大柔性太阳帆航天器姿轨耦合动力学与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳帆航天器(以下简称太阳帆)是一种利用反射太阳光产生推进力的新型航天器。由于飞行任务不需要消耗大量燃料及其姿轨耦合特性,太阳帆被广泛设计应用于深空探测任务以及普通航天器难以完成的航天任务中。
     为了在微弱的太阳光压力下获得足够大的推进力,太阳帆一般具有巨大的帆面及很轻的结构质量,这就使得太阳帆具有大转动惯量及大柔性结构。并且太阳帆通过改变姿态来调节推进力的大小及方向,因此具有强烈的姿轨耦合效应。本文首先考虑太阳帆柔性结构的中性面耦合变形,通过混合坐标法和虚功率原理建立太阳帆轨道-姿态-弹性振动耦合动力学降阶模型。在此耦合动力学模型的基础上,通过太阳帆在地球同步轨道及大偏心率椭圆轨道上的动力学分析,对其轨道-姿态-弹性振动耦合效应加以分析。
     太阳帆做姿态机动时会引起柔性结构的弹性变形及振动,尤其是做大角度机动时,柔性结构较大幅度的振动会引起太阳帆姿态也出现持续振荡现象。本文研究了太阳帆做单自由度大角度机动时,其姿态与弹性振动的耦合效应。通过对Bang-Bang控制加入输入成型器,有效降低了太阳帆大角度机动时柔性结构的振动幅度,并消除姿态角的振荡现象。针对中心力矩控制和端点力控制模型,研究了采用端点处姿控小帆对太阳帆大角度机动的控制,有效抑制了结构及姿态振动。
     太阳帆悬浮轨道任务是对太阳帆姿轨耦合特性的典型应用。本文将太阳帆的轨道偏差引入姿态控制律的设计,对柔性太阳帆在日心悬浮轨道上的姿轨耦合控制进行了研究,并给出太阳帆柔性对控制过程的影响。
     太阳帆日心极地轨道由NASA首先提出,用于对太阳活动进行观测。由于太阳帆在轨道转移过程中不需要消耗大量的燃料,所以被设计应用于从地球轨道到日心极地轨道的转移任务。由于太阳帆的姿轨耦合特性,其轨道转移任务的设计最终归结于对其姿态角的设计,而设计过程中假设太阳帆姿态机动瞬时完成。本文在已有太阳帆转移轨迹设计的基础上,采用PD控制对所设计姿态角进行跟踪控制,研究了太阳帆姿态机动过程及其柔性对任务的影响。并且在长期的深空飞行任务中,考虑了太阳光压影响力矩对任务的影响。最后对比了采用中心力矩控制和端点姿控小帆力控制对任务的影响。
A solar sail is a new type of spacecraft that is propelled by solar radiation pressure.Because the lowest fuel consumption, the solar sail is widely used in the deep spaceexploration and some other missions which are difficult for the ordinary spacecraft.
     To reduce the launch cost and achieve the highest thrust, the solar sail must employlarge-scale, lightweight structures, which cause the solar sail to be large moment ofinertia and highly flexible. The thrust of the solar sail could change with its attitude, sothere is strongly coupled effect of orbit and attitude for the solar sail. Considering theout-plane deformation and the deduced foreshortening deformation of the solar sail, acoupled and reduced dynamic model is established with hybrid coordinate method andvirtual power principle. Base on this dynamic model, the coupled effect of orbit, attitudeand elastic vibration for the solar sail is analyzed through the dynamic analysis in thegeosynchronous orbit and large-eccentricity elliptical orbit.
     When the flexible structures are in motion, the vibration of the structure influencesthe dynamic characteristics of the entire structure and the control, and the influence issignificant, especially when the structure undergoes large-angle maneuvering. So thecoupled effect of attitude and elastic vibration is studied when the solar sail has singledegree of freedom and large-angle maneuvering. The large-amplitude vibration offlexible structure and the sustained vibration of attitude can be eliminated with the inputshaper. And it also can be achieved by the control of tip-mounted vanes.
     With the coupling effect of the orbit and the attitude included, a displaced solarorbit is designed for the solar sail. Including the additional influence of the flexibility,the coupled orbit-attitude control with the orbital and attitude feedback for the solar sailis researched.
     The solar polar orbit is presented by NASA, which is used for the observation ofthe sun. Based on the coupling effect of the orbit and the attitude, a transfer trajectoryfrom an earth-centric orbit to a solar polar orbit is designed. With theory oftime-optimal control, the transfer mission can be achieved by the design of the attitudeangles, but it is based on an assumption of the attitude changing transiently. Thesequences of attitude angles are generated by the time-optimal control and PD control is used to achieve attitude tracking control. The influence of attitude control and theflexibility of the solar sail in the mission are studied. In the long-term mission, theimportance of the solar pressure disturbance torques is also studied. At last, the controlof tip-mounted vanes is compared with centric torque control.
