葡萄镁营养生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁在植物生理作用中有着其它阳离子不可替代的重要地位,植物体内镁离子水平的高低直接影响植物细胞结构、光合作用、酶活化和活性氧代谢等结构和作用及果实品质。近年来,南方葡萄种植园葡萄缺镁现象日趋严重,造成了葡萄体内镁素营养不足,从而影响了葡萄生长发育及鲜果品质的进一步提高。为解决南方葡萄缺镁问题,探讨镁营养对葡萄生理机制及果实品质的影响,在深入研究湖南地区的葡萄叶片镁含量状况基础上,本研究以我国南方近几年广泛种植的优良欧亚种葡萄(Vitis vinifera L.)‘红地球’(Vitis vinifera L.'Red Globe')为试材,在不同镁营养水平处理下,对葡萄生长发育、体内营养、生理代谢及果实品质的变化进行了研究。研究结果如下:
     1.湖南地区7个县(市、区)29个葡萄园叶片的N、P、K、Cu含量基本处于适宜范围,Ca含量处于低量范围,Mg含量基本处于缺乏范围,而Zn含量高于适宜范围,Fe, Mn含量也处于适宜范围或以上,植株普遍存在缺镁现象。
     2.适量供镁能够促进葡萄新梢、叶片、根生长,稳定器官结构:葡萄植株新梢生长,叶面积、比叶重及干重,根系活力、条数、鲜重及干重,均随镁素处理浓度的增高呈先升后降的趋势,仅缺镁(0 mmol·L-1)处理的新梢、叶片、根尖及根边缘细胞内部结构明显破坏,新梢、叶片叶绿体结构变形,片层减少,叶绿体膜破损。
     3.供镁浓度影响了葡萄体内营养元素的平衡:(1)缺Mg使葡萄各器官Mg含量在处理期内呈下降趋势,其它施镁处理下均有所升高,过量供Mg时,处理后期又有所下降。(2)随Mg2+浓度的增大,葡萄各器官N、P、K、Ca、Fe、Mn含量变化没有明显的规律性,而Mg、Cu、Zn、S呈先下降后上升的趋势,B含量一直呈下降的趋势,但体内Mg含量与镁处理浓度呈显著正相关水平,与N含量呈显著正相关,表现为协同作用,与K、Ca、Mn、Zn含量呈显著负相关,表现为拮抗作用。(3)营养元素的基本分配规律为:(N)叶片>根>叶柄>茎,(K)叶柄>根>茎>叶片,(Ca、Mn)叶片>叶柄>根>茎,(Mg、B)叶柄>叶片>茎>根,(Fe、S)根>叶片>叶柄>茎,(Cu)叶片>根>茎>叶柄,(Zn)叶片>叶柄>茎>根。
     4.适宜的Mg2+浓度能够稳定细胞结构、提高叶绿素含量和增强光合作用,提高葡萄对光和CO2的利用能力:(1)Mg2+ 3mmol·L-1处理的叶绿体结构规则,而1 mmol·L-1和0 mmol·L-1处理的叶绿体形状发生变化,被膜损坏,结构解体,基粒片层结构被破坏,叶绿体数和体积减少,基粒数和基粒片层减少。(2)缺镁处理时净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)日变化较弱,其Pn、Gs、Tr的日变化曲线均呈双峰曲线型变化,有光合午休现象,随缺镁程度的加大而升高,胞间CO2浓度(Ci)的日变化与Pn和Gs变化趋势相反。(3)葡萄幼苗叶片的叶绿素a(Chla)和叶绿素b(Chlb)含量、Pn、Tr、Gs、Ci、光饱和点(LSP)、最大净光合速率(Pnmax)、表观量子效率(AQY)、羧化效率(CE)均在镁素水平为3 mmol·L-1时显著高于其它浓度水平;而光补偿点(LCP)、CO2补偿点(CCP)、CO2饱和点(CSP)变化趋势相反,镁素用量同光合特性指标呈正相关关系。
     5.镁素营养影响葡萄叶片的渗透调节物质、活性氧代谢及保护酶活性,适量施加镁肥(约为3 mmol·L-1)有利于葡萄抗膜脂过氧化胁迫和延缓叶片衰老:葡萄叶片中硝酸还原酶(NR)活性、可溶性蛋白(SP)含量、可溶性糖(SS)、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、过氧化氢酶(CAT)活性均随Mg2+浓度增大呈先上升后下降的趋势,与处理浓度呈正相关;脯氨酸(Pro)含量、丙二醛(MDA)含量、超氧阴离子(O2·-)产生速率、过氧化氢(H202)含量变化趋势相反,与处理浓度呈负相关。
     6.适量供镁可促进果实生长,增加果皮花色苷、白藜芦醇、果实内源激素、营养元素含量,提高果实内在品质:(1)适镁和高镁时果实的生长呈典型的双“S”型曲线,缺镁下两个快速生长期不明显。(2)适镁时果皮中积累花色苷积累速率均快于缺镁和高镁,花后92d果实成熟时,适量的镁果皮中Res含量显著高于缺镁和高镁。(3)三个处理中果实GA3和IAA含量均在花后64d果实转色时含量最高,CTK和ABA含量均在花后50d果实生长前期含量最高,适量的镁果实GA3、IAA、CTK、ABA在花后50d、64d、92d均高于缺镁和高镁处理。(4)三个处理中葡萄果实内N、P、Mg、Fe、Mn、Cu、Zn含量均在花后92d果实成熟时最高,K、Ca含量均在花后64d果实着色时最高,果实内营养元素均以适量镁处理后的含量最高,其次为高镁处理,缺镁处理最低。(5)适镁可提高果实pH值、糖酸比、可溶性固形物、总糖、维生素C、总蛋白、游离氨基酸含量,降低可滴定酸含量。
Magnesium (Mg) which is un-substitutable by other cation plays an important role in the physiological process of plants. Its content affects not only the structure of plant cell, photosynthesis, enzyme activity & metabolism of active oxygen metabolism etc., but also the quality of fruit. In recent years, the deficiency of Mg in Sorthern grape planted soils has often been reported. In case of Mg deficiency, the whole physiological metabolic activity will be largely affected and the growth of plants will be influenced. To solve the problem of Mg deficiency in grape and to investigate the impact of Mg to the growth and the quality of grape, this study analyzes and estimated the Mg content of grape leaves in Hunan. In this study,'Red Globe'grape (Vitis vinifera L.), a great breed of Vitis vinifera which was planted widely in recent years in the south of China, was studied for growth and development, nutrition contents, physiological metabolism and fruit quality in different Mg treatments. The results are as follow:
     1. The contents of N, P, K, Cu all were in the appropriate range, the Ca content in the low range, the Mg content in the lack range, but the Zn content higher than the suitable range, the Fe, Mn contents in the suitable range or above it of leaves in 7 counties in Hunan Province (cities, districts) in 29 vineyards. Therefore, the widespread leaves yellow in Hunan vineyards was not caused by the deficiency of N、P、K、Fe、M、Cu、Zn, also not possible by the few Ca. But it was related with the Mg lack.
     2. The rational application of Mg fertilizer could promote the grape shoot, leaf, root growth and significantly stabilize and integrate ultrastructure of various organelles.The growths of new grape shoot elongation, the leaf area, dry weight and root activity, the main root section, the root fresh weight and dry weight were ascend in first and descend at last. When the Mg concentration is 0 mmol·L-1, the new shoots, leaf cells, root tip and root border cells were significantly damaged. New shoots, leaf and chloroplast structure were distortion, the leaf layers reduced and chloroplast membrane damaged, in contrast, no different was observed in other treatments.
     3. Therefore, the offering Mg concentration affected the balance of nutrient elements in grapes. (1)In the level of lacking Mg, Mg content of grape organs decreased in the treatment period. As the Mg content increasing to normal, Mg content of all organs were increased with the processing time. If offering excessive Mg, it decreased in the late period of treatment. (2) At different levels of Mg nutrition, the influence was different to N, P, K, Ca, Fe in organs of grape. Mn content varyed degrees, but no obvious regularity. With the Mg2+ concentration increasing, Mg, Cu, Zn, S in different organs decreased first, but then increased. B content showed a downward trend, but there was a remarkable positive correlation between Mg content and Mg concentration, showing synergistic to each other. And there was a significantly positively correlation between Mg content and K, Ca, Mn, Zn showing an antagonism effect.(3) At different levels of Mg nutrition, the basic rules for nutritional elements the allocation in different grape seedling is:(N)leaf> root> petiole>stem, (K) petiole> root> stem> leaf, (Ca, Mn) leaf> petiole> root> stem,(Mg, B) petiole> leaf> stem> root, (Fe, S)root> leaf> petiole> stem, (Cu) leaf> root> stem> petiole, (Zn) leaf> petiole> stem> root.
