巴西橡胶树体胚发生的改良及乳管分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巴西橡胶树属大戟科橡胶属,是多年生的异花授粉乔木,在热带地区广泛种植。其所产的天然橡胶是四大工业原料之一,也是重要的战略物资,在国民经济中占有举足轻重的地位。巴西橡胶树花药培养是其遗传改良的重要技术手段,但体胚发生频率低是制约其组培苗工厂化生产和构建遗传转化体系的主要因素。本研究主要围绕如何改良巴西橡胶树花药体胚发生来开展一系列工作。我们对影响花药培养体胚发生的内外因素进行深入研究并对其培养条件进行改良;由于游离小孢子培养具有提高胚胎发生的优点,我们尝试在橡胶树开展这方面的工作;转基因技术是遗传改良的重要技术手段,我们克隆了胚胎发生关键基因并转化橡胶树的花药愈伤,以期获得具高体胚发生能力的转基因株系;我们首次发现花药愈伤中存在乳管细胞,探讨花药愈伤乳管细胞分化与体胚发生关系,对改良体胚发生也有一定的意义。上述这些研究的开展,将对提高橡胶树花药体胚发生和改良其花药培养有着重要的意义。本研究所取得的结果如下:
     (1)首次系统研究了橡胶树花药愈伤的形态特征、组织细胞学区别。橡胶树花药胚性与非胚性愈伤有着明显差别,前者表现为组织疏松脆性,表面凹凸不平,有较多小球状突起,细胞中含有较大的胞核,细胞形状呈规则小圆球形,细胞排列紧密,细胞体积较小;后者存在两种类型,第一种表现为结构紧密,整块组织硬实,表面较平滑,细胞形态不规则,胞质稀少,部分细胞含有极小的胞核,细胞体积大,第二种表现为组织松软、水渍状,细胞不含有胞核,胞质极稀薄并液泡化,细胞形状不规则,细胞排列较疏松,胞间间隙较大,细胞体积较大。同时发现胚性愈伤发生频率与其体胚发生频率呈极显著相关;胚性愈伤在培养后期细胞合成依然保持活跃,细胞分裂依然旺盛,细胞分化力高。
     首次对橡胶树花药胚性愈伤胚胎发生的生理生化机制进行深入研究。同一品种的胚性愈伤在整个培养过程中淀粉和蛋白质含量均高于非胚性愈伤,在培养后期开始积累淀粉,可能是为体胚发生作准备,为新的发育阶段提供物质和能量。胚性愈伤高含量的蛋白质可能是其体胎发生的关键因素。胚性愈伤中类胡萝卜素含量较高,表明其具有较强的抗氧化能力,使其细胞不易褐化,降低了组织块的褐化程度。高体胚发生频率的品种其胚性愈伤细胞代谢较活跃,分化力较强,从而消耗更多的碳源,同时这种碳源的消耗可能是促进其向胚胎发生的信号。胚性愈伤CAT、SOD的含量与体胚发生频率呈极显著相关,CAT、SOD可能是胚性愈伤体胚发生的基础。
     (2)对橡胶树花药体胚进行系统分类,共分9种类型;首次发现橡胶树花药体胚发生过程中产生双体胚现象,该类胚能正常发育成植株。
     对橡胶树花药体胚发生的培养条件进行改良。暗培养诱导胚状体2个月后再转移至500Lux弱光照条件下培养10-15d,然后再转移至出苗培养基培养,能够显著提高植株再生率;稀土具有提高橡胶树花药体胚发生率的效果,诱导胚胎发生培养基中以添加1mgL-’稀土培养效果最佳。
     (3)对橡胶树游离小孢子培养体系进行初步研究。小孢子的提取采用两种不同的方法进行,结果发现以间接研磨法为佳,虽然工作效率低,但污染率低、杂质少、培养效果好。对小孢子进行不同的预处理试验,发现用Starvation Medium B预处理液预处理小孢子2d有利于小孢子分化。比较两种不同的碳源培养效果,发现麦芽糖培养效果好。对诱导培养基中的pH值、组分进行研究,发现诱导培养基pH值为6.6时,以改良N6为基本培养基添加外源激素2,4-D 0.5 mgL-1、KT 0.5mgL-1诱导效果好,小孢子分化率达8.33%。巴西橡胶树游离小孢子分化依赖基因型,只有海垦2的小孢子具有分化力。小孢子的分化以B途径为主,初步获得小孢子分化的细胞团和微愈伤。同时以橡胶树小孢子为受体进行电激转化试验,瞬时表达结果证明外源基因已导入部分小孢子基因组中。
     (4)以橡胶树品种海垦2花药愈伤为受体,采用农杆菌介导法将胚胎发生基因BabyBoom转化橡胶树。结果表明:卡那霉素选择压以50mgL-1为最佳;共培养温度对转化效率影响显著,以20℃共培养效果较26℃好;侵染培养35-40d的愈伤转化效率最高,达100%。获得了抗性愈伤和转基因胚状体,经GUS组织化学法和PCR检测,表明外源基因已整合至它们的基因组中,为下一步转基因植株的获得奠定了基础。
     (5)通过组织化学法和免疫组织化学法首次证明巴西橡胶树花药愈伤中存在乳管细胞,虽然花药愈伤中存在少数的延伸形态的乳管细胞,但大部分表现为非延伸形态,不同于植物中现有的乳管细胞形态。这些非延伸形态的乳管细胞可能是有节乳管早期的原始特征。
     乳管细胞在花药愈伤中的分化依赖基因型,同时与体胚发生负相关。R107、RRIM600、热研8-79、热研7-33-97较海垦2有着更多的乳管细胞,但体胚发生率均显著低于海垦2。乳管细胞簇在PR107、RRIM600、热研8-79、热研7-33-97的愈伤中存在,但未能在海垦2花药中发现。这表明愈伤组织中的乳管细胞妨碍其体胚发生。如果能通过改良培养条件(激素调控等)来减少愈伤组织中乳管细胞数量,以期提高其体胚发生力,则有可能克服花药培养难题,这可能提供了一个改良橡胶树组织培养的连接点。
Hevea brasiliensis belongs to Euphobiaceae. It is a perennial cross pollination tree and is widely planted in tropical areas. Natural rubber produced by Hevea is one of the most elemental industrial raw materials and strategic goods, which plays a key role in national economy. Anther culture is one of the most important biotechnological means to improve Hevea genetic property. However, its low embryogenic frequency prevents the large scale applications of juvenile-type clones and genetic transformation. In the present paper, a series of work was carried out to improve somatic embryogenesis of anther culture in Hevea. The internal and external factors influencing somatic embryogenesis were investigated and cultural conditions were improved. Based on the advantage of increasing the embryogenic frequency, the technique of isolated microspore culture was performed in Hevea in this paper. Transgenic technique is one of the most important approaches to crop genetic improvement and was also used in this paper. An expression vector harboring a key embryogenic gene was constructed and a transformation system was studied by Agrobaterium mediation. We found laticifer cells exist in callus cultures derived Hevea anthers for the first time. The correlation between laticifer cell differentiation and somatic embryogenesis was investigated, which may provide a hint for the improvement of somatic embryogenesis. The main results of this research were as follows:
     (1) The morphology and the histology of anther calli of Hevea were systemtically studied for the first time, and significant difference between embryogenic callus (EC) and non-embryogenic callus (NEC) were observed. EC was loose, friable, and unsmooth with many small spherical protuberances on its surface. EC cells were small, globular, and tightly attached to each other, and had a big nucleus. NEC included two different types, NECⅠand NECⅡ. The NECⅠwas compact, hard, and smooth, while the NECⅡwas soft, water-soaking. Histologically, both NEC cells were large and irregular in shape, and had thin cytoplasm. However, all of the NECⅡcells had no nucleus and some of NECⅠcells had an extremely small nucleus. Furthermore, the NECⅡcells were vacuolizated and had wider extracelluar gap than the NECⅠones. EC induction rate and its embryogenic rate were significantly correlated. The differentiation ability and the growth rate of the EC were still strong in the late cultural stages.
