33.
    [44]胡坤平,宋永伦,夏源等.焊接电弧近零时的物理过程研究现状与进展[J].电焊机,2008,38(11):55-58.
    [45]胡坤平,宋永伦,夏源等.焊接电弧发射光谱的动态诊断方法及其应用[J].焊接学报,2009,30(1):47-50.
    [46]杨晓红宋永伦胡坤平等,交流TIG电弧过零时段的时间—能量分布特征[J].焊接学报,2009,30(2):21-23.
    [47]张顺善,吴东亭,邹增大等.磁场对双丝间接电弧形态的影响[J].焊接学报,2010,31(7):87-90.
    [48]周灿丰,焦向东,薛龙等.高压空气环境钨极氩弧焊电弧形态[J].焊接,2008(1):28-30.
    [49]周灿丰,焦向东,薛龙等.高压空气环境钨极氩弧行为和焊接技术的研究[J].船海工程,2008,37(2):14-17.
    [50]王春健,焦向东,周灿丰等.高压空气环境下脉冲MIG焊电弧形态分析[J].焊接技术,2010,39(10):7-10.
    [51]陈彦宾,陈杰,李俐群等.激光与电弧相互作用时的电弧形态及焊缝特征[J].焊接学报,2003,24(1):55-57.
    [52]黄继强,薛龙,吕涛等.水下高压空气环境下GMAW电弧特性试验[J].焊接学报,2010,31(2):17-20.
    [53]张冠宇,隋方飞,苗晋琦等.外加磁场对镁合金TIG焊电弧形态及焊缝质量的影响[J].金属铸锻焊技术,2009,38(11):113-115.
    [54]杨明轩,齐铂金,从保强等.快变换超音频直流脉冲GTAW电弧行为[J].北京航空航天大学学报,2012,38(4):468-471.
    [55]刘西洋,孙凤莲,王旭友等.Nd:YAG激光+CMT复合热源电弧形态和熔池形貌[J].焊接学报,2011,32(3):81-84.
    [56]郑森木,高洪明,刘鑫.带状电极MAG焊电弧行为[J].焊接学报,2011,32(10):97-100.
    [57]孙清洁,杨春利,林三宝等.超声钨极氩弧复合焊金属熔化行为分析[J].焊接学报,2010,31(3):41-44.
    [58]吴世凯,肖荣诗,杨武雄等.高功率CO2及Yb:YAG激光与TIG电弧相互作用特性对比[J].中国激光,2010,37(10):2667-2671.
    [59]张寰臻,吴世凯,肖荣诗.CO2激光作用下直流TIG电弧特性分析[J].焊接学报,2009,30(3):97-100.
    [60]从保强,齐铂金,周兴国.超快变换高频变极性方波TIG电弧行为[J].焊接学报,2009,30(6):87-90.
    [61]李国栋,栗卓新,魏琪等.氩-氦-二氧化碳混合气体电弧行为及其对焊缝成形的影响[J].材料工程,2007(3):38-41.
    [62]朱亮,张仁军,田玉吉等.旋转陶瓷片约束TIG电弧形态分析[J].焊接学报,2007,28(11):1-4.
    [63]李明利,刘占民.大电流钨极氩-氦混合气体电弧行为分析[J].焊接学报,2005,26(8):39-42.
    [64]卢振洋,白韶军,汤金蕾等.横向旋转磁场作用下TIG焊电弧的运动机制[J].北京工业大学学报,2008,34(9):902-906.
    [65]施秉周.不锈钢薄板高频脉冲氩弧焊的研究[J].电焊机,1980(2):7-12.
    [66]赵家瑞,孙栋,胡绳荪等.高频脉冲TIG焊电弧的阳极行为[J].焊接学报,1992,13(1):59-66.
    [67]赵家瑞.电流脉冲频率对TIG焊电弧影响机理的研究[J].电焊机,1993(2):16-18.
    [68] Hicken G K, jackson C E. Effects of applied magnetic fields on welding arc[J]. Welding Journal,1966,45(8):513-518.
    [69] Arata Y, Maruo H. Magnetic control of plasma arc welding[J]. Transactions of JWRI,1972,1(1):1-9.
    [70] Kazufumi N, Yosuke O, Takuya H, et al. Influence of magnet configurations on magnetic controlledTIG arc welding[J]. Transactions of JWRI.2010,39(2):209-210.
    [71] Nomula K, Morisaki K, Hirata Y. Magnetic control of arc plasma and its modeling[J]. Welding in theWorld,2009,53(7):181-187.
    [72]赵鹏生.双尖角磁场再压缩等离子弧中板焊接[J].焊接学报,1989,10(3):148-155.
    [73] Ukita S, Masuko T, Irie T, et al. High speed DCEN TIG welding of very thin aluminium sheet withmagnetic control for Arc[J]. Welding International,2002,20(4):484-492.
    [74]张九海,王其隆,韦伟平等.小电流TIG焊电弧磁控特性的研究[J].焊接学报,1990,11(1):43-48.
    [75]贾昌申,殷咸青,贾涛等.纵向磁场中的电弧行为[J].西安交通大学学报,1994,28(4):7-13.
