金乌贼繁殖、发育及荧光标志技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以金乌贼为研究对象,采用实验生态学、组织学和生理学手段,研究了金乌贼亲体培育及人控环境下的繁殖行为;性腺发育和卵子发生的组织学;幼体金乌贼的生长发育及消化酶活性的变化;视觉发育;环境条件的变化对幼体金乌贼摄食行为的影响以及利用荧光染色剂(ALC)标志金乌贼内壳的放流标志技术。主要研究结果如下:
     1.以采自日照岚山头金乌贼为研究对象,观察了养殖池内金乌贼亲体的交配和产卵行为,比较了不同产卵基附卵效果的差异,分析了金乌贼胴长、体重与怀卵量之间的关系,确定了金乌贼亲体的产卵节律。结果显示:亲体金乌贼求偶、追偶、交配、产卵、扎卵等行为明显;不同产卵基附卵效果差异显著,网绳产卵基和柽柳产卵基附卵效果较好,地肤草较差;金乌贼怀卵量与胴长和体重之间相关关系不显著,怀卵量浮动于500~1500粒之间,平均怀卵量为1114粒;产卵时间较有规律,主要集中于21时至次日凌晨3时。
     2.以采自日照岚山头金乌贼亲体5尾(3雌,2雄)和金乌贼幼体39尾为研究对象,研究了亲体金乌贼生殖系统的结构特性以及金乌贼幼体发生性腺分化的时间。结果表明,金乌贼属雌雄异体。雄性生殖系统包括精巢、输精管、精囊、副性腺和精荚囊。精荚囊中充满了排列紧密的成熟精荚。精荚为棒球棒状,由体腔中的精子、接合体、螺旋发射器和帽子组成。精荚纵切面显示精子以“V”字型储藏于精荚体腔内,横切面显示精子呈螺旋状储藏于精荚体腔内,且在接近体腔中心位置螺旋状尤为明显。雌性生殖系统包括卵巢、输卵管、输卵管腺以及附属腺。幼体形成卵巢的时间约为孵化后7d,此时显微镜下可观察到卵巢中包含一些着色较浅的卵母细胞。根据卵母细胞的大小、卵母细胞核的形态及卵母细胞与滤泡细胞的结构变化,将金乌贼卵子发生划分为8个时期。
     3.对自然海区及养殖池内采集的金乌贼受精卵进行了人工孵化,对孵化后金乌贼幼体生长发育的生物学指标进行了测量,同时分析了酸性蛋白酶、脂肪酶等消化酶随日龄的活性变化。结果显示:受精卵孵化率受水温影响差异不显著,但受盐度影响差异显著;小水体条件下金乌贼幼体的存活率偏低为81.4%,大水体条件下,存活率较高为100%;如初期饵料充足,幼体乌贼规格整齐,放养密度较低时不会出现自残现象;金乌贼幼体生长迅速,属异速生长型;胴宽朋同长、壳宽/壳长的比值随生长呈下降趋势;此外,金乌贼幼体的酸性蛋白酶和脂肪酶活性均随日龄的增加而升高,至孵化后210d,分别达158.3 U/mL和183.2 U/mL。
     4.运用显微和超显微方法对金乌贼的视觉发育进行了研究。结果表明:金乌贼视网膜内四层结构清晰可见,由外向内依次为感杆层、次级感杆层、内界层、神经纤维层。1)感杆层,感杆层由许多排列规则、紧密的顶端突起组成,顶端突起外附有微绒毛。纵切面观察发现,微绒毛呈一定角度排列于每一个顶端突起周围,但顶端却未见微绒毛;横切面观察发现,顶端突起形状多样,呈圆形、纺锤形、三角形等不同形态。微绒毛呈放射状排列在顶端突起周围,但有些部位缺少微绒毛。视网膜发育早期阶段,微绒毛较短,且排列规律性欠佳,随生长发育,微绒毛逐渐变长,排列较有规律。此外,顶端突起中含有色素颗粒和小泡,小泡源于微绒毛,微绒毛失去小泡时便会萎缩。小泡内含有色素颗粒,当到达顶端突起时便会破裂并将色素颗粒释放出来。随着色素颗粒的增多,色素颗粒常会在顶端突起底部聚集,形成集合体。2)次级感杆层,次级感杆层中细胞质含有色素颗粒、小泡、线粒体、高尔基复合体和髓样体。线粒体和高尔基复合体数量随生长发育逐渐增多,髓样体规格和数量也随生长不断增加。随生长发育次级感杆层中细胞核不断穿越极板进入内界层,进入内界层的细胞核含有较多异染色质,形状变得细长且电子亮度加深。支持细胞数量随生长发育逐渐增多,其微绒毛嵌入感杆层。3)内界层,内界层中富含线粒体、核糖体、高尔基复合体、内质网和髓样体,且数量随生长发育明显增多。4)神经纤维层,神经纤维层内含有感受细胞轴突、神经纤维、线粒体、高尔基复合体和神经胶质细胞。神经纤维层的机能随生长逐渐趋于完善。另外,测量计算得知,感杆层厚度及单位面积微绒毛表面积的总量随生长与日龄呈幂函数关系,晶状体直径随生长与日龄呈线性关系。总结发现,金乌贼的视敏度随生长发育不断增加。
     5.研究了不同底质(玻璃底、沙底),光照度(2501x、O.11x),视角(视野前方、上方、下方)对金乌贼摄食行为的影响。结果表明:不同底质条件下,金乌贼的摄食行为表现出显著差异,沙底条件下,金乌贼表现出明显的隐蔽行为;金乌贼具有较高的视敏度,在光照强度2501x与0.11x条件下摄食行为差异不显著;金乌贼摄食视野上方食饵的成功率较摄食视野下方或前方时低约20%;在光照度2501x条件下,胴背长43mm、48mm、56mm的金乌贼对食饵反应距离分别为:130.0cm、135.5cm、143.1cm,光照度降至0.11x时,分别为:115.0 cm、120.6 cm、126.3 cm.
     6.以金乌贼为实验对象,利用荧光物质一茜素络合指示剂(Alizarin Complexone ALC)浸泡金乌贼幼体,对其内壳进行标志,所用荧光染色剂浓度为6.0~8.0×10-3%,浸泡染色时间24h。将标志组和对照组的金乌贼幼体分别暂养于1.5m×1.5m×1.5m水泥池30d,后将暂养的幼体放养于面积为2667m2的室外土池,并在60d后,将平均胴背长达91.4mm(对照组)、87.6mm(标志组)金乌贼幼体移入室内水泥池越冬,整个实验历时210d。实验期间,分别在标志后15、30、45、60、90、210d对金乌贼进行随机取样,解剖出内壳观察标志色保留状况并对金乌贼生长发育及存活率进行测量。结果显示,标志金乌贼的成活率为100%;方差分析显示,标志组和对照组金乌贼的生长发育差异不显著(P>0.05);210d后内壳骨针部仍清晰保留初染时的半椭圆形淡紫色圆圈;本实验所采用的ALC内壳标志方法操作容易,可一次性大量进行标志处理,鉴别简单,无需借助其它仪器,肉眼便可直接观察到标志色,并且标志色保持率高,保留时间长,是一种理想的金乌贼放流标志方法。
This paper reviewed the recent literatures on the biology and enhancement technique of Sepia esculenta, including morphology, fishery biology, behavior ecology, and genetics. The domestication and propagation behaviour in artificial environment, the histology observations on gonad and oogenesis, the growth and digestive enzymes, the development of retina, the feeding behavior in different environmental factors, the fluorescent marking technology were studied in this paper. The most results are summarized as follow.
     1 Studies on the domestication and the propagation behaviour in cuttlefish, Sepia esculenta (Cephalopoda:Sepiidae)
     S.esculenta were collected from Rizhao Lanshan as researchful object in this paper. The matching and reproduction behaviour of mature S. esculenta were observed in breeding pond, the effect of different spawning substrate were studied, the relationship between the mantle length and body weight of S.esculenta and fecundity was analyzed, the spawning rhythm of mature S.esculenta was founded. The investigation results showed that the courtship behaviour, chasing behaviour, matching behaviour, spawning behaviour were obviously observed in the process of mating; there were significantly differences-between different spawning substrate, compared with the Kochia scoparia substrate, The fishing net substrate and Tamarix chinensis substrate are better; there were no founction relation between the fecundity and he mantle length and body weight of S.esculenta, the fecundity was mostly between 500 and 1500, and the average was 1114;the spawning time was very disciplinarian and mostly between 21:00 and the next day 03:00.