     Physiological and biochemical mechanism of embryogenesis of EC of the rubber tree was investigated for the first time. Starch content of EC was higher than that of NEC in all cultural stages, and EC cells accumulated more starch in its late cultural stages, which may provide material basis for further embryoid development. The high protein content may be a key factor of embryogenesis of EC. The high carotenoid content of EC indicated its cells have a strong antioxidative capacity preventing its cells brown and death. EC cells of the cultivars having high embryogenic ability had stronger differentiating ability and metabolized more animato compared to those having low embryogenic ability, which makes the former consume more carbon source. Therefore, the depletion of carbon source may activate a signal of embryoid development. The high content of CAT and SOD in EC of different cultivars and their embryogenic ability were significantly correlated, suggesting that CAT and SOD were the basis of embryogenesis.
     (2) Nine types of somatic embryos derived from anther calli were systematically classified, and double-embryoids were reported for the first time and they can develop into normal plantlets.
     Cultural conditions of somatic embryogenesis were improved. Plantlet regeneration was significantly improved by incubating the embryoids under weak light of 500 Lux for 10 to 15d after cultured for 2 months in the dark. The embryogenesis rate was significantly improved by additon of 1 mgL-1 rare earth in the induction media.
     (3) A protocol of isolated microspore culture in Hevea brasiliensis has been carefully studied in the present paper. Two different isolation methods of indirectly grinding anthers and directly grinding anthers were tested and the former was optimal with lower contamination, less impurity, and better culturing effect compared to the latter although it had a low efficiency. Different pretreatments were also studied and Starvation Medium B pretreatment for two days before the microspore incubation was the optimized one. The effects of different carbon sources and pH and components in induction media were investigated. The results showed maltose as carbon source and pH6.6 and modified N6 medium supplemented with 2,4-D 0.5 mgL-1 and KT 0.5 mgL-1 in induction media had an optimal induction effect with 8.33% differentiation rate of microspores which differentiated mainly through B way. Among five cultivars only Haiken2 obtained cell mass and microcalli from microspores, suggesting the differentiating ability of isolated microspores of Hevea is genotype-dependent. An electroporation test using microspores as receptors were carried out and the results of transient expression was confirmed the exogenous gene was expressed in microspores of Hevea by GUS staining.
     (4) The calli of Hevea variety Haikenl were genetically transformed using Agrobacterium EHA105 habouring pBIBBM that contained theβ-glucuronidase(GUS) and Kanamycin-resistant gene and Baby Boom gene. The results showed that the Kanamycin concentration at 50 mgL-1 was the best selective pressure, and the transformation rate of the cocultivation temperature 20℃was greatly higher than that of 26℃. This research optimized the genetic transformation system of Haiken2 by Agrobacterium mediation and obtained Kanamycin resistant callus lines and transgenic embryoids, which provided the prerequisite for getting the transgenic plantlets.
     (5) Laticifers are highly specialized cells present in over 20 plant families. They are well defined in planta. In vitro development of laticifers was also observed in some plants, but uncertain in the callus cultures of rubber tree, one of the most economically important latex producing plants. In the present study, we provide evidence that laticifer cells present in the callus cultures of rubber tree by histochemical and immunohistochemical studies. They present in the callus mainly as separate non-elongated form, very different from the morphology of laticifer cells in planta, excluding their origin from explants, although a few elongated laticifers were observed. These laticifer cells may be the initial characteristic of articulated laticifers.
     The occurring frequency of laticifer cells in the callus was genotype-dependent and negatively correlated with the somatic embryogenetic ability. The PR107, RRIM600, Reyan8-79, and Reyan7-33-97 had more laticifer cells in their callus cultures and lower cmbryogenesis compared to Haiken2, and laticifer clusters were only observed in the callus of the former four cultivars, suggesting that the presence of laticifer cells in the callus inhibit somatic embryogenesis in tissue culture of rubber tree. An improving cultural condition such as regulation exogenous hormone might be undertaken to reduce laticifer cells of calli and enhance their embryogenesis, which may provide a hint of improving anther culture of Hevea.
引文
1.曹丽娟,栾非时,李锡香.2005.植物游离小孢子培养的研究进展.东北农业大学学报,36(5):660-663
    2.岑明,陈正华,钱长发,五传华,何永陶,肖育玲.1981.三叶橡胶花药培养过程中的染色体倍数性研究.遗传学报,8(2):169-174
    3.常凯军,谭德冠,李定琴,郑鹏,张家明.2009.植物游离小孢子及其培养所获得的组织在遗传转化中的应用.中国农学通报,25(15):16-21
    4.陈长泉.1985.评橡胶组织培养.热带作物研究,3:9-11
    5.陈军,陈正华,刘澄清,姚渝光,张丽华,关月兰.1995.甘蓝型油菜游离小抱子培养的胚胎发生.遗传学报,22:307-315
    6.陈雄庭,王泽云,吴胡蝶,张秀娟.2002.橡胶树新种植材料-自根幼态无性系.热带作物学报,23(1):19-23
    7.陈雄庭,王泽云,吴胡蝶,谢玉萍,郑文如.1998.巴西橡胶树自根幼态无性系的试管微繁.作物学报,24(2):225-230
    8. 陈雄庭,王泽云,吴胡蝶,张秀娟.2002.橡胶树新种植材料-自根幼态无性系.热带作物学报,23(1):19-23
    9. 陈雄庭.2006.橡胶树组织培养.见刘进平、莫饶主编:热带植物组织培养.科学出版社:139-146
    10.陈雄庭.橡胶幼态微型芽条的离体培育及其籽苗芽接法的研究.华南热带农业大学2007年博士论文
    11.陈英,左秋仙,李淑媛,吕德扬,郑世文.1981.水稻游离花粉培养诱导形成绿色植株及有关作用因素的研究.遗传学报,8(2):158-163
    12.陈正华,许绪恩,廖小群.1984.三叶橡胶未授粉胚珠培养获得再生植株.中国科学院遗传研究所工作年报:42
    13.陈正华,许绪恩,庞任声.1986.橡胶树属的花药培养及花粉植株的研究.见陈正华主编.木本植物组织培养及其应用.北京:高等教育出版社.481-500
    14.陈正华,许绪恩,张世杰,庞任声.1981.巴西橡胶花粉植株的培育.热带作物科技,6:6-12
    15.崔凯荣,戴若兰主编.2000.植物体细胞胚发生的分子生物学[M].北京:科学出版社
    16.崔克明.2007.植物发育生物学.北京大学出版社.