     4. Suitable magnesium concentration could not only improve the light and CO2 utilization ability, but accelerated the growth of grape. (1) In the 3 mmol·L-1 Mg2+ treatment, numbers of normal chloroplasts were found that they contain lots of big starch grains, the grana and strom were observed obviously. The chloroplast ultrastructure was not obviously injured in the 5 mmol·L-1 treatment, while in the 0 mmol·L-1 and 1 mmol·L-1 treatment, a series of chloroplast configuration changed, and structure of grana and stroma lamellae were destroyed. (2) The diurnal variation of the photosynthetic rate (Pn)、transpiration rate (Gs) and stomatal conductance (Tr) of Mg fertilizer changed in the double- curve in daytime, indicating there were midday depression, and they decreased with the decrease of magnesium supply,and diurnal variation of intercellular CO2 concentration (Ci) was contrary to that of Pn and Gs. (3) The content of chlorophyll a(Chla), chlorophyll b(Chlb) and total chlorophyll(Chl(a+b)), the Pn, Tr, Gs, Ci, the light saturation point (LSP), the maximum net photosynthetic rate (Pnmax), apparent quantum yield (AQY) and carboxylation efficiency(CE) were significantly higher than other magnesium treatments, and they increased and then declined with the increasing of magnesium concentration. The change tendency of the ratio of Ch1 a/Ch1 b, light compensation point (LCP), CO2 compensation points (CCP) and CO2 saturation point (CSP) was opposite. There were non-linear positive correlations between Mg application rates and photosynthetic properties.
     5. Therefore, Mg nutrition affected the qsmotic adjustment, active qxygen metabolism and antioxidant enzymes in grape leaf. The suitable amount of Mg fertilizer (approximately 3 mmol·L-1) could protected the structure and function of cell membrane, and it was beneficial to resist lipid peroxidation and delayed leaf senescence. With the increasing of Mg2+ concentration, nitrate reductase (NR) activity, soluble protein (SP), soluble sugar (SS), superoxide dismutase (SOD) and peroxidase (POD) activity, catalase (CAT) activity in grape leaf were first increased and then decreased, showing a positive correlation with the concentration. But the contents of proline (Pro), malondialdehyde (MDA), superoxide anions (O2·) production rate, hydrogen peroxide (H2O2) were the opposite trend, showing a negative correlation with the concentration.
     6. The rational application of Mg fertilizer could promote fruit growth, increase fruit anthocyanins, resveratrol, fruit endogenous hormones and nutrient content, and improve fruit quality. (1) Under the appropriate Mg or excess Mg, The growth of Red Globe grape showed a typical double "S" curve, and under magnesium deficiency, the two fast growing periods were not clear. (2) Suitable amount of Mg inproved the content of anthocyanins and resveratrol (Res).The accumulation rate of Anthocyanin under fruit skin was faster with appropriate Mg than with lack and excess Mg. When the 92d after flowering, the content of Res with appropriate Mg was significantly higher than lack and excess Mg. (3) When the color of fruit was changed, GA3 and IAA in the three treatments were the highest in the 64d after flowering. But early fruit growth CTK and ABA were the highest in 50d after flowering. In the fruits with appropriate Mg, GA3, IAA、CTK、ABA were higher than lack or excess Mg treatment in the 50d,64d,92d after flowering. (4)In the three treatments, the content of N, P, Mg, Fe, Mn, Cu, Zn of the mature fruit was the highest in the 92d after flowering. K, Ca content was the highest in the 64d after flowering while the fruit was coloring. All nutrients were the highest in appropriate Mg, followed by high-magnesium treatment. Mg deficiency reatment was the lowest. (5) Suitable magnesium could increase the pH value of the fruit, sugar acid ratio, soluble solids, total sugar, vitamin C, total protein, free amino acid content, lower titratable acid.
引文
1. Abetowicz J, Majewski E, Radecki A, Kaczor A.2004. Magnesium balance in selected farms in Poland. [Polish] Journal of Elementology [J]. Polish Society for Magnesium Research, Olsztynie, Poland,9:3,367-375.
    2. Adams F, Pearson R W.1969. Neutralization soil acidity under bermudagrass sod [J].Soil Sci Soc Am Proc,33:373.
    3. AkioU, Andre T J, TakashiH, et al.2002. Effects ofhydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice [J]. PlantScience,163(3):515-523.