     2 Histology observations on gonad and oogenesis in cuttlefish, Sepia esculenta (Cephalopoda:Sepiidae)
     Sepia esculenta, is a most commercially important species of coastal fishes in China and Japan,however, little is known about the mature reproductive system, the gonadal development and the oogenesis of cultured juveniles. To determine the histological character of the mature reproductive system and the juveniles size at gonadal differentiation, five adults (3 females,2 males) cuttlefish and 39 cultured juveniles ranging from 1 to 88 d old after hatching are used in this experiment. The results show that S.esculenta is gonochorism and the genital system of the males consists of spermary, spermaduct, vesicular seminalis, prostate gland and Needham's Sac.The Needham's Sac is completely filled with tightly packed and well developed spermatophores. The spermatophore is shaped like a baseball bat and consists of an elongated sperm mass, a cement body, a coiled spring-like ejaculatory organ, and a cap. Sperm mass are "V"-like stored in the cavity of spermatophore from longitudinal section. From the transverse section, they are seen spirally stored in the spermatophore especially near to the centre. The genital system of the females consists of ovary, oviduct, albumen gland and affiliated gland.The time that gonads are differentiated into ovaries in juveniles is at about 7th d after hatching when the gonads contained some staining gonocytes. Eight stages of oocytes were indicated basing upon the degree of formation and development of the oocytes and associated follicle cells via the histological observation.
     3 Studies on growth and digestive enzymes of juvenile cuttlefish, Sepia esculenta (Cephalopoda:Sepiidae)
     The S.esculenta were collected from Rizhao Lanshan as researchful object in this paper, the oosperms of natural collection and manul collection were hatched under the artificial condition, the hatchlings were reared with superfluous food everyday, the developmental characteristic of S.esculenta was studied and the relation between age and developmental parametey was analyzed.The investigation results showed that the temperature significantly affected the oosperm hatching time; the oosperm hatching rate was not significantly affected by temperature, but significantly affected by salinity; the survival rate of S.esculenta was 81.4% in small water, and 100% in big water; the autotomy was not appearance when the foods were eough, the size of S.esculenta was in order and the density of S.esculenta was low; the hatchlings grow rapidly with the development. The acid protease activity and the activity of lipase of S.esculenta were increasing with ages, which werel58.3 U/mL and 183.2 U/mL respectively when they were 210d old after hatching.
     4 Development of the retina in the cuttlefish, Sepia esculenta (Cephalopoda: Sepiidae)
     To provide morphological bases for functional studies, the development of the photoreceptor cells in the retina of a cuttlefish, Sepia esculenta from newly hatched juveniles to the adults, was examined by light-and electron-microscopy. Four layers can be distinguished in the retina according to the observation.1),rhabdomeric layer. Which increases in thickness gradually during the development. On the lateral surface of the growing apical processes in the rhabdomeric layer, microvilli increase in length and regularity.In longitudinal sections of the apical processes, the microvilli are arranged at right angles to the long axis of each apical process, but the top of the apical process is often free from microvilli. In cross-sections, the microvilli arise radially in all directions from the round circumference of the apical process. Usually the pigment granules coming from microvilli are crowded near the distal end and base of the process, gradually increase in number, often form a large aggregation. Some microvilli start to decay as more and more vesicles coming from microvilli. 2), sub-rhabdomeric layer. There exist numerous pigment granules, a few mitochondria, sparsely scattered small vesicles of various shapes, golgi apparatuses, and myeloid bodies. At first they are very few and small, and then increase in number,In the eyes of newly hatched juveniles, the number of the nucleus in the sub-rhabdomeric layer is very large, but decreases much with the development as they ceaselessly pass through the basal lamina into the inner-segment. The supporting cells increase in number and send out very long microvilli into the rhabdomeric layer, the electron-lucent of the whole the sub-rhabdomeric layer is increasing.3), inner segmental layer. They are rich in membranous organelles. The cytoplasm contains microtubules and numerous free ribosomes. Mitochondria increase in number remarkably.4),plexiform layer. Which consists of the receptor cell axons, nerve fibers, mitochondria, golgi apparatuses, and the glial cells. With the development of the retina, the structure of plexiform layer become stronger. Morphometric data on the rhabdomeric microvilli from the newly hatched to the adult retinas are presented. The thickness of the rhabdomeric layer and the total surface area of the rhabdomeric microvilli present beneath a unit surface area of the retina show a logarithmic increase with developmental days, the diameter of lens shows a linear increase with days. The results of our research show that the visual acuity and sensitivity of S.esculenta continuously increased with the development.
     5 Effects of different environmental factors on feeding behavior of juvenile cuttlefish, Sepia esculenta (Cephalopoda:Sepiidae)
     This paper investigated the effects of substrate(glass substrate,sand substrate),visual angle(frontage,above,below) on feeding behavior of sepia escul-enta. The results in the present study indicated that substrate significantly affected the feeding behavior of Sepia esculenta,and covert behavior could easily be seen in the process of Sepia esculenta's feeding behavior in sand substrate. There were no significant differences between 2501x and 0.11x; the chance of successfully preying the shrimp which is above the view is about 20% lower than o-ther bearings; the reaction distance of Sepia esculenta(doral mantle length, DML (43mm、48mm、56mm))is 130.0cm、135.5cm、143.1cm respectively in 2501x;and 115.0cm、120.6cm、126.3cm in 0.11x.
     6 The study of fluorescent marking technology in cuttlefish Sepia esculenta (Cephalopoda:Sepiidae)
     It is very important to establish a kind of simple and useful marking method to evaluate multiplication and releasing effect and the current situation of fisheries resource. The golden cuttlefish were chosen to be the study matieral in this article. The larval golden cuttlefish hached after 15d were immersed in 6.0~8.0×10-3% alizarin complexone(ALC)for 24h. The tagged group and control group were reared in 1.5m×1.5m×1.5m indoor pond for 30d, and then they were removed to 2667m2 outdoor pond. After 60d, their mean doral mantle length grew to 91.4mm (control group) and 87.6mm (tagged group) respectively, they were removed to indoor pond for over winter. During 210d experiment, the golden cuttlefish were sampled randomly in order to examine the growth and the dye-retention of the tagged cuttlebone after tagged 15、30、45、60、90、210d. The results of the experiment showed that this marking method is very effective, and the survival rate of the tagged golden cuttlefish is 100%. There are no significant differences between the growth of the tagged group and the control group (P>0.05). The half tagged lavender ring is very clear in the cuttlebone even after tagged 210d. Additionally, according to this method, we could tag lots of samples easily in one time, and the retention of marker can last long period. Due to the maneuverability and easy to distinguish tagged ones, it is suggested that this method could be a good marking method for golden cuttlefish.
引文
陈四清,刘长琳,庄志猛,邓永生.饵料、盐度对金乌贼幼体生长的影响.渔业现代化.2008.35:6.23-26.
    陈国华.乌贼骨可治多种疾病.开卷有益求医问药,1997,(11):35-36
    程济生,朱金生.黄海主要经济无脊椎动物摄食特征及其营养层次的研究[J].海洋学报,1997.19(6):102-108.
    董正之.世界大洋经济头足类生物学[M].济南:山东科学技术出版社,1991.197-207.
    董正之.头足类早期生长阶段的比较研究[J].动物学研究,1992.13(3):209-216.
    董正之.头足类若干结构的形态比较[J].动物学报,1993.39(4):348-354.
    方尔笠,顾洛,田苏平等.海螵蛸防治胃溃疡作用的机理探讨.中国中西医结合杂志,1994,12(4):101-103
    葛兆兵.日照特产乌鱼蛋.中国检验检疫,1997,3:45
    何大仁,蔡厚才.鱼类行为学[M].福建:厦门大学出版社,1998.
    江津津,戚晓玉,周培根.乌贼墨多酚氧化酶的部分特性[J].上海水产大学学报,11 2002.(4):353-356.
    李嘉泳.金乌贼Sepia esculenta Hoyle在黄渤海的结群生殖和洄游[J].山东海洋学院报,1963.5(2):69-108.