引文
[1]荣思远,刘家夫,崔乃刚.太阳帆航天器研究及其关键技术综述.上海航天,2011(2):53-62.
    [2] Sleight D W,Mann T. Structural Analysis and Test Comparison of a20-MeterInflation-Deployed Solar Sail.47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,and Materials Confere.2006.
    [3] Black J T, Leifer J, DeMoss J A, et al.Experimental and Numerical Correlation of Gravity Sag InSolar-Sail-Quality Membranes. Journal of Spacecraft and Rockets,2007.44(3):522-527.
    [4] Sakamoto H, Miyazaki Y,Park K C.Finite Element Modeling of Sail Deformation Under SolarRadiation Pressure. Journal of Spacecraft and Rockets,2007.44(3):514-521.
    [5] Sheng Z Y, Zheng J J, Zhou H J, et al. Finite Element Analysis about Solar Sail.IEEEInternational Conference on Information and Automation2008:1691-1696
    [6]司洪伟,李东旭,陈卫东.大挠性航天桁架结构动力学及其主动控制研究进展.力学进展,2008.38(2):167-176.
    [7]洪嘉振,刘铸永.刚柔耦合动力学的建模方法.上海交通大学学报,2008.42(11):1922-1926.
    [8] Ishimura K,Higuchi K.Coupling between Structural Deformation and Attitude Motion of LargePlanar Space Structures Suspended by Multi-Tethers. Acta Astronautica,2007.60(8-9):691-710.
    [9] Winfrey R C.Dynamics Analysis of Elastic Link Mechanisms by Reduction of Coordinate.Journal of Engineering for Industry,1972.94(2):577-582.
    [10] Likins P W.Modal Method for Analysis of Free Rotations of Spacecraft. AIAA Journal,1967.5(7):1304-1308.
    [11] Likins P W,Wirsching P H.Use of Synthetic Modes in Hybrid Coordinate Dynamic Analysis.AIAA Journal,1968.6(10):1867-1872.
    [12]陆佑方.柔性多体系统动力学.北京:高等教育出版社,1996.
    [13]刘莹莹,周军.挠性卫星轨控期间动力学与姿态控制.空间控制技术与应用,2008.34(2):9-13.
    [14]刘莹莹,周军.卫星轨道控制力对挠性帆板振动的影响.西北工业大学学报,2009.27(1):61-65.
    [15]刘军,韩潮.挠性航天器大角度机动的振动抑制控制.系统仿真学报,2008.20(7):1880-1883.
    [16]李争学,王本利,马兴瑞.带挠性附件航天器的鲁棒姿态跟踪控制.宇航学报,2009.30(3):974-981.
    [17]刘铸永,洪嘉振.柔性多体系统动力学研究现状与展望.计算力学学报,2008.25(4):411-416.
    [18]周军,周凤岐,李季苏,等.挠性卫星大角度机动变结构控制的全物理仿真实验研究.宇航学报,1999.20(1):66-70.
    [19] Johnson C D.Design of Passive Damping Systems. Journal of Mechanical DES,1995.117(B):171-176.
    [20]王松.挠性结构体的输入成型控制策略[硕士学位论文].厦门:厦门大学控制理论与控制工程,2002.
    [21]李洋,仇原鹰,张军,等.一种挠性航天器的自适应姿态控制与振动控制.振动与冲击,2009.28(12):178-182.
    [22]靳尔东,孙兆伟.挠性航天器的非线性PID和PI姿态控制器设计.控制理论与应用,2009.26(5):540-545.
    [23]孙兆伟,叶东,杨正贤,等.基于输出反馈的柔性航天器变结构跟踪控制方法.航空学报,2010.31(5):1060-1065.
    [24]陕晋军,刘暾.应用分力合成主动振动抑制方法的最优飞行器大角度机动控制策略.航空学报,2002.23(1):62-65.
    [25] Singer N,Seering W.Preshaping Command Inputs to Reduce System Vibration. Trans ASME JDyn Syst Meas Control,1990.112:76–82.
    [26]陈新龙,杨涤,翟坤.某挠性卫星姿态控制系统设计.哈尔滨工业大学学报,2008.40(5):678-682.
    [27] Hu Qinglei,Ma Guangfu.Variable Structure Control and Active Vibration Suppression ofFlexible Spacecraft During Attitude Maneuver. Aerospace Science and Technology,2005.9(4):307-317.