    4. Hirt H.2004. Reactive oxygens Peeies:metabolism, oxidativestress, and signal transduetion [J]. Annual Review of Plant Biology,55:373-379.
    5. Baszynski T, Watda L, Krol M, Woliska D, Krupa Z, Tukendorf A.1980.Photosynthetic activities of cadmium treated tomato plants. Physiol. Plant,48:365-370.
    6. Barber AS.1984. Soil nutrient bioavailability:Mechanistic approach [M]. New York:A Wiley-inter-science Publication:275-296.
    7. Cakmak I.1994. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus-deficient eaves [J]. Journal of Experimental Botany,45:1259-1266.
    8. Cavaliere C, Foglia P, Marini F, Samperi R, Antonacci D, Lagana A.2010. The interactive effects of irrigation, nitrogen fertilisation rate, delayed harvest and storage on the polyphenol content in red grape (Vitis vinifera) berries:A factorial experimental design [J]. Food Chemistry,122:1176-1184.
    9. Cleland R E.1971. Cell wall extension Ann Rev [J].Plant Physiol,22,197-222.
    10. Coombe BG, Hale CR.1973.The hormoneh substance treatments of ripening grape berries [J]. Plant Physiology,51:629-634.
    11. Cooperdriver G A.2001.Contributions of Jeffrey Harborne and co-workers to the study of anthocyanins [J].Phytochemistry,56:229-236.
    12. Crane J C.1969. The role of hormones in fruit set and development [J].Hort Science, 4:108-111.
    13. Edmeades D C.2004. The magnesium requirements of pastures in New Zealand:a review New Zealand Journal of Agricultural Research [J]. Royal Society of New Zealand, Wellington, New Zealand,47:3,363-380.
    14. Farquhar G D, Von C S, Berry J A.2001. Models of photosynthesis [J]. Plant Physiology, 125(1):42-45.
    15. Ferri M, Righetti L, Tasson A.2010b. Increasing sucrose concentrations promote phenylpropanoid biosynthesis in grapevine cell cultures [J]. Journal of Plant Physiology, 10:27.
    16. Francesco C, Leonardo S, Michele DC, Angelo C.2004. Effect of esca on the quality of berries musts and wines[J]. Phytopathol Mediterr,43:125-135.
    17. http://www.fao.org
    18. http://www.stats.gov.cn.
    19. Goldbach H E.1997. A critical reviewon current hypotheses concerningthe role of boron in higher plants:Suggestions for further research and methodological requirements [J]. J. Trace and Microprobe Tech,15(1):51-91.
    20. Hoagland D R, Arnon D I.1950.The water culture method for prowling plants without soil California Agriculture Experimental Station (Circular347) [M], Berkeley, CA, USA:1-32.
    21. Lagriffoul A, Mocquot B, Mench Mand Vangronsveld J.1998. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in youngmaize plant (Zea maysL.)[J]. Plant and Soil,200:241-250.
    22. Laing W, Greer D, Sun O, Beets P, Lowe A, Paya T.2000. Physiological impacts of Mg deficiency in Pinus radiata:growth and photosynthesis [J]. New Phytologist,146:47-57.
    23. Lawson T, Oxborugh K, Morison JIL, Baker N R.2003. The responses of guard and mesophyll cell photosynthesis to CO2, light, and water stress in a range of species are similar [J]. J Exp Bot,54:1743-1752.
    24. Lin C H, Noble P S.1970. Control of mobility of magnesium [J].Plant Physiol,46:50-52.
    25. Liu X B, Jin J, Wang G H.2008. Soybean yield physiology and development of high-yielding practices in Northeast China[J]. Field Crops Research,105(3):157-171.
    26. Li X G, Meng Q W, Jiang G Q, Zou Q.2003. The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle [J]. Photosynthetica,41(2):259-265.
    27. Marschner H, Calcmak I.1989. Height light intensity enhances chlorosis and necrosis in leaves of zinc, potassium and magnesium deficient bean haseolus vulgaris plants [J]. Plant Physiol,134:308-315.
    28. MEHEN J B.1995. Seasonal development of the photosynthetic performance of Norway spruce (Picea abies L. Karst.) under magnesium deficiency [J]. Plant and Soil:168-169.
    29. MooRE. DP, R Overstreet and L Jacobson.1961. Uptake of magnesium and its interaction with calcium in excised barley roots [J]. Plant Physiol,36:290-296.