    李嘉泳.太平洋西部渔业研究委员会第六次全体会议论文集[M].金乌贼(Sepia esculenta Hoyle)在我国黄渤海的结群生殖洄游和发育.1965.北京:科学出版社:61-92.
    刘长琳,庄志猛,陈四清,邓永生.金乌贼亲体驯养与繁殖特性研究.渔业现代化.2009.36(2):34-37
    缪国荣,王承录.海洋经济动植物发生学图集[M].青岛:青岛海洋大学出版社:1990.70-73.
    齐钟彦,马继同,王祯瑞,林光宇.黄渤海的软体动物[M].北京:农业出版社:1989.257-258.
    齐钟彦.中国经济软体动物[M].北京:中国农业出版社:1998.293-294.
    钱卫国.鱿钓渔业中集鱼灯的优化配置研究[博士论文].上海海洋大学,2005
    孙光,兰永仁.日本乌贼类的渔业、生态和资源[J].现代渔业信息.1993.8(7):20-22
    魏臻邦.金乌贼生活习性的初步观察[J].动物学杂志,1964.1(2):132-134.
    韦柳枝,高天翔,韩志强等.金乌贼腕式研究[J].海洋水产研究,2004.25(3):15-20.
    吴耀泉,张宝琳,孙道元等.胶州湾5月和8月无脊椎动物资源量评估[J].齐鲁渔业,1997.14(6):8-11.
    肖述.乌贼海螵蛸形成机理研究.2003.中国海洋大学硕士论文.
    杨德渐,孙世春.海洋无脊椎动物学[M].青岛:青岛海洋大学出版社:1999.321-328.
    张玺,齐钟彦,李洁民.中国北部海产经济软体动物[M].北京:科学出版社,1955.91-93.
    张玺,齐钟彦,李洁民.中国经济动物志—海产软体动物[M].北京:科学出版社,1962.213-217.
    郑高利,张信岳,周彦钢等.鱿鱼墨和乌贼墨部分成分及微量元素含量比较[J].中国海洋药物,2002.21(3):12-14.
    赵厚钧,魏邦福,胡明,等.金乌贼受精卵孵化及不同材料附着基附卵效果的初步研究[J].海洋湖沼通报,2004.26(3):64-68.
    赵汝翼,程济民,赵大东.大连海产软体动物志[M].北京:海洋出版社,1982.147-148.
    郑小东,杨建敏,王海艳等.金乌贼墨汁营养成分分析及评价[J].动物学杂志,2003.38(4):32-35.
    郑元甲,陈雪忠,程家骅等.东海大陆架生物资源与环境[M].上海:上海科学技术出版社:2003.722-727.
    山本孝治.金烏贼受精卵分裂[J].植物及勤物,1942.10:25-130.
    佐佐木望,黑田德米.日本勤物图览(改定增補版)[M].东京:北隆馆,1955.1012-1027.
    田村保.鱼の眼の机能の研究方法[J]日本水产学会誌.1963,29(1):75-89
    田村保.鱼類網膜の明暗顺应の状态との关係[J] 日本水产学会誌.1957,22(12):742-746
    Arakawa KY. Mating and spawning habits of some marine mollusc[J]. Venus of the Japanese Journal Malacol.,1960.21:72-78.
    Arima S, Hiramatsu T, Tako N. Mass production of deedling and maintenance of Sepiidae-1[J].Annual Research Report of the Buzen Fishery Institute.,1962.71-100.
    Arima S, Hiramatsu T, Norimatsu K. Mass production of deedling and maintenance of sepiidae-Ⅲ[J]. Annual Research Report of the Buzen Fishery Institute.,1964.1-56.
    Choe S.The shell and the locular index of the cuttlefishes, Sepia esculenta Hoyle, Sepia esculenta Sasaki, Sepiella maindroni de Rochebrune[J].Bulletin of the Japanese Society of Scientific Fisheries.,1962.28: 1082-1091.
    Choe S, Ohshima Y. Rearing of cuttlefishes and squids[J].Bulletin of the Japanese Society of Scientific Fisheries.1963.,29:307-327.
    Cohen, A.L. An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. I. Photoreceptive and non-synaptic regions of the retina. J. Comp. Neurol.1973a 147:351-378
    Cohen, A.L. An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. Ⅱ.Intraretinal synapses and plexus. J. Comp. Neurol.1973b 147:379-398.
    Duke-Ekder.S. The eye in evolution[M].Lonton:Henry Kimpton,1958:144
    Eiichi Hasegawa, Hiroshi Kobayashi, Hiroshi Niwa. Retinomotor Response of the Fish Concentrated around an Underwater Lamp[J].Nippon Suisan Gakkaishi,1990,56(2):367.
    Fujita T, Hirayama Ⅰ, Matsuoka T. Spawning behavior and selection of spawning substrate by cuttlefish Sepia esculenta[J]. Nippon Suisan Gakkaishi.,1997.63(2):145-151.
    Gray, E.G. A note on synaptic structure of the retina of Octopus vulgaris.J.Cell Sci.1970.7:203-215.
    Koido Y, Kurata Y, Kawakami T. Ecology on Sepia esculenta and Sepiella japonica caught in Tokyo Bay[J]. Aquaculture.,1956.3 (3):10-50.
    Kataoka T. Egg laying behavior of Sepia esculenta in aquarium[J]. Journal of the Zoology Aquarium., 1960.2(1):12-13.
    Kataoka, S.,and T. Yamamoto. Fine structure and formation of the photoreceptor in Octopus ocellatus Biol. Cell.1983.49:45-54.
    Natsukari Y, Tashiro M.. Neritic squid resources and cuttlefish resources in Japan[J].Behaviour and Physiology.,1991.18:149-226.
    Roper CFE, Sweeney MJ, Nauen CE. Species catalogue. Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries[J].,FAO Fisheries Synopsis 1984.3(125):40-58.
    Saibil, H.R. An ordered membrane-cytoskeleton network in squid photoreceptor microvilli.J.Mol.Biol. 1982.158:435-456.
    Seikai R. Fishes of the East China Sea and the Yellow Sea[J].Nippon Suisan Gakkaishi,1976.41 (7): 101-112.
    Suzuki K, Anraku K, Sasaki T. The morphology of the chemosensory cells and the feeding behavior of the cuttlefish, Sepia esculenta[S].Comparative Biochemistry and Physiology-part A,1999.102-112.
    Tazaki.K. Science for living Body[J].1967,(18):166-176.
    Tomiyama A.Ecological studies on the useful sea animals of Yamaguchi Pref, Inland Sea.17.On the cuttlefish, Sepia esculenta Hoyle[J].Naikai Fisheries Experiment Station,1957.9(1):29-39.
    Tonosaki, A.The fine structure of the retinal plexus in Octopus vulgaris.Z. Zellforsch.1965.67:521-532.
    Toshifumi W, Takeshi T, Tohru M. Sperm displacement behavior of the cuttlefish Sepia esculenta (Cephalopoda:Sepiidae) [J].,Journal ofEthology.2005.23 (2):85-92.
    Ueda.A, Nagai. H, Ishida.M, Nagashima.Y, Shiomi.K Purification and molecular cloning go SE-cephalotoxin, a novel proteinaceous toxin from the posterior salivary gland of cuttlefish Sepia esculenta.Toxicon.2008 52:574-581
    Wada T, Takegaki T, Mori T. Sperm displacement behavior of the cuttlefish Sepia esculenta (Cephalopoda: Sepoodae). J.Ethol.2005.23:85-92
    Watanuki N, Kaneuchi S, Fujita T. Entry of immature cuttlefish Sepia esculenta into basket traps[J]., Fisheries Science.1998.64 (5):707-710.
    Watanuki Naohiko, Kawamura Gunzo, Kaneuchi Shohei, Iwashita Toru. Role of vision in behavior, visual field, and visual acuity of cuttlefish Sepia esculenta[J]. Fisheries Science,2000,66:417-423
    Wei LZ, Gao TX, Zhang XM.Isozyme analysis of Sepia esculenta (Cephalopoda:Sepiidae)[J].Journal of Fishery Sciences of China,2005.12 (5):549-556.
    Yamamoto T. Observations on the habits of the squid larvae, Sepia esculenta Hoyle, with special reference to the change of colour pattern on the mantle[J]. Botany and Zoology.,1941.9:349-353.