    [28] Smith O J M. Feedback Control Systems.New York: McGraw-Hill Book Company, Inc.,1958.
    [29] Singer N C,Seering W P.Preshaping Command Inputs to Reduce System Vibration Transactionsof the ASME. Journal of Dynamic Systems, Measurement and Control1990.112(1):76-82
    [30] Singhose W E, Seering W P,Singer N C. Shaping Inputs to Reduce Vibration: a VectorDiagram Approach. in Proceedings1990IEEE International Conference on Robotics andAutomation1990. Cincinnati, OH, USA: IEEE Comput. Soc. Press, Los Alamitos, CA, USA
    [31] Singhose W, Derezinski S,Singer N.Extra-insensitive Input Shapers for Controlling FlexibleSpacecraft. Journal of Guidance, Control, and Dynamics,1996.19(2):385-391.
    [32] Cutforth C F,Pao L Y.Adaptive Input Shaping for Maneuvering Flexible Structures. Automatica,2004.40(4):685-693.
    [33] Hu Qinglei.Robust Integral Variable Structure Controller and Pulse-Width Pulse-FrequencyModulated Input Shaper Design for Flexible Spacecraft with Mismatched Uncertainty/Disturbance.ISA Trans,2007.46(4):505-18.
    [34] La-orpacharapan C,Pao L Y.Fast and Robust Control of Systems with Multiple Flexible Modes.IEEE ASME Trans Mechatron,2005.10:521–534.
    [35] Hyde J M,Seering W P. Using Input Command Pre-Shaping to Suppress Multiple ModeVibration.Proceedings.1991IEEE International Conference on Robotics and Automation1991:2604-2609.
    [36] Rogers K,Seering W. Input Shaping for Limiting Loads and Vibration in Systems with On-OffActuators.AIAA, Guidance, Navigation and Control Conference.1996.
    [37]张小利.基于输入成型的挠性航天器振动控制研究[硕士学位论文].哈尔滨:哈尔滨工业大学控制科学与工程系,2009.
    [38] Sato M,Suzuki M.Vibration Control of Flexible Structures Using a Combined H-Infinity FilterApproach. Journal of Guidance, Control, and Dynamics,1996.19(5):1000-1006.
    [39] Grocott S, How J, Miller D, et al.Robust Control Design and Implementation on the MiddeckActive Control Experiment. Journal of Guidance, Control, and Dynamics,1994.17(6):1163-1170.
    [40] Kida T, Yamaguchi I, Chida Y, et al.On-Orbit Robust Control Experiment of FlexibleSpacecraft ETS-VI. Journal of Guidance, Control, and Dynamics,1997.20(5):865-872.
    [41] Chida Y, Soga H, Yamaguchi Y, et al.On-orbit Attitude Control Experiments Using ETS-VI byH-infinity Control and Two-Degree-Of-Freedom Control. Control Engineering Practice1998.6(9):1109-1116.
    [42] Thomas A W, Dwyer III,Hebertt S R.Variable-structure Control of Spacecraft AttitudeManeuvers. Journal of Guidance, Control, and Dynamics,1988.11(3):262-270.
    [43] Ge Shuzhi, Lee Tong-Heng,Hong Fan. Variable Structure Maneuvering Control of a FlexibleSpacecraft.American Control Conference,2001.2001:1599-1604.
    [44] Wu Yuqiang,Yu Xinghuo.Variable Structure Control Design for Uncertain Dynamic Systemswith Disturbances in Input and Output Channels. Automatica,1999.35(2):311-319.
    [45] DIONG B M,MEDANIC J V.Dynamic Output-Feedback Variable Structure Control for SystemStabilization. International journal of control1992.56(3):607-630
    [46] Yallapragada S V, Heck B S,Finney J D.Reaching Conditions for Variable Structure Controlwith Output Feedback. Journal of Guidance, Control, and Dynamics,1996.19(4):848-853.
    [47] Zeng Yueming,Singh S N.Output Feedback Variable Structure Adaptive Control of anAeroelastic System. Journal of Guidance, Control, and Dynamics,1998.21(6):830-837.
    [48]胡庆雷,马广富.改进型正位置反馈/变结构卫星姿态主动控制.振动工程学报,2007.20(4):324-329.
    [49] Singh T, Golnaraghi M F,Dubey R N.Sliding-Mode Shaped-Input Control of Flexible RigidLink Robots Journal of sound and vibration,1994.171(2):185-200.