    [76] Yu J R, Zhang J Y, Jiang L P, et al. Contracted effect of bell-shade shape welding arc andaccompanied magnetic field with spiral pipe shape[J]. Transactions of Nonferrous Metals Society ofChina,1997,7(2):95-98.
    [77] Размышляев А Д, Миронова М В, Дели А А. Влияние продольного магнитного поля нахарактеристики дуги при сварке неплавящимсю электродом в аргоне[J]. АвтоматическаяСварка,2008(3):21-25.
    [78]陈树君,华爱兵,殷树言.旋转磁场作用下的TIG焊电弧运动特征[J].焊接,2006(10):34-36.
    [79]常云龙,杨殿臣,魏来等.外加横向磁场对高速TIG焊缝成形的影响[J].焊接学报,2011,32(3):49-52.
    [80]常云龙,杨旭,李大用等.外加纵向磁场作用下的TIG焊接电弧[J].焊接学报,2010,31(4):49-52.
    [81]杨旭.电磁控制TIG焊电弧特性及焊缝成形机理研究[D].沈阳:沈阳工业大学,2012.
    [82] Park J M. Three-dimensional modeling of arc root rotation by external magnetic field innontransferred thermal plasma torches[J]. Transactions on Plasma Science,2004,32(2):479-487.
    [83]代巍,江淑园,张学武.外加纵向磁场作用TIG焊温度场的数值模拟[J].南昌航空大学学报,2008.22(4):23-27.
    [84]殷咸青,孙江涛,张建勋.纵向磁场作用下的钨极氩弧焊电弧温度场[J].西安交通大学学报,2013,47(3):87-89.
    [85]罗键,贾涛殷,咸青等.GTAW外加间歇交变纵向磁场的数值计算及其对焊接行为的影响[J].焊接学报,1999,35(3):330-333.
    [86]芦凤桂,姚舜,张毓新等.TIG焊接电弧等离子体流场的有限元分析[J].焊接技术,2004,33(2):14-16.
    [87]刘海侠.利用磁场改善TIG高速焊的焊缝成形[J].河北工程技术职业学院学报,2002,4(1):37-39.
    [88] Takeda K, Nakamura Y. Plasma behavior under an alternating magnetic field perpend cular to theplasma arc current[C]//The6th International Conference on Gas Discharge and Their Applications.Edinburgh:[s.n.],1980:166-175.
    [89] Sobyanin D B, Gavrilov B G, Podgorny I M. Laboratory investigation of plasma jet interaction withtransverse magnetic field[J]. Advance Space Research,2002,29(9):1345-1349.
    [90] Zhainakov A, Urusov R M, Urusova T E. Numerical Simulation of Gasdynamic Flows Formed by anElectric Arc in an External Transverse Magnetic Field[J]. High Temperature,2002,40(2):171-175.
    [91]郭连权,于凤鸣.均匀纵向磁场对电弧压力梯度的影响[J].沈阳工业大学学报,1999,21(2):172-174.
    [92] Budnik N M, Kynarik A H. Application of longitudinal magnetic field on arc welding[J]. AutomaticWelding,1979(3):59-60.
    [93] Mendez P F. Order of magnitude scaling of complex engineering problems and its application tohigh productivity arc welding [D]. Combridge: Massachusetts Institute of Technology,1999.
    [94] M.A.阿勃拉洛夫,P.Y.阿勃杜拉赫曼诺夫.电磁作用焊接技术[M].北京:机械工业出版社,1988.
    [95]罗建,贾昌申,王雅生等.外加纵向磁场GTAW焊接机理[J].金属学报,2001,37(2):212-216.
    [96] Ryzhov R N, Kuznetsov V D. External electromagnetic effects in the processes of arc welding andsurfacing[J]. The Paton Welding Journal,2006(10):29-35.
    [97] H βler M, Rose S, Füssel U, et a1. TIG welding torch with magnetic arc oscillation and optimizedshielding gas flow[C]//65th Annual Assembly&International Conference of the InternationalInstitute of Welding. Denver:[s. n.],2012:251-259.
    [98] Su Y H, Liu Z J, Liu D. Effect of magnetic field on microstructure and properties of magnesiumalloy welded joint with GTAW[J]. Advanced materials research,2009(189):3507-3510.
    [99]陈树君,陶东波,白韶军等.电弧电流密度和电弧压力测量技术研究现状[J].焊接,2010(4):1-6.
    [100] Gaithersburg M D.NIST Atomic Spectra[EB/OL].[2014-02-01]. http://physics nist gov/asd.
    [101]罗建.外加纵向磁场GTAW焊接熔池流体流动与传热行为的研究[D].北京:北京工业大学,2006.
    [102]李辉,夏维东.磁旋转弧等离子体中的弧电压突变现象[J].核聚变与等离子体物理,2004,24(3):215-218.
    [103]过曾元.横向磁场作用下自由电弧的温度场与速度场[J].工程热物理学报,1983,4(4):398-404.
    [104]过曾元,赵文华.电弧与热等离子体[M].北京:科学出版社,1986.
    [105]葛松华.通以交变电流的长直螺线管内部磁场和电场的分布[J].物理与工程,2003,13(6):6-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700