    Yamamoto T. On the embryonal development of Sepia esculenta Hoyle[J].Botany and Zoology.,1942.10: 443-448.
    Yamamoto, M., and N. Takasu. Membrane particles and gap junctions in the retinas of two species of cephalopods, Octopus ocellatus and Sepiella japonica Cell Tissue Res.1984.237:209-218.
    Yasuda J. Some ecological notes on the cuttlefish, Sepia esculenta Hoyle[J].Nippon Suisan Gakkaishi., 1951.16(8):350-356.
    Yagi T. Studies on the identification method of races in Sepia esculenta Hoyle by using the locular index of shells[J].Bulletin of the Japanese Society of Scientific Fisherie,1960a.26:640-645.
    Yagi T. On the growth of the shell in Sepia esculenta Hoyle caught in Tokyo Bay[J].,Bulletin of the Japanese Society of Scientific Fisheries,1960b.26:646-652.
    Zheng XD, Zhao JM, Xiao S. Isozymes analysis of the golden cuttlefish Sepia esculenta (Cephalopoda: Sepiidae)[J].Journal of Ocean University of China,2004.3(1):48-52.
    Yamamoto, M.,and N. Takasu. Membrane particles and gap junctions in the retinas of two species of cephalopods, Octopus ocellatus and Sepiella japonica Cell Tissue Res.1984.237:209-218.
    Yamamoto, T.,K. Tasaki,Y. Sugawara, and A.Tonosaki.Fine structure of the octopus retina. J.Cell Biol. 1965.25345-359.
    Zonana, H.V. Fine structure of the squid retina. Johns Hopkins Hosp. Bull.1961.109:185-205.
    李嘉泳.金乌贼Sepia esculenta Hoyle在黄渤海的结群生殖和洄游[J].山东海洋学院报,1963.5(2):69-108.
    董正之.1991.济南:山东科学技术出版社[M].,世界大洋经济头足类生物学,197-207.
    刘长琳,庄志猛,陈四清,邓永生.金乌贼亲体驯养与繁殖特性研究.渔业现代化.2009.36(2):34-37
    魏臻邦.金乌贼生活习性的初步观察[J].动物学杂志,1964.1(2):132-134.
    张炯,卢伟成.曼氏无针乌贼Sepiella maindroni de rochebrune繁殖习性的初步观察[J].水产学报,]965,2(2):35--43
    赵厚钧,魏邦福,胡明等.金乌贼受精卵孵化及不同材料附着基附卵效果的初步研究[J].海洋湖沼通报,2004.26(3):64-68.
    Arakawa KY. Mating and spawning habits of some marine mollusc[J]. Venus of the Japanese Journal Malacol.,1960.21:72-78.
    Arima S, Hiramatsu T, Norimatsu K. Mass production of deedling and maintenance of sepiidae-Ⅲ[J]. Annual Research Report of the Buzen Fishery Institute.,1964.1-56.
    Kataoka T. Egg laying behavior of Sepia esculenta in aquarium[J].Journal of the Zoology Aquarium.,1960. 2(1):12-13.
    Fujita T, Hirayama I, Matsuoka T. Spawning behavior and selection of spawning substrate by cuttlefish Sepia esculenta[J]. Nippon Suisan Gakkaishi,1997,63(2):145-151.
    Tomiyama A. Ecological studies on the useful sea animals of Yamaguchi Pref, Inland Sea.17. On the cuttlefish, Sepia esculenta Hoyle[J].Naikai Fisheries Experiment Station,1957.9(1):29-39.
    Toshifumi W, Takeshi T, Tohru M. Sperm displacement behavior of the cuttlefish Sepia esculenta (Cephalopoda:Sepiidae) [J].Journal of Ethology.,2005.23 (2):85-92.
    Yasuda J. Some ecological notes on the cuttlefish, Sepia esculenta Hoyle[J]. Nippon Suisan Gakkaishi., 1951.16(8):350-356.
    Wada T, Takegaki T, Mori T. Sperm displacement behavior of the cuttlefish Sepia esculenta (Cephalopoda: Sepoodae):J.Ethol.2005.23:85-92
    郝振林,张秀梅,张沛东.金乌贼生物学特性及增殖技术[J].生态学杂志.2007.26(4):601-606
    蒋霞敏,符方尧,李正,冯宪栋.曼氏无针乌贼的卵子发生及卵巢发育.水产学报[J],2007.31(5):608-617
    蒋霞敏,符方尧,李正,冯宪栋.曼氏无针乌贼的卵子发生及卵巢发育.中国水产科学[J],2008.15(1):63-72
    林浩然.鱼类生理学[M].广州:广东教育出版社,1999.185-188
    林光华,翁世德,张丰旺.性成熟草鱼卵巢发育的年周期变化[J].水生生物学报,1985.9(2):186-193
    马学坤.半滑舌鳎性分化的组织学和免疫组织化学研究,硕士论文,2006中国海洋大学.
    施瑔芳.鱼类性腺发育研究新进展[J].水生生物学报,1988.12(3):248-255
    苏锦祥.鱼类学与海水鱼类养殖[M].北京:中国农业出版社,2000.90
    张立飞,杨万喜.硬骨鱼类卵子发生研究及其应用前景.浙江大学学报(理学版)[J].2003.30(2):210-222
    张贤芳,张耀光,王志坚.硬骨鱼类的卵巢发育和卵子发生研究综述.海南师范学院学报(自然科学版)[J],2006.19(1):70-78
    Arakawa K. Y.Miscellaneous notes on Mollusca,2. Mating and spawning habits of some marine mollusca. Venus. Jpn. J.Malac[J].1960.21:72-78. [In Japanese with English abstract].
    Azevedo C.Development and ultrastructural autoradiographic studies of nucleolus-like bodies (nuages) in oocytes of aviviparous teleost (Xiphorus heneri) [J].Cell Tissue Res,1984.238:121-128
    Baeg G.H., Sakurai Y.,Shimazaki.K.Maturation processes in female-Loligo bleekeri Keferstein (Mollusca: Cephalopoda). Veliger [J].1993.36:228-235.
    Brusle J,Bresle S. La gonandogyne'se des Poissons. Reproduction, Nutrition,et De'veloppement,1983,23: 453-491
    Burukovsky R. N.,Vovk A.N. Some questions of oogenesis in the northern American squid (Loligo pealei Les.) from the Georges Bank. Arch Anat Hist Embryol[J] 1974.66(4):44-50 (In Russian with English summary).
    Choe S The shell and the locular index of the cuttlefishes, Sepia esculenta Hoyle, Sepia subaculeata Sasaki, and Sepiella maindroni de Rochebrune. Bull.Jpn. Soc. Sci.Fish [J].1962.28:1082-1091.[In Japanese with English abstract].
    Choe S., Ohshima Y Rearing of cuttlefishes and squids. Nature [J].1963.197:307.
    Choe S On the eggs, rearing, habits of the fry, and growth of some Cephalopoda. Bull. Mar. Sci [J].1966a. 16:330-348
    Choe S On the growth, feeding rates and the efficiency of food conversion for cuttlefishes and squids.
    Korean J.Zool [J].1966b.9:72-80. [In Korean with English summary].
    Feist G., Schreck C.B., Fitzpatrick M. S.,Redding J. M. Sex steroid profiles of coho salmon (Oncorhynchus Kisutch) during early development and sexual differentiation. General and Comparative Endocrinology [J].1990.80(2):299-313
    Gabr H.R.,Hanlon R.T.l.,Hanafy M.H.,El-Etreby S.G.Maturation, fecundity and seasonality of reproduction of two commercially valuable cuttlefish, Sepia pharaonis and S. dollfusi, in the Suez Canal. Fisheries Research [J].1998.36(2):99-115
    Goto, R., Mori, T., Kawamata, K., Matsubara, T., Mizuno, S., Adachi, S., Yamauchi, K. Effects of temperature on sex determination in barfin flounder, Verasper moseri. Fisheries Science[J].1999, 65:884-887
    Goto R. T., Kayaba S., Adachi., Yamauchi.Effects of temperature on sex determination in marbled sole Limanda yokohamae. Fisheries Science [J].2000.66:400-402.