    17.董静,邬飞波,张国平.2005.麦类作物小孢子培养研究进展.麦类作物学报,25(2):102-106
    18.段翠芳,曾日中,黎瑜.2004.激素对巴西橡胶树橡胶生物合成的调控.热带农业科学,24:61-68
    19.范思伟编.1983.产胶生理.华南热带作物研究院(内部资料):1-42
    20.广东省农垦总局、海南省农垦总局编著.1994.橡胶树良种选育与推广.广州:广东科技出版社
    21.郭高发,贾学军,陈伦兴.1982.离体胚珠诱导巴西橡胶植株(简报).遗传,4(1):27-28
    22.郝秉中,吴继林,云翠英.1980.乙烯利刺激对巴西橡胶树树皮结构的影响.热带作物学报,1(1):61-64
    23.何杭军,王晓武,汪炳良.2004.芥蓝游离小孢子培养初报.园艺学报,31(2):239-240
    24.何康,黄宗道主编.1987.热带北缘橡胶树栽培.广东科技出版社.
    25.洪磊,王颖,陈雄庭,张秀娟.2010.基因枪法获得GAI转基因橡胶树植株的研究。热带亚热带植物学报,18(2):165-169
    26.华南热带作物学院编.1991.橡胶栽培学(第二版)
    27.华玉伟,黄关青,龙青姨,黄华孙.2009.橡胶树次生体胚发生及其再生植株遗传稳定性的分子检测.热带作物学报,30(5):644-650
    28.黄天带,李哲,孙爱花,周权男,华玉伟,黄华孙.2010.根癌农杆菌介导的橡胶树花药愈伤组织遗传转化体系的建立。作物学报,36(10):1691-1697
    29.姜凤英,冯辉,李娜,王平.2006.甘蓝类植物游离小孢子培养研究进展.辽宁农业科学,5:28-30
    30.蒋武生,原玉香,张晓伟,耿建峰,韩永平,高睦枪,栗根义.2005.提高大白菜游离小孢子胚诱导率的研究.华北农学报,20(6):34-37
    31.蒋武生,原玉香,张晓伟,耿建峰,韩永平,郅玉宝.2005.小白菜游离小孢子培养及其再生植株.河南农业大学学报,39(4):398-401
    32.李光威,兰素缺,孙宝启.2001.小麦游离小孢子培养的研究.华北农学报,16(1):83-87
    33.李文泽,胡含.1995b.预处理过程中大麦花药蛋白质变化的研究.莱阳农学院学报,12(1):6-10
    34.李文泽,宋子红,景建康,胡含.1995a.甘露醇预处理对大麦雄核发育的影响.植物学报,37(7):552-557
    35.李文泽,宋子红,景建康,胡含.1995c.不同预处理对大麦花药3种内源激素含量和过氧化物酶活性的影响.植物学报,37(9):731-737
    36.李哲,孙爱花,黄天带,周权男,戴雪梅,黄华孙,林位夫,Lardet L, Montoro P, Carron MP.2010.橡胶树品种热研88-13易碎胚性愈伤组织的诱导及其植株再生.热带作物学报,31(12):2166-2173
    37.栗根义,高睦枪,赵秀山.1933.大白菜游离小孢子培养.园艺学报,20(2):167-170
    38.连勇,刘富中,陈钰辉,宋燕,张松林,Darasinh Sihachakr.2004.茄子体细胞杂种游离小抱子培养获得再生植株.园艺学报,31(2):233-235
    39.林良斌,刘雅婷,董娜,祁永琼,肖关丽.2006.农杆菌介导转化甘蓝型油菜大田植株小孢子.云南农业大学学报,21(5):554-559
    40.林呐,李加纳,何凤发,殷家明.2000.甘蓝型黄籽油菜花药培养中若干因素的影响.西南农业大学学报,22(5):421-423
    41.刘凡,刘公社.1998.利用大白菜小孢子胚状体获得抗除草剂转基因植株.华北农学报,13(4):93-98
    42.刘桂珍,陈正华.1990.巴西橡胶悬浮细胞培养胚胎发生与植株再生.热带作物学报,20(4):1-4
    43.刘秀村,张凤兰,张德双,杨建平,王美,徐家炳.2003.与大白菜桔红心基因连锁的RAPD标记.华北农学报,18(4):51-54
    44.刘艳玲,简元才,李成琼,丁云花,王东双.2006.结球甘蓝游离小孢子培养胚发生能力的研究.西南农业大学学报(自然科学版),28(3):439-446
    45.梅庆超,梁启镜,王爱平,吴惠兰,何宝玲.1981.巴西橡胶胶乳的能量代谢—Ⅰ.弗莱-威斯林复合体生理功能的初步研究.热带作物学报,2(2):7-12
    46.钱惠荣,郑康乐.DNA标记和分子育种.1998.生物工程进展,18(3):12-18
    47.秦余香,夏光敏.小麦的小孢子培养.2004.植物学通报,21(5):625-630
    48.三叶橡胶(Hevea brasiliensis)花药育株成功(简讯).1977.遗传学报,4(2):186
    49.沈利爽,何平,徐云碧,谭震波,陆朝福,朱立煌.1998.水稻DH群体的分子连锁图谱及基因组分析.植物学报,40(12):1115-1122
    50.石淑稳,刘后利.1993.甘蓝型油菜及其种间和属间杂种小孢子胚状体的诱导.华中农业大学学报,12(6):544-550
    51.石淑稳,周永明,吴江生.2002.秋水仙碱处理油菜离体小孢子的染色体加倍效应.华中农业大学学报,21(4):329-333
    52.史自强,胡正海.1965.植物含橡胶组织的制片方法.植物学报,13(2):179-182
    53.宋建成,姜丽君,王守义,王桂荣.1996.玉米游离小孢子培养研究.玉米科学,4(1):9-12
    54.孙志栋,王学德,毛根富,裘尧军.2000.作物单倍体研究和应用进展.种子,6:37-39
    55.谭德冠,孙雪飘,张家明.2005.巴西橡胶树的组织培养.植物生理学通讯,41(5):674-678
    56.王春霞,廖玉才,张杰,刘正位,黄涛,李和平.2007.低温和诱导时间对小麦小孢子培养的影响.华中农业大学学报,26(2):167-170
    57.王关林,方宏筠主编.2002.植物基因工程(第二版)[M].北京:科学出版社.