    [50] Zenga Y, Araujoa A D,Singh S N.Output Feedback Variable Structure Adaptive Control of aFlexible Spacecraft. Acta Astronautica,1999.44(1):11-22.
    [51] Wie B.Solar Sail Attitude Control and Dynamics, Part1. Jounal of Guidance, Control, andDynamics,2004.27(4):526-535.
    [52]骆军红.太阳帆航天器动力学建模与姿态控制研究[硕士学位论文].哈尔滨工业大学飞行器动力学与控制研究所,2007.
    [53]骆军红,袁宴波,廖志忠.基于控制叶片的太阳帆姿态控制系统建模与仿真.系统仿真学报,2009.21(24):7920-7924.
    [54] Gong Shengping, Baoyin Hexi,Li Junfeng.Coupled Attitude–Orbit Dynamics and Control forDisplaced Solar Orbits. Acta Astronautica,2009.65(5-6):730-737.
    [55] Smith S W, Song Haiping, Baker J R, et al. Flexible Models for Solar Sail Control.46thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Conference.2005.
    [56] Liu Jiafu, Rong Siyuan, Li Jianguo, et al. Attitude Dynamics Modeling and Control of LargeFlexible Solar Sail Spacecraft.20103rd International Symposium on Systems and Control inAeronautics and Astronautics2010:243-247.
    [57]崔乃刚,刘家夫,荣思远.太阳帆航天器动力学建模与求解.航空学报,2010.31(8):1565-1571.
    [58]张洋.太阳帆航天器姿态控制与轨迹优化研究[博士学位论文].北京:中国科学技术大学导航制导与控制,2010.
    [59] Li Qing, Wang tianshu,Ma Xingrui. Reduced Model of Flexible Sail-Boom Interaction for SolarSail Dynamics. The60th International Astronautical Congress2009, IAC2009.2009:5045-5055.
    [60]张国庆,王永,梁青,等.太阳帆航天器姿态控制进展.中国宇航学会深空探测技术专业委员会第三届学术会议论文集,2006.
    [61] Gong Shengping, Li Junfeng,Baoyin Hexi.Passive Stability Design for Solar Sail on DisplacedOrbits. Journal of Spacecraft and Rockets,2007.44(5):1071-1080.
    [62] Derbes B, Lichodziejewski D L,Veal G. A "yank and yaw" Control System for Solar SailsAAS/AIAA14th Space Flight Mechanics Meeting.2004:2893-2908.
    [63]骆军红,李晓东,冯军华.太阳帆航天器被动姿态控制研究.飞行力学,2008.26(5):47-50.
    [64] Quadrelli M B,West J.Sensitivity Studies of the Deployment of a Square Inflatable Solar Sailwith Vanes. Acta Astronautica,2009.65(7-8):1007-1027.
    [65] Wie B.Solar Sail Attitude Control and Dynamics, Part2. Jounal of Guidance, Control, andDynamics,2004.27(4):536-544.
    [66] Thomas S, Michael P, Wie B, et al. AOCS Performance and Stability Validation for LargeFlexible Solar Sail Spacecraft.41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit.2005.
    [67] Wie B, Murphy D, Paluszek M, et al. Robust Attitude Control Systems Design for Solar Sails(Part1): Propellantless Primary ACS. AIAA Guidance, Navigation, and Control Conference andExhibit.2004.
    [68] Wie B,Murphy D. MicroPPT-Based Secondary/Backup ACS for a160-m,450-kg Solar SailSpacecraft41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit.2005.
    [69] Funase R, Shirasawa Y, Mimasu Y, et al.On-orbit Verification of Fuel-Free Attitude ControlSystem for Spinning Solar Sail Utilizing Solar Radiation Pressure. Advances in Space Research,2011.48(11):1740-1746.
    [70] Wie B, Murphy D, Paluszek M, et al. Robust Attitude Control Systems Design for Solar Sails(Part2): MicroPPT-based Backup ACS. AIAA Guidance, Navigation, and Control Conference andExhibit.2004.
    [71] Adeli S N, Lappas V J,Wie B.A Scalable Bus-Based Attitude Control System for Solar Sails.Advances in Space Research,2011.48(11):1836-1847.
    [72] Dachwald B, Seboldt W, Macdonald M, et al. Potential Solar Sail Degradation Effects onTrajectory and Attitude Control.AIAA Guidance, Navigation, and Control Conference and Exhibit.2005.
    [73] Murphy D M,Trautt T A. Solar Sail Propulsion Modeling.48th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference.2007.
    [74] Kezerashvili R Y,Vázquez-Poritz J F.Drag Force on Solar Sails Due to Absorption of SolarRadiation. Advances in Space Research,2011.48(11):1778-1784.