    Hanlon R T., Ament S A. Behavioral aspects of sperm competition in cuttlefish, Sepia officinalis (Sepioidea: Cephalopoda). Marine Biology [J].1999.134:719-728
    Hendry D.J., Martin R., Benfey T.J. Gonadal sex differentiation in Atlantic halibut, Journal of Fish Biology [J].2002.60:1431-1442
    Hoving H. J.T., Roeleveld M. A.C.,Lipinski M. R., Videler J. J. Nidamental glands in males of the oceanic squid Ancistrocheirus lesueurii (Cephalopoda:Ancistrocheiridae)-sex change or intersexuality Journal of Zoology [J] 2006.269(3):341-348
    Ishikawa M., Iwai E Some descriptions on the fishery and biology of the cuttlefish, Sepia esculenta Hoyle, living in Tokyo Bay. Bull.Res. Coll. Agr. Vet. Sci. Nihon Univ.,1958,9:43-51 [In Japanese with English abstract].
    Kataoka T. Egg laying behavior of Sepia esculenta in aquarium. J. Zoo. Aquarium 1960.2(1):12-13, Tokyo. [In Japanese].
    Knipe J. H.,Beeman R. D. Histological observations on oogenesis in Loligo opalescens. Californian Fish and Game Bullelin[J].1978,169:23-33
    Koido Y.,Kurata Y & Kawakami T. Ecology on golden cuttlefish and spineless cuttlefish caught in Tokyo. Bay Suisan Zoshoku [J].1956,3(3):40-50.
    Laptikhovsky V. V., Arkhipkin A.I. Oogenesis and gonad development in the cold water Loliginid squid Loligo gahi (Cephalopoda:Myopsida) on the Falkland. Journal of Molluscan Studies [J] 2001,67(4): 475-482
    Lee, Y. D., Lee, T. Y. Sex differentiation and development of the gonad in the flounder, Paralichthys olivaceus.Bulletin of the Marine Research Institute, Cheju National University[J].1990,14:61-86
    Lum-Kong A.Oogenesis, fecundity and pattern of spawning in Loligo forbesi (Cephalopoda:Loliginidae). Malacological Review [J].1993,26:81-88
    Natsukari Y, Tashiro M. Neritic squid resources and cuttlefish resources in Japan. Behaviour and Physiology [J].1991.18:149-226.
    Ohshima Y & Choe S On the rearing of young cuttlefish and squid.Bull.Jpn. Soc. Sci.Fish [J].1961,27: 979-986. [In Japanese with English abstract].
    Okutani T Cuttlefish and squids of the world in color. Tokyo:National Cooperative Association of Squid Processors [M].1995.
    Pepita G B.,Enric R., Maria J. Z. Evolution of octopod Sperm 1:Comparison of Nuclear Morphogenesis in Eledone and Octopus. Molecular Reproduction and Development [J],2005.62:357-362
    Piferrer, F. Endocrine sex control strategies for the feminization of teleost fish. Aquacuature,2001. 197:229-281
    Sasaki M. A monograph of the dibranchiate cephalopods of the Japanese and adjacent waters.1929. J.Coll. Agric. Hokkaido Imp. Univ.,20, suppl:i-v+1-357, pls.1-30.
    Sauer W. H.H.,Lipinski M. R. Histological validation of morphological stages of sexual maturity in chokker squid Loligo vulgaris reynaudii D'Orb. (Cephalopoda:Loliginidae). South African Journal of Marine Science [J].1990,9:189-200.
    Seikai Reg. Fish. Res. Lab. Fishes of the East China Sea and the Yellow Sea.1986.Xxvi+501 p. Nagasaki.
    Selmi.M.G.Spermatozoa of two Eledone species (Cephalopoda, Octopoda) Tissue & Cell [J] 1996.28(5) 613-620
    Sauer W. H.,Lipinski M.R. Histological validation of morphological stages of sexual maturity in chokker squid Loligo vulgaris reynaudii D'Orb (Cephalopoda:Loliginidae). South African Journal of Marine Science 1990.9:189-200
    Su J. X.Ichthyology and Mariculture. China Agricultural Press. Peijing 2000.
    Suzuki N. M., Tamura I., Ohuthi K., Hiromatsu T., Sugihara. Gonadal sex differentiation of hatchery-reared flounder, Limanda yokohamae. Suisan Zoshoku [J].1992,40:189-199 [in Japanese with English summary].
    Tanaka H. Gonadal sex differentiation in flounder, Paralichthys olivaceus. Bulletin of the National Research Institute of Aquaculture [J].1987.11:7-19 [in Japanese with English summary].
    Timothy C. Tricas., Hiramoto J T.. Sexual differentiation, gonad development, and spawning seasonality of the Hawaiian butterflyfish, Chaetodon multicinctus Environmental Biology of Fishes Vol.25,No.1-3 111-124,1989
    Tomiyama A Ecological studies on the useful sea animals of Yamaguchi Prefectural Inland Sea-17. J. Yamaguchi Pref. Inland Sea Fish. Exp. St [J].1956.9(1):29-39.[In Japanese with English title].
    Tosti E., Cosmo A.D., Cuomo A., Cristo C. D., Gragnaniello G. Progesterone induces activation in Octopus vulgaris spermatozoa. Molecular Reproduction and Development [J].2001,59:97-105
    Wada T., Takegaki T., Mori T., Natsukari Y. Sperm displacement behavior of the cuttlefish Sepia esculenta (Cephalopoda:Sepiidae). Journal of Ethology [J].2005.23:85-92
    Yagi T Studies on the identification method of races in Sepia esculenta Hoyle by using the locular index of shells. Bull. Jpn. Soc. Sc. Fish [J].1960.26:640-645.[In Japanese with English abstract].
    Yamamoto T Mortal influence of salinity on some cephlopod larvae. Botany and Zool [J].1940.8: 1879-1882.[In Japanese with English title].
    Yamamoto T Observations on the habits of the squid larvae, Sepia esculenta Hoyle. With special reference to the change of colour pattern on the mantle. Botany and Zool [J].1941.9:349-353.[In Japanese with English title].
    Yamamoto T On the embryonal development of Sepia esculenta Hoyle. Botany and Zool [J] 1942.10: 443-448. [In Japanese with English title].
    Yamamoto T Morphological characters and locular index of shell of the cuttlefishes, Sepia esculenta and Sepiella japonic. Venus [J].1945.14:62-72.[In Japanese].
    Yasuda J. Some ecological notes on the cuttlefish, Sepia esculenta Hoyle. Bull.Jpn. Soc. Sci. Fish. [J] 1951, 16:350-356. [In Japanese with English abstract].
    Yung K.C.M.Contribution a l'etude cytologique de l'ovogenese, du developpement et de quelques organes chez les cephalopodes. Annales d'Institute Oceanographique (Monaco),1930.7:301-364.
    Wei LZ, Gao TX, Zhang XM. Isozyme analysis of Sepia esculenta (Cephalopoda:Sepiidae)[J].Journal of Fishery Sciences of China,2005.12(5):549-556.
    Zheng XD, Zhao JM, Xiao S.Isozymes analysis of the golden cuttlefish Sepia esculenta (Cephalopoda: Sepiidae)[J].Journal of Ocean University of China,2004.3(1):48-52.
    常青,张秀梅,陈四清,梁萌青,刘寿堂.半滑舌鳎仔稚鱼消化酶活性的变化[J].海洋科学进展,2005,23(4):472-476
    陈慕雁,张秀梅,连建华.大菱鲆仔稚鱼期消化酶及碱性磷酸酶活性的变化[J].中国海洋大学学报,2005,35(3):483486
    陈四清,刘长琳,庄志猛,邓永生.饵料、盐度对金乌贼幼体生长的影响.渔业现代化.2008.35:6.23-26.
    董正之.世界大洋经济头足类生物学.济南:山东科学技术出版社,1991.197-207
    郝振林,张秀梅,张沛东.金乌贼的生物学特性及增殖技术[J].生态学杂志,2007,26(4):601-606
    胡国宏,孙广华,顾权等.怀头鲇苗种自残现象的原因分析及对策.中国水产,2002,7:47
    齐钟彦,马继同,王祯瑞,林光宇.黄渤海的软体动物[M].北京:农业出版社:1989.257-258.