    58.王日勇,肖旭峰.2003.蔬菜作物游离小孢子培养研究进展.湖南农业科学,5:16-18
    59.王泽云,陈雄庭,吴胡蝶.1989.橡胶花药体细胞植株的优良性状.热带作物学报,10(2):17-23
    60.王泽云,陈雄庭,吴胡蝶.2001.橡胶树新型种植材料-体胚植株.热带农业科学,6:11-15
    61.王泽云,陈雄庭,吴胡蝶,郑文茹,谢玉萍.1996.橡胶花药植株移栽技术的改进.热带作物研究,1:7-10
    62.王泽云,陈雄庭,张秀娟.2002.温度对巴西橡胶树微体繁殖的影响.热带作物学报,23(4):19-23
    63.王泽云,陈雄庭.1995.橡胶雄蕊培养及体细胞植株再生中的温度效应.作物学报,21(6):723-726
    64.王泽云,吴胡蝶,陈雄庭,黎耀平.1992.新型橡胶品种——海垦2幼态无性系.热带作物研究,1:6-8
    65.王泽云,吴胡蝶,陈雄庭,赖康.1988.活性炭在橡胶花药培养中的效应.热带作物研究,1:12-14
    66.王泽云,吴胡蝶,李琼英,范高俊,张建平.1982.巴西橡胶树花药体细胞植株某些性状的遗传.热带作物研究,3:14-17
    67.王泽云,吴胡蝶,曾宪松,陈传琴,李琼英.1984.巴西橡胶花药胚的发生和花药植株起源的研究.热带作物学报,5(1):9-13
    68.王泽云,曾宪松,陈传琴.1978.从离体花药诱导巴西橡胶植株.热带作物科技通讯,4:1-7
    69.王泽云,曾宪松,陈伟琴,吴胡叶,李琼英,范高俊,卢文娟.1980.用离体花药诱导巴西橡胶植株的研究.热带作物学报,1(1):16-25
    70.吴胡蝶,王泽云,陈雄庭,郑文茹,谢玉萍.1997.影响橡胶体细胞胚萌发成植株的几个因素.热带作物研究,2:5-8
    71.吴胡蝶,王泽云,陈雄庭.1989.橡胶花药体细胞植株的优良性状.热带作物学报,10(2):17-23
    72.吴胡蝶,王泽云,陈雄庭.1994.6-BA、ABA对橡胶花药体细胞胚形成及植株再生的影响.热带作物研究,3:1-3
    73.吴华玲,段翠芳,聂智毅,黎瑜,于波,曾日中.2009.巴西橡胶树橡胶粒子研究进展.热带作物学报,30(7):1044-4049
    74.吴继林,郝秉中.1982.创伤(割胶)对巴西橡胶树乳管分化的影响.植物学报,2:388-391
    75.吴继林,郝秉中.1990.巴西橡胶树乳管分化的超微结构研究.植物学报,32(5):350-354
    76.吴煜,谭德冠,张家明.2008.橡胶树品种海垦2花药与未授粉胚珠愈伤组织诱导及其胚胎发生能力的比较.热带农业科学,28(2):1-4
    77.肖三元,陈正华.1994.三叶橡胶树未授粉子房、胚珠培养再生植株研究初报.云南热作科技,3:18-20
    78.邢更妹,李杉,崔凯荣,王亚馥.植物体细胞胚发生中某些机理探讨.自然科学进展,2000,10(8):684-692
    79.于冬梅,谭德冠,方家林,黄华孙.2000.橡胶树花培植株无性系杂交研究初报.热带农业科学,3:1-5
    80.余凤群,刘后利.1995.供体材料和培养基成份对甘蓝型油.菜小孢子胚状体产量的影响.华中农业大学学报,14(4):327-331
    81.曾霞,黄华孙.2004.国内外橡胶种树种质资源收集保存及其研究进展.热带农业科技,1:24-28
    82.张宝玺,王立洁,黄三文,郭家珍,杨桂梅,堵玫珍.2003.辣椒分子遗传图谱的构建和胞质雄性不育恢复性的QTL分析.中国农业科学,36(7):818-822
    83.张冰玉,苏晓华,周祥明,纪丽丽,黄秦军,张香华.2003.林木花药培养研究进展及展望.植物学通报,20(6):656-663
    84.张家明,刘金兰,孙济中.1992.陆地棉体细胞胚的萌发及植株再生变异初步研究.华中农业大学学报,11(1):31-35
    85.张丽.2004.萝卜小孢子培养技术初报.园艺学报,31(5):676-678
    86.张世杰,陈正华,许绪恩.1990.橡胶树花药培养单倍体植株的研究.热带作物研究,4:1-6
    87.张治礼,郝秉中.2000.巴西橡胶树剥皮再生及乳管细胞发生的研究.热带作物学报,21(2):12-18
    88.赵中奇.1987.巴西橡胶树不同生态条件下乳汁管发育的研究.生物学杂志,6:1-6
    89.郑杰.2007.乙烯利在橡胶树上应用的研究进展.安徽农业科学,35:5686-5688
    90.钟维瑾,方光华.1990.甘蓝型油菜小孢子培养中若干因素对胚状体诱导和植株再生的影响.上海农业学报,2:7-14
    91.周志国,龚义勤,王晓武,柳李旺,张延国.2007.不同萝卜品种游离小孢子的诱导及培养体系优化研究.西北植物学报,27(1):33-38
    92.朱彦涛,李殿荣,杨淑慎.2005.低温预处理和基因型对甘蓝型油菜小孢子胚胎发生的影响.西北农林科技大学学报(自然科学版),33(5):88-94
    93.朱允华,刘明月,吴朝林.2003.影响菜心游离小孢子培养的因素.长江蔬菜,9:46-47
    94. Afele JC, Kannenberg LW, Keats R, Sohota S and E. B. Swanson EB.1992. Increased induction of microspore embryos following manipulation of donor plant environment and culture temperature in corn (Zea mays L.). Plant Cell, Tissue and Organ Culture,28:87-90
    95. Agrawal AA. and Fishbein M.2006. Plant defense syndromes. Ecology,87:132-149
    96. Ali I, Shah SA, Shah SJA.2001. Microspore mutagenesis in Brassica napus. Crueifer Newslet,23:25-26
    97. Arokiaraj P, Jones H, Cheong KF, Coomber S and Charlwood BV.1993. Gene insertion into Hevea brasiliensis. Plant Cell Rep,13:425-431
    98. Arokiaraj P, Yeang H Y, Cheong K F, Samsidar H, Jones H, Coomber S, Charlwood BV.1998. CaMV35 promoter directs β-glucuronidase in the laticiferous system of transgenic Hevea brasiliensis(rubber tree). Plant Cell Rep,17:621-625
    99. Asokan MP, Jayasree P K, Thomas V, Kumari S S, Kala R G, Jayasree R, Sethuraj M R, Thulaseedharan A.2002. Influence of 2,4-D and sucrose on repetitive embryogenesis in rubber (Hevea brasiliensis Muell. Arg. cv GT1). Journey of tree science,21:18-26
    100.Asseara Batista Leitao Mendanha, Roberto Augusto de Almeida Torres.1998. Micropropagation of rubber trees (Hevea brasiliensis Muell-Arg.). Genet Mol Biol,21.