    [75] Vulpetti G.Effect of the Total Solar Irradiance Variations on Solar-Sail Low-Eccentricity Orbits.Acta Astronautica,2010.67(1-2):279-283.
    [76] Wie B.Thrust Vector Control Analysis and Design for Solar-Sail Spacecraft. Journal ofSpacecraft and Rockets,2007.44(3):545-557.
    [77] Sakamoto H, Park K C,Miyazaki Y. Effect of Static and Dynamic Solar Sail Deformation onCenter of Pressure and Thrust Forces.AIAA Guidance, Navigation, and Control Conference andExhibit.2006.
    [78] Rios-Reyes L,Scheeres D J.Solar-Sail Navigation: Estimation of Force, Moments, and OpticalParameters. Journal of Guidance, Control, and Dynamics,2007.30(3):660-668.
    [79] He Jing, Gong Shengping,Li Junfeng.A Curved Surface Solar Radiation Pressure Force Modelfor Solar Sail Deformation. Science China Physics, Mechanics and Astronomy,2011.55(1):141-155.
    [80] McInnes C R,Simmons F L.Solar Sail Halo Orbits I: Heliocentric Case. Journal of Spacecraftand Rockets,1992.29(4):466-471.
    [81] McInnes C R,L. Simmons J F.Solar Sail Halo Orbits Part II-Geocentric Case. Journal ofSpacecraft and Rockets,1992.29(4):472-479.
    [82] Goldstein B E, Buffington A, Cummings A C, et al. A Solar Polar Sail Mission: Report of aStudy to Put a Scientific Spacecraft in a Circular Polar Orbit about the Sun.Conference on theMissions to the Sun II1998:65-76
    [83] Sauer C G. Solar Sail Trajectories for Solar Polar and Interstellar Probe Missions.AAS/AIAAAstrodynamics Specialist Conference.2000:547-562.
    [84] McInnes C R.Non-Keplerian Orbits for Mars Solar Reflectors Jbis. Journal of the BritishInterplanetary Society,2002.55(3-4):74-84.
    [85] Hughes G W,McInnes C R.Small Body Encounters Using Solar Sail Propulsion. Journal ofSpacecraft and Rockets,2004.41(1):140-150
    [86] Macdonald M,McInnes C R.Realistic Earth Escape Strategies for Solar Sailing. Journal ofGuidance Control and Dynamics,2005.28(2):315-323
    [87] Macdonald M, Hughes G W, McInnes C R., et al.Solar Polar Orbiter: A Solar Sail TechnologyReference Study Journal of Spacecraft and Rockets,2006.43(5):960-972.
    [88] Mengali G,Quarta A A.Rapid Solar Sail Rendezvous Missions to Asteroid99942Apophis.Journal of Spacecraft and Rockets,2009.46(1):134-140.
    [89] Quarta A A,Mengali G.Optimal Switching Strategy for Radially Accelerated Trajectories.Celestial Mechanics and Dynamical Astronomy,2009.105(4):361-377.
    [90] Gong Shengping, Li Junfeng,Zeng Xiangyuan.Utilization of an H-Reversal Trajectory of aSolar Sail for Asteroid Deflection. Research in Astronomy and Astrophysics,2011.11(10):1123-1133.
    [91] Gong Shengping, Gao Yunfeng,Li Junfeng.Solar Sail Time-Optimal Interplanetary TransferTrajectory Design. Research in Astronomy and Astrophysics,2011.11(8):981-996.
    [92] Dachwald B, Ohndorf A,Wie B. Solar Sail Trajectory Optimization for the Solar Polar ImagerMission.AIAA/AAS Astrodynamics Specialist Conference and Exihibt.2006:532-549.
    [93] Mengali G,Quarta A A.Solar Sail Near-Optimal Circular Transfers with Plane Change. Journalof Guidance, Control, and Dynamics,2009.32(2):456-463.
    [94]曾祥远,宝音贺西,李俊峰,等.太阳帆新型逆向周期轨道.清华大学学报(自然科学版),2012.52(1):118-121.
    [95] Zeng Xiangyuan, Baoyin Hexi, Li Junfeng, et al.Feasibility Analysis of the Angular MomentumReversal Trajectory via Hodograph Method for High Performance Solar Sails. Science ChinaTechnological Sciences,2011.54(11):2951-2957.
    [96] Zeng Xiangyuan, Baoyin Hexi, Li Junfeng, et al.Three-Dimensional Time Optimal DoubleAngular Momentum Reversal Trajectory Using Solar Sails. Celestial Mechanics and DynamicalAstronomy,2011.111(4):415-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700