    缪国荣,王承录.海洋经济动植物发生学图集.青岛:青岛海洋大学出版社,1990.70-73
    韦柳枝,高天翔,韩志强,;柳志强,王云中,日照近海金乌贼生物学的初步研究,中国海洋大学学报,2005,36(5):923-928
    张玺,齐钟彦,李洁民.中国经济动物志—海产软体动物.北京:科学出版社,1962.213-217
    赵汝翼,程济民,赵大东.大连海产软体动物志.北京:海洋出版社,1982.147-148
    郑元甲,陈雪忠,程家骅等.东海大陆架生物资源与环境.上海:上海科学技术出版社,2003.722-727
    山本孝治.金烏贼受精卵分裂[J].植物及勤物,1942.10:25-130.
    Bettencourt V,Guerra A.Age studies based on daily growth increments in statoliths and growth lamellae in cuttlebone of cultured Sepia officinalis[J].Mar Bid,2001,139:327-334.
    Bihan E L, Perrin A, Koueta N. Effect of different treatments on the quality of cuttlefish(Sepia officinalis) viscera [J].Food Chemistry,2007,104 (2007):345-352
    Bihan E L, Zatylny C, Perrin A,Koueta N. Post-morten changes in viscera of cuttlefish Sepia officinalis L. during storage at two different temperatures[J].Food Chemistry,2006,98 (2006):39-51
    Cahu C.Early weaning of sea bass Dicentrarchus labrax larvae with a compound diet:effect on digestive enzymes [J].Comp Biochem Physiol,1994,109A:213-222.
    Choe S. Daily age markings on the shell of cuttlefishes. Nature,1963,197(4864):306-307
    Choe S, Ohshima Y.Rearing of cuttlefishes and squids. Nature,1963,197:307
    Cousin J C B,Baudin-Laurencin F, Gabaudan J.Ontogeny of enzymatic activities in fed and fasting turbot Scophthalmus maximus L[J].Fish Biol,1987,30:15-33.
    Fujita T, Hirayama I, Matsuoka T. Spawning behavior and selection of spawning substrate by cuttlefish Sepia esculenta[J].Nippon Suisan Gakkaishi,1997,63(2):145-151.
    Koido Y,Kurata Y,Kawakami T.Ecology on Sepia esculenta and Sepiellajaponica caught in Tokyo Bay [J].Aquicuhure,1956,3:10-50.
    Natsukari Y, Hirata S.Growth and seasonal change of cuttlebone characters of Sepia esculenta. The cuttlefish,1st Int'l Sym.Cuttlefish Sepia, Univ. Caen, France,1991,49-67
    Natsukari Y, Tashiro M.Neritic squid resources and cuttlefish resources in Japan[J].Behaviour and Physiology.,1991.18:149-226.
    Oozeki Y, Bailey K M. Ontogenetic development of digestive enzyme activities in larval walleye pollock Theragra chalcogramma[J].Mar Biol,1995,122:177-186.
    Perrin A, Le Bihan E, Koueta N. Experimental study of enriched frozen diet on digestive enzymes and growth of juvenile cuttlefish Sepia officinalis L(Mollusca Cephalopoda)[J].Journal of Experimental Marine Biology and Ecology,2004,311:267-285
    Ribeiro L, Sarasquete C,Dinis M T. Histological and histochemical development of the digestive system of Solea senegalensis larvae [J].Aquaculture,1999,191:293-308
    Tomiyama A.Ecological studies on the useful sea animals of Yamaguchi Pref, Inland Sea. On the cuttlefish, Sepia esculenta Hoyle[J].Naikai Fisheries Experiment Station,1957.9(1):29-39.
    Watanuki N, Kaneuchi S, Fujita T. Entry of immature cuttlefish Sepia esculenta into basket traps[J].Fish. Sci,1998,64 (5):707-710.
    Yagi T. Studies on the identification method of races in Sepia esculenta Hoyle by using the locular index of shells[J].Bulletin of the Japanese Society of Scientific Fisheries.,1960a.26:640-645.
    Yagi T. On the growth of the shell in Sepia esculenta Hoyle caught in Tokyo Bay[J].Bulletin of the Japanese Society of Scientific Fisheries.,1960b.26:646-652.
    Yamamoto T. On the embryonal development of Sepia esculenta Hoyle. Botany Zool.,1942,10:443-448
    Yasuda J.Some ecological notes on the cuttlefish,Sepia esculenta Hoyle[J].Nippon Suisan Gakkaishi, 1976,16:22-28.
    [1]柴毅,谢从新,危起伟,陈细华.中华鲟视网膜早期发育及趋光行为观察.水生生物学报.2007.31(6):920-922
    [2]郝振林,张秀梅,张沛东.金乌贼生物学特性及增殖技术.生态学杂志.2007.26(4):601-606
    [3]何大仁,肖金华,罗会明等.杜氏枪乌贼趋光行为的研究.厦门大学学报.1979.3:99-103
    [4]罗会明.海洋经济动物趋光生理.福建科学技术出版社,1985
    [5]欧瑞木.鱿鱼.北京:海洋出版社,1990:71-139.
    [6]钱卫国.鱿钓渔业中集鱼灯的优化配置研究.上海水产大学博士论文.2005.21
    [7]魏邦福,张平荣,杜贞玺,任守美.金乌贼增殖与保护技术初探.中国水产.2004.7:79-80
    [8]俞文钊.鱼类趋光生理.北京:农业出版社,1980
    [9]郑美丽,肖金华,郑微云等.曼氏无针乌贼的趋光特性.厦门大学学报(自然科学学报).1980.19(3):91-99
    [10]安井大夫.水产世界.1972.21(2):42-46
    [14]小倉通男.ィカ钓涌业と火光.日本生产学会誌.1992.38(8):881-889
    [16]Tsuneyoshi Suzuki, Hiroshi Inada, Hiroya Takahashi. Retinal adaptation of Japanese Commaon Squid (Todarodes pacificus Sreenstrup). Bull.Fac.Fish.Hokkaido Univ.,1985.36(4):191-199
    [17]Arnold, J.M. Cephalopods. In G.Reverberi (ed):Experimental Embryology of Marine and Fresh-Water Invertebrates:North Holland:North-Holland Publ.Co., pp.1971.265-311.
    [18]Barber,V.C.The sense organs of Nautilus:preliminary observations on their fine structure. J. microscop.1967.6:1067-1072.
    [19]Besharse, J.C., and K.H.Pfenninger. Membrane assembly in retinal photoreceptors.I.Freeze-fracture analysis of cytoplasmic vesicles in relation to disc assembly. J. Cell. Biol.1980.87:451-463.
    [20]Blaxter, J.H.S., and M. P. Janes. The development of the retina and retinomotor responses in the herring. J. mar. biol.Ass. UK.1967.47,677-697.
    [21]Cohen, A.L. An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. I. Photoreceptive and non-synaptic regions of the retina. J. Comp. Neurol.1973a. 147:351-378
    [22]Cohen, A.L. An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. Ⅱ.Intraretinal synapses and plexus. J. Comp. Neurol.1973b.147.379-398.
    [23]Eakin, R.M. Evolutionary significance of photoreceptors:In retrospect. Am. Zool.1979.19:647-653.
    [24]Gray, E.G A note on synaptic structure of the retina of Octopus vulgaris. J. Cell Sci.1970.7:203-215.
    [25]Hafner, G.S., T. Tokarsky, and G. Hammond-Soltis. Development of the crayfish retina:A light and electron microscopic study. J. Morphol.1982.173:101-118.
    [26]Hamdorf, K. The physiology of invertebrate visual pigments. In H.Autrum (ed):Handbook of Sensory Physiology, Vol.Ⅶ/6A:Berlin:Springer Verlag, pp.1979.146-224.
    [27]Hara, T., and R. Hara. Cephalopod retinochrome. In H.J.A. Dartnall (ed):Handbook of Sensory Physiology, Vol.Ⅶ/1:Berlin:Springer Verlag, pp.1972.720-746.
    [28]Itaya, S.K. Rbahdom changes in the shrimp, Pahemonetes. Cell Tissue Res.1976.166:265-273.
    [29]Jander, R., K. Daumer, and T.H. Waterman Polarized light orientation by two Hawaiian decapod cephalopods. Z. Vergl. Physiol.1963.46:383-394.
    [30]Kataoka, S.,and T. Yamamoto. Fine structure and formation of the photoreceptor in Octopus ocellatus Biol. Cell.1983.49:45-54.