    101.Auboiron E, Carron MP, Michaux-Ferriere N.1995. Influence of atmospheric gases, particularly ethylene, on somatic embryogenesis of Hevea brasiliensis. Plant cell, tissue and organ culture,1990(21):31-37
    102.Ayed O S, Buyser J D, Picard E, Trifa Y and Amara HS.2010. Effect of pre-treatment on isolated microspores culture ability in durum wheat (Triticum turgidum subsp. Durum Desf.). Journal of Plant Breeding and Crop Science,2:30-38
    103.Barinova I, Clement C, Martiny L, Baillieul F, Soukupova H, Heberle-Bors E, Touraev A.2004. Regulation of developmental pathways in cultured microspores of tobacco and snapdragon by medium PH. Planta,219:141-146
    104.Barro F and Martin A.1999. Response of different genotypes of Brassica carinata to microspore culture. Plant breeding,118:79-81
    105.Benedict HM.1949. A further study of the non-utilization of rubber as a food reserve by guayule. Bot. Gaz., 111:36-43
    106.Biesboer DD, Mahlberg PG.1978. Accumulation of non-utilizable starch in laticifers of Euphorbia heterophylla and E. myrsinites. Planta 143:5-10
    107.Binarova P, Hause G, Cenklova V, Cordewener JHG and Lookeren Campagne MM. 1997. A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sexual plant reproduction,10:200-208
    108.Blanc G, Baptiste C, Oliver G, Martin F and Montoro P.2006. Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Mull Arg. Plants. Plant Cell Rep,24:724-733
    109.Blanc G, Lardet L, Martin A, Jacob JL and Carron MP.2002. Differential carbohydrate metabolism conducts morphogenesis in embryogenic calli of Hevea brasiliensis(Mull.Arg). Journal of experimental botany 373:1453-1462
    110.Bouche N. and Fromm H.2004. GABA in plants:just a metabolite? Trends Plant Sci.9,110-115
    111 Boutilier K, Offringa R, Sharma VK, Kieft H, Ouelle T, Zhang L, Hattori I, Liu CM, van Lammeren MM, Miki BLA, Custers JBM, van Lookeren Campagne ML.2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell,14:1737-1749
    112.Bradford MM.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein-dye binding. Anal. Biochem.72:248-254
    113.Cailloux F, Julien-Guerrier J, Linossier L and Coudret A.1996. Long-term somatic embryogenesis and maturation of somatic embryos in Hevea brasiliensis. Plant science,120:185-196
    114.Carlos J, Dias D S.1999. Effects of activated charcoal on Brassica oleracea microspore culture embryogenesis. Euphytica,108:65-69
    115.Carron M P, Lardet L, Lecontel A, Dea B G, Keli J, Granet F, Julien J, Teerawatanasuk K, Montoro P.2009. Field trials network emphasizes the improvement of growth and yield through micropropagation in rubber tree(Hevea brasilliensis, Muell. Arg). Acta Hort, Proc.Ⅲrd IS on Acclim. and Establt. of Micropropagated Plants,812:485-492
    116.Carron MP, Enjalric F, Lardet L.1989. Rubber(Hevea brasiliensis Mull. Arg.) Biotechnology in Agriculture and Forestry, 5:228-245
    117.Carron MP, Enjalric F.1982. Studies on vegetative micropopagation of Hevea brasiliensis by somatic embryogenesis and in vitro microcutting. In:Fujiwara A(ed) Plant tissue culture. Maruzen, Tolvo:751-752
    118.Carron MP, Lardet L, Dea BG.1998. Hevea microprogation by somatic embryogesis. Plantations Res Dev,5:187-192
    119.Carter CA, Forney RW, Gray EA, Gehring AM, Schneider TL, Young DB, Lovett CM.1997. Toxicarioside A. A new cardenolide isolated from Antiaris toxicaria latex-derived dart poison. Assignment of the 1H-and 13C-NMR shifts for an antiarigenin aglycone. Tetrahedron 53,13557-13566
    120.Cazaux E, Auzac J D.1991. Isolation and culture of Hevea brasiliensis protoplasts. Physiol Plant,82:1-14
    121.Charbit E, Legavre T, Lardet L, Bourgeois E, Ferriere N, Carron MP.2004. Identification of differentially expressed cDNA sequences and histological characteristics of Hevea brasiliensis calli in relation to their embryogenic and regenerative capacities. Plant Cell Reports 22:539-548
    122.Chen Z.1982. Recent advances in anther culture of Hevea brasilliensis(Muell. Arg). Theor. Appl. Genet.,62:103-108
    123.Chowdhury B and Mandal AB.2001. Microspore embrygenesis and fertile plantlet regeneration in a salt susceptible X salt tolerant rice hybrid. Plant cell, tissue and organ culture,65:141-147
    124.Chugh A and Khurana P.2002. Gene expression during embryogenesis recent advances. Current Science,83:715-730
    125.Chuong PV and Beversdorf WD.1985. High frequency embryogenesis through isolated microspore culture in Brassica napus L. and B. carinata Braun. Plant science,39:219-226
    126.Chuong PV, Pauls KP, Beversdouf WD.1988. High-frequency embryogenesis in male sterile plants of Brassica napus through microspore culture. Can J Bot, 66(8):1676-1680
    127.Cistue L, Ramos A, Castillo A M, Romagosa I.1994. Production of large number of double haploid plants from barley anthers pretreated with high concentrations of mannitol. Plant cell reports,1994:709-712
    128.Cistue L, Ziauddin A, Simion E and Kasha KJ.1995. Effects of culture conditions on isolated microspore response of barley cultivar Igri. Plant Cell, tissue and Organ Culture,42:163-169
    129.Coumans MP, Sohota S and Swanson EB.1989. Plant development from isolated microspores of Zea mays L.. Plant Cell Reports,7:618-621
    130.D'Auzac J, Cretin H, Martin B, Lioret C.1982. A plant vacuolar system:the lutoid from Hevea brasiliensis latex. Physiol. Veg.,20:311-331
    131.da Cunha M, Gomes VM, Xavier-Filho J, Attias M, de Souza W, Miguens FC.2000. The laticifer system of Chamaesyce thymifolia:a closed host environment for plant trypanosomatids. Biocell,24:123-132
    132.Datta SK and De S.1986. Laticifer Differentiation of Calotropis gigantea R. Br. ex Ait. in Cultures. Annals of botany,57:403-406
    133.David DB, Paul GM.1981. Laticifer starch grain morphology and laticifer evolution in Euphorbia (Euphorbiaceae). Nordic Journal of Botany,1:447-457
    134.Davies PA, Morton S.1998. A comparison of barley isolated microspore culture and anther culture and the influence of cell culture density. Plant cell reports,17: 206-210
    135.Dhir SK, Shekhawat NS,Purohit SD and Arya HC.1984. Development of laticifer cells in callus cultures of Calotropisprocera (Ait.) R. Br. Plant cell reports,3:206-209
    136.Dickenson PB.1969. Electron microscopic studies of latex vessel system of Hevea brasiliensis. J Rubb. Res.,21:543-559
    137.Domsalla A and Melzig MF.2008. Occurrence and properties of proteases in plant latices. Planta Med.,74:699-711
    138.Dormann M, Datla N, Hayden A, Puttick D, Quandt J.1998. Non-destructive screening of haploid embryos for glufosinate ammonium resistance four weeks after microspore transformation in Brassica. Acta Horticul,459:191-197
    139.Dunbar KB, Wilson KJ, Petersen BH, Biesbore DD.1986. Identification of laticifers in embryoids derived from callus and suspension culture of Asclepias species (Asclepladaceae). Amer.J.Bot.,73:847-851
    140.Engelmann F, Lartaud M, Chabrillange N, Cairon M P and. Etienne H.1997. Cryopreservation of embryogenic calluses of two commercial clanes of Hevea brasilliensis. Cryo-Letters,18:107-116
    141.Evert RF.2006. Internal secretory structures. In Esau's Plant Anatomy (3rd edn) (Evert, R.F., ed.), pp.473-501
    142.Fahn A.1979. Secretory tissue in plants. Academic Press INC.(London) LTD.223-243
    143.Finnie SJ, Powell W and Dyer AF.1989. The effect of carbohydrate composition and concentration on anther culture response in barley (Hordeum vulgare L.). Plant Breeding,103:110-118
    144.Foiling L and Olesen A.2001. Transformation of wheat (Triticum aestivumL.) microspore-derived callus and microspores by particle bombardment. Plant Cell Rep,20:629-636
    145.Fukuoka H, Ogawa T, Matsuoka M, Ohkawa Y and Yano H. Direct gene delivery into isolated microspores of rapeseed(Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Rep,1998(17):323-328
    146.Fullner KJ and Nester EW.1996. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J.Bacteriol.,178:1498-1504
    147.Germana MA, Scarano MT, Crescimanno FG.1996. First results on isolated microspore culture of Citrus. Proceedings of the international society of citriculture, 2:882-885
    148.Gidrol X, Chrestin H, Tan H L, Kush A.1994. Hevein, a lectin-like protein from Hevea brasiliensis (rubber tree) is involved in the coagulation of latex. J Biol Chem, 269(12):9278-9283.
    149.Gomez JB and Moir GFJ.1979. Ultrastructure cytology of latex Vessels in Hevea brasiliensis. Malaysian Rubber Research and Development Board, Kuala Lumpur: 1-75
    150. Gomez JB.1964. Anatomical observation on Hevea bark treated with yield containing 2,4-D. J RRIM,18:226
    151.Gu HH, Hagberg P and Zhou WJ.2004. Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Plant Growth Regulation,42: 137-143
    152.Guo Xiangrong, Jing Jiankang and Hu Han.1997. Dedifferentiating initaition and embryogenesis from freshly-isolated microspores of barley. Science in China(Series C),40(3):332-336
    153.Guo YD and Pulli S.2000. An efficient androgenic embryogenesis and plant regeneration method through isolated microspore culture in timothy (Phleum pratense L.). Plant cell reports,19:761-767
    154.Hagel JM, Yeung EC, Facchini PJ.2008. Got milk? The secret life of laticifers. Trends in plant science 13:631-639
    155.Hamzah S.1975. Effect of mineral deficiencies on bark anatomy of Hevea brasiliensis. Proc Inst Rubb Conf Kuala Lumpur.
    156.Han KH, Shin DH, Yang J, Kim IJ, Oh SK, Chow KS.2000. Genes expressed in the latex of Hevea brasiliensis. Tree Physiol,20:503-510
    157.Hao BZ, Wu JL (2000). Laticifer differentiation in Hevea brasiliensis:induction by exogenous jasmonic acid and linolenic acid. Ann Bot 85:37-43
    158.Hoekstra S, Zijderveld MH, Heidekamp E, and Mark. F.1993. Microspore culture of Hordeum vulgate L.:the influence of density and osmolality Plant cell reports, 12:661-665
    159.Hofcr M, Touraev A, Heberle-Bors E.1999. Induction of embryogenesis from isolated apple microspores. Plant Cell Rep,18:1012-1017
    160.Hofer M.2004. In vitro and andgenesis in apple-improvement of the indution phase. Plant Cell Rep,22(6):265-370
    161.Hu T and Ken KJA.1999. Cytological study of pretreatment used to improve isolated microspore cultures of wheat(Triticum aestivum L.)cv. Chris. Genome,42: 432-441
    162.Hu T, Kasha K J,1997. Improvement of isolated microspore culture of wheat (Triticum aestivum L.) through ovary co-culture. Plant Cell Rep,16:520-525
    163.Hua YW, Huang TD and Huang HS.2010. Micropropagation of self-rooting juvenile clones by secondary somatic embryogenesis in Hevea brasilliensis. Plant breeding,129:202-207
    164.Huang B, Bird S, Kemble R, Simmonds D, Keller W, and Miki B.1990. Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas. Plant cell reports,8:594-597
    165.Huang Tiandai, Li Weiguo, Huang Huasun.2004. Microprogation of shoot apex and shoot stem with axils of cotyledon of Hevea brasiliensis. Paper presented at the International Rubber Conference, Kunming, China.