    [31]Lemaire, J., and A.Richard. Organogenese de l'oeil du cephalopode Sepia oficinalis L. Bull.Soc. Zool. Fr.1978.103:373-378.
    [32]Meister, G. Organogenese von Loligo vulgaris Lam. (Mollusca, Cephalopoda, Teuthioidea, Myopsida, Loliginidae), Zool. Jahrb., Abt. Anat. Ontog. Tiere.1972.89:247-300.
    [33]Messenger, J.B.Comparative physiology of vision in molluscs. In H.Autrum (ed):Handbook of Sensory physiology, Vol.Ⅶ/6C:Berlin:Springer Verlag, pp.1981.94-200.
    [34]Moody, M. F., and J. R. Parriss The discrimination of polarized light by Octopus:A behavioural and morphological study. Z.vergl.Physiol.1961.44:268-291.
    [35]Packard, A.Cephalopods and fish:the limits of convergence. Biol.Rev.1972.47,241-307.
    [36]Saibil,H.R. An ordered membrane-cytoskeleton network in squid photoreceptor microvilli.J. Mol. Biol.1982.158:435-456.
    [37]Saidel, W.M.,J.Y.Lettvin, and E.F. MacNicol Jr. Processing of polarized light by squid photoreceptors. Nature.1983.304:534-536.
    [38]Salvini-Plawen, L.V., and E. Mayer On the evolution of photoreceptors and eyes. In M.K.1977.
    [39]Stowe, S.Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Cell Tissue Res.1980.211:419-440.
    [40]Tasaki, K., and K. Karita. Intraretinal discrimination of horizontal and vertical planes of polarized light by octopus. Nature 1966.209:934-935.
    [41]Tonosaki, A.The fine structure of the retinal plexus in Octopus vulgaris. Z. Zellforsch.1965. 67:521-532.
    [42]Vanfleteren, J.R.,and A.Coomans. Photoreceptor evolution and phylogeny. Z. Zool. Syst. Evolutionsforsch.1976.14:157-169.
    [43]Vanfleteren, J.R. A monophyletic line of evolution Ciliary induced photoreceptor membranes. In J.A. Westfall (ed):Visual Cells in Evolution.New York:Raven Press, pp.1982.107-136.
    [44]Weibel, E.R., G.S.Kistler, and W.F. Scherle Practical stereological methods for morphometric cytology. J. Cell Bid.1966.3023-38.
    [45]White, R.H.,P.K. Brown, A.K. Hurley, and R.R. Bennett. Rhodopsins, retinula cell ultrastructure, and receptor potentials in the developing pupal eye of the moth Munduca sexta J.Comp. Physiol.1983. 150:153-163.
    [46]Wolken, J. Retinal structure. Mollusc cephalopods:Octopus, Sepia. J.biophys. biochem. Cytol.1958. 4:835-838.
    [47]Yamamoto, T., K. Tasaki, Y.Sugawara, and A.Tonosaki. Fine structure of the octopus retina. J.Cell Biol.1965.25345-359.
    [48]Yamamoto, M., and N. Takasu. Membrane particles and gap junctions in the retinas of two species of cephalopods, Octopus ocellatus and Sepiella japonica Cell Tissue Res.1984.237:209-218.
    [49]Yamamoto, M.Ontogeny of the visual system in the cuttlefish, Sepiella japonica. I.morphological differentiation of the visual cell.J Comp Neurol 1985.232:347-361.
    [50]Yamamoto, M.,N.Takasu, and I. Uragami.Ontogeny of the visual system in the cuttlefish, Sepiellajaponica Ⅱ.Intramemhrane particles, bistofluorescence and electrical responses.J.Comp. Neurol.1985.232:362-371.
    [51]Yoshida, M., K. Ohtsu, and T. Nakaye. Development of the cuttlefish retina. In E. Yamada and S. Mishima (eds):The Structure of the Eye.Tokyo:Maruzen, pp.1976.215-221.
    [52]Young, J. Z. The giant nerve fibers and epistellar body of cephalopods. Quart. J.micr. Sci.1936.78: 311-367.
    [53]Cazal, P., et D. Bogoraze. La glande epistellaire du pouple (Octopus vulgaris Lam.) organe neuricrine. Arch. Zool.exp. gen.1944.84:10-22.
    [54]Young, J.Z. Light and dark-adaption in the eyes of some cephalopods. Proc. Zool. Soc. Lond.1963. 140:255-272.
    [55]Young, J.Z. The Anatomy of the Nervous System of Octopus uulgaris. Oxford Clarendon Press.1971.
    [56]Zonana, H.V. Fine structure of the squid retina. Johns Hopkins Hosp. Bull.1961.109:185-205.
    蔡浩然,马万禄编,视觉的分子生理学基础科学出版社 1978,11-12;27-29
    董正之.济南:山东科学技术出版社[M],世界大洋经济头足类生物学,1991.197-207
    何大仁,蔡厚才编,鱼类行为学厦门大学出版社1998.3,36-47
    嘉泳等.金乌贼Sepia esculenta Hoyle在黄渤海的结群生殖和洄游[J].山东海洋学院报,1963,2:69-108
    魏臻邦.金乌贼生活习性的初步观察.动物学杂志,1964,3:132-134
    杨德渐,孙世春.青岛:青岛海洋大学出版社[M],海洋无脊椎动物学,1999.321-328
    赵厚钧,魏邦福,胡明,杜贞玺,吴延山,王茂琴,张秀梅,韦柳枝.金乌贼受精卵孵化及不同材料附着基附卵效果的初步研究[J].海洋湖沼通报,2004,(3):64-68
    张沛东,张秀梅,李健.对虾行为生态学研究进展Ⅱ.环境因子对对虾行为习性的影响.应用生态学报.2006.17(2):340-344
    臧维玲,戴习林,姚庆祯,刘旭初等,底质对日本对虾幼虾生长的影响[J].上海水产大学学报,2003,12(1) 72-75
    Allan G Greg B.Maguire, Effect of sediment on growth and acute ammonia toxicity for the school prawn,Metapenaeus macleayi(Haswell) Aquaculturre,1995(131)59-71
    Boal.J.G, D.K. Golden Distance chemoreception in the common cuttlefish, Sepia officinalis (Mollusca, Cephalopoda)[J].Journal of Experimental Marine Biology and Ecology,1999 (35) 307-317
    Choe S.The shell and the locular index of the cuttlefishes, Sepia esculenta Hoyle, Sepia esculenta Sasaki, Sepiella maindroni de Rochebrune[J].Bulletin of the Japanese Society of Scientific Fisheries.,1962.28: 1082-1091.
    Choe S. Daily age markings on the shell of cuttlefishes[J].Nature,1963,197(4864):306-307
    Confer.J.L., Blades.P.I.. Omnivorous zooplankton and planktivorous fish [J].Limnology and Oceanography,1975,20:571-579.
    Confer.J. L, Howick. G.L.,Corzett, M. H., Kramer, S. L., Fitzgibbon, S.& Landesberg, R.. Visual predation by planktivorous[J].Oikos,1978,31:27-37.
    Dickel.L,Marie-Paule Chichery,Raymond Chichery.Time differences in the emergence of short-term and long-term memory during post-embryonic development in the cuttlefish,Sepia[J].Behavioural Processes 1998(44)81-86
    Fukuoka Pref, Arima S, Hiramatsu T, Norimatsu K, Segawa K, Tako N. Mass production of deedling and maintenance of sepiids-Ⅲ.Annual Res. Rep., Buzen Fish. Inst.,1964,1963:1-56
    Howick.G.L, O'Brien. W. J..Piscivorous feeding behaviour of largemouth bass:an experimental analysis[J].Transactions of the American Fisheries Society,1983,112:5508-516.
    Lazzaro.X..A review of planktivorous fishes:their evolution, feeding behaviours,selectivity, and impacts[J]. Hydrobiologia,1987,146:97-167.