    166.1ndrianto A, Heberle-Bors E and Touraev A.1999. Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. Plant science,143:71-79
    167.Jayashree R, Rekha K, Venkatachalam P, Uratsu SL, Dandekar AM, Kumari Jayasree P, Kala RG, Priya P, Sushma Kumari S, Sobha S, Ashokan MP, Sethuraj MR and Thulaseedharan A.2003. Genetic transformation and regeneration of rubber tree (Hevea brasiliensis Muell. Arg) transgenic plants with a constitutive version of an anti-oxidative stress superoxide dismutase gene. Plant Cell Rep 22: 201-209
    168.Jayasree P K and Thulaseedharan A.2001. Gibberellic acid-regulated embryo induction and germination in Hevea brasilliensis(Muell. Arg). Indian J Nat Rubb Res, 14(2):106-111
    169.Jayasree P K, Asokan M P, Sobha S, Ammal L S, Rekha K, Kala R G, Jayasree R and Thulaseedharan A.1999. Somatic embryogenesis and plant regeneration from immature anthers of Hevea brasiliensis(Muell. Arg). Current Science,76(9): 1242-1245
    170.Kala RG, Kuruvila L, Kumari JP, Kumari SA, Jayashree R, Rekha K, Sobha S and Thulaseedharan A.2008. Secondary embryogenesis and plant regeneration from leaf derived somatic embryos of Hevea brasiliensis. J of Plantation Crops, 36:218-222
    171.Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR.2001. An improved in vitro technique for isolated microspore culture of barley. Euphytica,120:379-385
    172.Ko JH, Chow KS, Han KH.2003. Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Molecular Biology,53:479-492
    173.Koch KE.1996. Carbohydrate-modulated gene express in plant. Annu Rev Plant Physiol Plant Mol Biol.199647:509-540
    174.Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K. 2004. Papain protects papaya trees from herbivorous insects:role of cysteine proteases in latex. Plant J,37:370-378
    175.Kuhlmann U and Foroughi-Wehr B.1989. Production of doubled haploid.lines in frequencies sufficient for barley breeding programs. Plant Cell Rep.,8:78-81
    176.Kyo M, Harada H.1986. Control of the developmental pathway of tobacco pollen in vitro. Planta,168:427-432
    177.Lardet L, Martin F, Dessailly F, Carron M P, Montoro P.2007. Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Mull. Arg.). Plant cell reports, 26:559-569
    178.Last DL and Brettell RIS.1990. Embryo yield in wheat anther culture is influenced by the choice of sugar in the culture medium. Plant Cell Rep.,9:14-16
    179.Li H and Devaux P.2003. High frequency regeneration of barly double haploid plants from isolated microspore culture. Plant science,164:379-386
    180.Mahlberg PG.1993. Laticifers:An historical perspective. The Botanical Review, 59:1-23
    181.Martin MN.1991. The latex of Hevea brasiliensis contains high levels of both chitinases and chitinases/lysozymes. Plant Physiol,95:469-476
    182.Mascarenhas AF, Hazara S, Potdar U.1982. Rapid clonal multiplication of mature forest trees through tissue culture. In:Fujiwara A (ed). Plant Tissue Culture. Proc of the 5th Int Cong on Plant Tissue Cell Cult/Tokyo.719-720
    183.Milburn JA, Ranasinghe MS.1996. A comparison of methods for studying pressure and solute potentials in xylem and also in phloem laticifers of Hevea brasiliensis. J Exp Bot 47:135-143
    184.Miyoshi K.1996. Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L.). Plant cell reports,15:391-395
    185.Monacelli B, Valletta A, Rascio N, Moro I, Pasqua G.2005. Laticifers in Camptotheca acuminata Decne:distribution and structure. Protoplasma, 226:155-161
    186.Montoro P, Etienne H, Carron M P.1994. Maintainable somatic embryogenesis in Hevea brasilliensis. Revue de cytology et biologie vegetales, le botanisete,17:113-117
    187.Montoro P, Etienne H, Michaux-Ferriere N, Carron M P.1993. Callus friability and somatic embryogenesis in Hevea brusilliensis. Plant cell, tissue organ culture,33:331-338
    188.Mukherjee A, Debata BK, Mukherjee PS, Malik SK.2001. Morphohistobiochemical characteristics of embryogenic and nonembryogenic callus cultures of sweet potato (Ipomoea batatas L.). Cytobios.106:113-124.
    189.Murashige T, Skoog F.1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant,15:473-497
    190.Neves N, Segura-Nieto M, Blanco M, Sanchez M, Gonzalez A, Gonzalez J and Castillo R.2003. Biochemical characterization of embryogenic and non-embryogenic calluses of sugarcane. In Vitro Cell. Dev. Biol.-Plant 39:343-345
    191.Nitsch C, Norreel B.1973. Effet d'un choc thermique sur le pouvoir embryog6ne du pollen de Datura innoxia cultiv6 dans I'anth6re ou isol6 de I'anth6re. CR Acad Sci 276:303-306
    192.Nurhaimi H, Darussamin A, Dodd WA.1993. Isolation of rubber tree(Hevea brasiliensis Muell-Arg)protoplast from callus and cell suspension. Menara Perkebunan(Indonesia),61:25-31
    193.Paranjothy K, Ghadimathi H.1975. Morphogenesis in callus cultures of Hevea briasiliensis. Proceeding of the National Plant Tissue Culture Symposium:19-25
    194.Paranjothy K, Ghadimathi H.1976. Tissue and organ culture of Hevea. Pro Int Rubb Conf,2:59-84
    195.Pechan MP.1989. Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium. Plant Cell Rep,8:387-390
    196.Pescitelli SM, Johnson CD, Petolino JF.1990. Isolated microspore culture of maize: effects of isolation technique, reduced temperature, and sucrose level. Plant cell Rep, 8:628-631
    197.Peseitelli SM, Mitchell JC, Jones AM, Pareddy DR, and Petolino JF.1989. High frequency androgenesis from isolated microspores of maize. Plant Cell Reports, 7:673-676
    198.Pickard, WF.2008. Laticifers and secretory ducts:two other tube systems in plants. New Phytol.,177,877-888
    199.Potjamarn Suraninpong,Sompong Te-chato.1999. Effect of cytokinins on cell suspension culture, isolation and culture of protoplast of rubber. Songklanakarin Jour Sci Technol,21(2):169-177
    200.Powell W.1988. The influence of genotype and temperature pre-treatment on anther culture response in barley(Hordeum vulgare L.). Plant Cell, Tissue and Organ Culture,12:291-297
    201.Roberts-Oehlschlager SL and Dunwell JM.1991 Barley anther culture:The effect of position on pollen development in vivo and in vitro. Plant cell reports,9:631-634
    202.Rohani O, Paranjothy K.1980. Isolation of Hevea protoplasts. Jour Rubb Res Inst Malaysia,28:61-66
    203.Rubber Research Institute in Malaysian. Annual reports,1978:65
    204.Sando T, Hayashi T, Takeda T, Akiyama Y, Nakazawa Y, Fukusaki E, Kobayashi A. 2009. Histochemical study of detailed laticifer structure and rubber biosynthesis-related protein localization in Hevea brasiliensis using spectral confocal laser scanning microscopy. Planta 230:215-225
    205.Satchuthananthavale R, lrugalbandara ZE.1972. Propagation of callus from Hevea anthers. Quarterly Journal of Rubber Research Institute of Ceylon,49:65-68
    206.Satchuthananthavale R.1973. Hevea tissue culture. Quarterly Journal of Rubber Research Institute of Ceylon,50:91-97
    207.Scott P and Lyne RL.1994. The effect of different carbohydrate sources upon the initiation of embryogenesis from barley microspores. Plant cell, tissue and organ culture,36:129-133
    208.Sheldrake AR.1969. Cellulase in latex and its possible significance in cell differentiation. Planta,89:82-84
    209.Siagian N, Wattimer GA, Solahuddin S.1985. The application of plant growth regulators to increase the rate of tapping bark regeneration of Hevea brasiliensis. Bulletin Perkaretan,3:67-73
    210.Singh AP, Wi SG, Chung GC, Kim YS, Kang H.2003. The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis. J Exp Bot,54(384):985-992.
    211.Sobha S, Sushamakumari S, Thanseem I, Kumari Jayasree P, Rekha K, Jayashree R, Kala RG, Asokan MP, Sethuraj MR, Dandekar AM, Thulaseedharan A.2003. Genetic transformation of Hevea brasiliensis with the gene coding for superoxide dismutase with FMV 34s promoter. Current Science,85:1767-1773
    212.Stoger E, Fink C, Pfosser M, Heberle-Bors E.1995. Plant transformation by particle bombardment of embryogenic pollen. Plant Cell Rep,14:273-278
    213.Subroto T, van Koningsveld GA, Schreuder HA, Soedjanaatmadja UM, Beintema JJ.1996. Chitinase and beta-1,3-glucanase in the lutoid-body fraction of Hevea latex. Phytochemistry,43:29-37
    214.Sunderland N, Huang B and Hills GJ.1984. Disposition of Pollen in situ and its Relevance to Anther/Pollen Culture. J. Exp. Bot.,35:521-530
    215.Suri SS and Ramawat KG.1995. In vitro hormonal regulation of laticifer differentiation in Calotropis procera. Annals of botany,75:477-480
    216.Suri SS and Ramawat KG.1997. Extracellular calcium deprivation stimulates laticifer differentiation in callus cultures of Calotropis procera. Annals of botany,79: 371-374
    217.Suri SS, Ramawat KG.1995. In vitro hormonal regulation of laticifer differentiation in Calotropis procera. Annals of Botany 75:477-480
    218.Sushamakumari S, Asokan MP, Anthony P, Lowe KC, Power JB and Davey MR. 2000. Plant regeneration from embryogenic cell suspension-derived protoplasts of rubber. Plant cell, tissue and organ cult,61(1):81-85
    219.Swanson EB, Erickson LR.1989. Haploid transformation in Brassica napus using an octopine-producing strain of Agrobacterium tumefaciens.Theor Appl Genet,78: 831-835
    220.Takahata Y, Komatsu H, and Kaizuma N.1996. Microspore culture of radish (Raphanus sati vus L.):influence of genotype and culture conditions on embryogenesis. Plant Cell Reports,16:163-166
    221.Telmer CA, Newcomb W, Simmonds DH.1993. Microspore development in Brassica napus and the effect of high temperature on division in vivo and in vitro. Protoplasma,172:154-165
    222.Telmer CA, Newcomb W, Simmonds DH.1995. Cellular changes during heat shock induction and embryo development of cultured microspores of Brassica napus cv. Topas. Protoplasma,185:106-112
    223.Thorpe TA and Murashige T.1968. Starch Accumulation in Shoot-Forming Tobacco Callus Cultures. Science,160:421-422
    224.Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E.1996. Efficient microspore embryogenesis in wheat(Triticum aestivum L.) induced by starvation at high temperature. Sexual Plant Reproduction,9:209-215
    225.Traub, HP.1946. Concerning the function of rubber hydrocarbon(caoutchouc) in the guayule plant, Partenium argentatum A.Gry. Plant physiol,21:425-444
    226.van der Hoorn RAL and Jones JDG.2004. The plant proteolytic machinery and its role in defense. Curr. Opin. Plant Biol.,7:400-407
    227.Veissire P, Linossier L, Coudret A.1994. Effect of abscisic acid and cytokinins on the development of somatic embryos in Hevea brasiliensis. Plant cell, tissue and organ cult,39:219-223
    228.Wan Y and Lemaux PG.1994. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol,104:37-48
    229.Wang YL, Li WG, Wu JL, Hao BZ, Lin WF.2005. Histological studies on in vitro somatic embryogenesis from anther culture of Hevea brasiliensis. J Rubber Res 8:120-129
    230.Wilson HM, Eisa MZ, Irwin SWB.1976. The effects of agitated liquid medium on in vitro culture of Hevea brasiliensis. Physiol plant,36:399-402
    231.Wilson HM, Street HE.1975. The growth, anatomy and morphogenetic potential of callus and cell suspension cultures of Hevea brassiliensis. Annals of Botany,39: 671-682
    232.Wilson KJ, Mahlberg PG.1977. Investigations of laticifer differentiation in tissue cultures derived from Asclepias syriaca L. Ann Bot,41:1049-1054
    233.Wilson KJ, Petersen BH, Biesboer DD.1984. Immunocytochemical identification of laticifers. Protoplasma,122:86-90
    234.Wiritsuwannakul R, Rukseree K, Kanokwiroon K, Wititsuwannakul D.2008. A rubber particle protein specific for Hevea latex lectin binding involved in latex coagulation. Phytochemistry,69(5):1111-1118.
    235.Wu H, McCormack AC, Malcolm CE, Chen D-F.1998. Agrobacterium-mediated stable transformation of cell suspension cultures of barley (Hordeurn vulgare). Plant Cell Tissue Organ Cult,54:161-171
    236.Yamamoto H, Tabata M.1989. Correlation of papain-like enzyme production with laticifer formation in somatic embryos of papaya. Plant Cell Rep,8:251-254
    237.Yuan XH, Yang SQ, Xu LY, Wu JL, Hao BZ.1998. Characteristics related to higher rubber yield of Hevea brasiliensis juvenile-type clone GL1. J Rubber Res 1:125-132
    238.Zhao J, Simmonds DH and Newcomb W.1996. High frequency production of doubled haploid plants of Brassica napus cv. Topas derived from colchicine-induced microspore embryogenesis without heat shock. Plant cell reports,15:668-671
    239.Zheng MY.2003. Microspore culture in wheat (Triticum aestivum L.)-doubled haploid production via induced embryogenesis. Plant Cell, Tissue Org Cult,73: 213-230
    240.Zheng MY, Liu W, Weng Y, Polle E, Konzak CF.2001. Culture of freshly isolated wheat (Triticum aestivum L.) microspores treated with inducer chemicals. Plant Cell Rep,20:685-690
    241. Ziyun W, Huang TD, Huang HS, Hua YW.2009. Establishment and characterization of Hevea brasiliensis embryogenic cell suspension culture. J Rubb Res,12(1),45-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700