    Natsukari Y, Hirata S.Growth and seasonal change of cuttlebone characters of Sepia esculenta.The cuttlefish,1st Int'l Sym.Cuttlefish Sepia[J].Univ. Caen, France,1991,49-67
    Sasaki, Sepiella maindroni de Rochebrune[J].Bull. Jpn. Soc. Sc. Fish,1962,28:1082-1091
    Suzuki K, Anraku K, Sasaki T, Watanabe Y, Marui T, Kawamura G. The morphology of the chemosensory cells and the feeding behavior of the cuttlefish, Sepia esculenta. Comparative biochemistry and physiology-part A:molecular & integrative physiology,1999, (Supplement 1):S102
    Tomiyama A.Ecological studies on the useful sea animals of Yamaguchi Pref., Inland Sea.17.On the cuttlefish, Sepia esculenta Hoyle[J].J. Yamaguchi Pref. Naikai Fish. Exp. Stn,1957,9(1):29-39
    Utne.A.C.M, The effect of turbidity and illumination on the reaction distance and search time of the marine planktivore Gobiu-sculus flavescens[J].Journal of Fish Biology,1997,50,926-938
    Aksnes.D.L.Giske,.J. A theoretical model of aquatic visual feeding[J].Ecological Modeling,1993,67: 233-250.
    Vinyard.G.L,O'Brien, W. J.Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus)[J].Journal of the Fisheries Research Board of Canada,1976,33:2845-2849.
    Ware.D. M. Risk of epibenthic prey to predation by rainbow trout (Salmo gairdneri) [J].Journal of the Fisheries Research Board of Canada 1973,33:787-797.
    WEI Liu-zhi,GAO Tian-xiang,ZHANG Xiu-mei. Isozyme analysis of Sepia esculenta (Cephalopoda: Sepiidae) [J].Journal of Fishery Sciences of China,2005,12(5):549-556
    Yagi T. Studies on the identification method of races in Sepia esculenta Hoyle by using the locular index of shells[J].Bull.Jpn.Soc.Sc. Fish.,1960,26:640-645
    Yagi T. On the growth of the shell in Sepia esculenta Hoyle caught in Tokyo Bay[J]. Bull.Jpn. Soc. Sc. Fish, 1960,26:646-652
    Yamamoto T. Morphological characters and locular index of shell of the cuttlefishes, Sepia esculenta and Sepiella japonica[J].Venus, Jpn. J.Malac,1945,14:62-67
    Yasuda J. Some ecological notes on the cuttlefish, Sepia esculenta Hoyle[J]. Nippon suisan gakkaishi,1951, 16(8):350-356
    Zheng X D, Zhao J M, Xiao S, Wang R C, Wang S D, Zhou W W. Isozymes analysis of the golden cuttlefish Sepia esculenta (Cephalopoda:Sepiidae) [J].Journal of ocean university of China,2004,3(1): 48-52
    [1]张堂林,李钟杰,舒少武.鱼类标志技术的研究进展[J].中国水产科学,2003,10(3):246-253
    [2]林龙山,丁峰元,程家骅.运用POP-UP TAG对金枪鱼进行标志放流几个值得注意的问题[J].现代渔业信息,2005,20(2):17-19
    [3]刘家富,翁忠钗,唐晓刚.官井大黄鱼标志放流技术与放流标志鱼早期生态习性的初步研究[J].海洋科学,1994,(5):53-58
    [4]陈琳,郭金富,陈涛.大亚湾黑鲷标志放流技术[J].水产学报,2001,20(2):75-79
    [5]薄治礼,周婉霞.浙江省沈家门沿岸水域石斑鱼幼鱼标志放流与重捕试验[J].水产学报,1999,(3):304-307
    [6]汤建华,柏怀萍.江浙沿海黑鲷增殖放流试验[J].上海水产大学学报,1998,7(2):167-171.
    [7]陈锦淘,戴小杰.鱼类标志放流技术的研究现状[J].上海水产大学学报,2005,14(4):451-456.
    [8]林元华.海洋生物标志放流技术的研究状况[J].海洋科学,1985,9(5):54-58
    [9]韦柳枝,高天翔,韩志强,;柳志强,王云中.日照近海金乌贼生物学的初步研究[J].中国海洋大学学报,2005,36(5):923-928
    [10]Drawbridge,M.A., Kent,D.B. The assessment of marine stock enhancement in Southern California: a case study involving the white seabass[J].American Fisheries Society Symposium,1995,15: 568-569.
    [11]Miller,M.J., Able,K.W. Movements and growth of tagged young-of-the-year(Mic-ropogonias undulatusL.)in restored and reference marsh creeks in Delaware Bay, USA[J].Journal of Experimental-Marine-Biology and Ecology,2002,267:15-33
    [12]North American Journal of Fisheries Management, Close,T.L., Jones,T.S. Detection of visible implant elastomer in fingerling and yearling rainbow trout[J].2002,22(3):961-964
    [13]Maloney,N.E., Heifetz,J. Movements of tagged sablefish,Anoplopomafimbria, released in the eastern Gulf of Alaska[J].NOAATechnical Report NMFS,1997,130:115-12
    [14]Catalano Matthew,J., Chipps,S. R. BouchardMA,et al. Evaluation of injectable fluorescent tags for marking centrarchid fishes:Retention rate and effects on vulnerability to predation[J].North American Journal of Fisheries Management,2001,21 (4):911-917
    [15]Crook D.A,White RW. Evaluation of subcutaneously implanted visual implant tags and codedwire tags formarking and benign recovery in a small scaleless fish,Galaxias truttaceus (Pisces: Galaxiidae)[J]. Marine and Freshwater Research,1995,46 (6):943-946
    [16]Willis,T.J., Babcock,R.C. Retention andin situdetectability of visible implant fluorescent elastomer (VIFE) tags inPagrus auraus(Sparidae)[J]. New Zealand Journal of Marine and Freshwater Research, 1998,32:247-254
    [17]Phimey,D.E, Matthew,S.B. Field test of fluorescent pigment marking and fin clipping of coho salmon. J Fish Rea Bd Can,1969,26(6);1619-1624
    [18]Fujihara,M.P. Nakatani,R.E. Cold and mild heat marking of fish[J].Prog Fish-Cult,1967, 29(3);172-174
    [19]Duggan,R.E., Miller,R.J. External and internal tags for the green sea urchin[J].Journal of Experimental Marine Biology and Ecology,2001(258).115-122
    [20]Jun-ichi Tsuboi., Kentaro Morita,Hisatoshi Ikeda Fate of deep-hooked white-spotted charr after cutting the line in a catch-and-release fishery[J].Fisheries Research,2006 (79) 226-230
    [21]Pierson,J.M., Bayne,D. Long-termretention of fluorescent pigment by four fishes used inwarmwater culture[J].PogFish-cult,1983,45(3):186-18.
    [22]Hale,R.S. Retention and defection of coded wire tags and elastomer tags in trout[J]. N Am Fish Menage,1998,18:197-201
    [23]Kincaid,H.L., Catkins,G.T. Retention of visible implant tams inlake trout and Adsntic ealinon[J]. Prog Fish-cult,1992,54:163-170.
    [24]Frenette,B.J., Bryand,M.D. Evaluation of visible implant tags applied to wild coastal cutthroat trout and dolly varden in Margaret Lake, Southeast Alaska [J]. N Am J Fish Manage,1996,16:926-930.
    [25]Mouring,T.E., Fausch,K.D. Gowan C.Comparison of visible implant tags end Ploy anchor tags on hatchery rainbow trout [J]. N Am Fish Manage,1994,14:636-642.
    [26]Weber, D., Ridgway,G.J. Marking Pacific salmon with tetracycline antibiotics [J].J Fieh Res Bd Can,1967,24(4):849-865.
    [27]Tsukamoto,K. Mass-marking of ayu eggs and larvae by tetracycline-tagging of otolithe[J].Bull Jap Soc Scient Fish,1985,51:903-911.
    [28]Behrene,Yamada,S., Mulligan,T.J. Marking nonfeeding salmonid fry with dissolved strontium[J]. Can J Fish Aquat Sci,1987,44:1502-1506
    [29]Bilfon,H.T. Marking chum salmon fry vertebrae with oxytetracycline [J].N Am Fish Manage,1986, 6:126-128.
    [30]Loreon,R.D., Mudrak V. A.Use of tetracycline to mark otoliths ofAmerican shad fry. N Am J Fish Menage,1987,7:453-455.
    [31]Ricker,W. E.Methods for assessment of fish production in freshwater[M].IMP Handbook No.3, Blackwell Science Publication,1971,82-97.
    [32]Nielsen,L.A.Methods of marking fish and shellfish[M].New York:American Fisheries Society Special Publication,1992,23:37-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700