    30. Nooden L D.1998. Abscisic acid, auxin and other regulator of senescence. In:Skoof ed. Senescence and Aging in Plant[M].Sam Diego:Academic Press:329-335.
    31. Nunez V, Monagas M, Gomez-Cordoves M C, Bartolom6 B.2004. Vitis vinifera L. cv. Graciano grapes characterized by its anthocyanin profile [J]. Postharvest Biology and Technology,31:69-79.
    32. Jeandet P, Seaghi M, Bessis R, et al.1995. Effect of encological practices on the resveratrolisomer content of wine [J]. Agric Food Chem,43(2):316.
    33. Leggett J E, Gilbert W A.1969. Magnesium Uptake by Soybeans [J]. Plant Physiol,44(8): 1182-1186.
    34. Johnson Z, Barber R T.2003. The low-light reduction in the quantum yield of photosynthesis: potential errors and biases when calculating the maximum quantum yield [J]. Photosynthesis Research,75(1):85-95.
    35. Portisa J R.1981. Evidence of a low siromai Mg2+ concentration in intact chloroplast in the dark [J].Plant Physiol,67:985-989.
    36. Riens B, Heldt H W.1992. Decrease of nitrate reductase activity in spinach leaves during a light-dark transition [J]. Plant Physiol,98:573-577.
    37. Schwartz S, Bar-Yosef B.1983. Magnesium uptake by tomato plants as affected by Mg and Ca concentration in solution culture and plant age [J]. Agron J,75:267-272.
    38. Shaul Q.2002. Magnesium transport and function in plants:The tip of the iceberg [J]. Biomet al,15:309-323.
    39. Silacci M C, Morrison J C.1990. Changes in pectin content of Cabernet Saubignon grape berries duringmaturation [J]. Enol Viticulutre,41:111-115.
    40. Sugiyama T, Matsumoto C, Akazawa T, et al.1968. Structure and function of chloroPlast Protein [J]. Arch Biochem BioPhys,26:734-765.
    41. Usuda H, Shimogawara K.1992. Phosphate deficiency in maize Ⅲ. Change in enzyme activities during the course of phosphate deprivation [J]. Plant Physiol,99(4):1680-1685.
    42. Wang P, Duan W, Takabayashi A, Endo T, Shikannai T, Ye JY.2006. Chloroplastic NAD (P) H dehydrogenises in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress [J]. Plant Physiol,141:465-474.
    43. Waffo-Teguo P, Krisa S, Richard T, Merillon J M.2008. Grapevine stilbenes and their biological effects [J]. Bioactive molecules and medicinal plants,10:25-54.
    44. Winstion G W.1990. Physiochemical basis for free radical formation in cells:Production and defenses[A].Alscher R G,Cumming J R(eds.).Stress responses in plants:Adaptation and acclimation mechanisms[M].Wiley-Liss, Inc:57-86.
    45. Wong S C, Cowan I R, Farquhar G R.1994. Stomatal conductance correlates with photosynthetic capacity [J]. Nature,282:424-426.
    46. Xu D Q, Shen Y K.2002. Photosynthetic efficiency and crop yield. In:Pessarakli M(ed). Handbook of Plant and crop Physiology (New edition) [M]. New York:Marcel Dekker, 821-834.
    47. Zhu L N, Wang SP, Yang TY, Zhang C X, and Xu W P.2006. Vine growth and nitrogen metabolism of Fujiminori' grapevines in response to root restriction. Sci Hortic,107:143-149.
    48.K.Ⅱ.马格尼茨基.1958.果树浆果作物的缺镁病[J].苏联农业科学,8:506-507.
    49.白由路,金继运,杨俐苹.2004.我国土壤有效镁含量及分布状况与含镁肥料的应用前景研究[J].土壤肥料,2:3-4.
    50.曹莹,黄瑞冬,曹志强.2005.铅胁迫对玉米生理生化特性的影响[J].玉米科学,13(3):61-64.
    51.陈丽璇,刘福平,蔡晓东,陈淳,郭莺.2010.柠檬柚果实发育过程中金属营养元素含量变化及活性氧代谢研究[J].园艺学报,37(12):1893-1900.
    52.陈丽璇,汤惠华,陈丽虹,庄荣福.2008.外源钙与草莓叶果营养元素含量的相关性研究[J].热带作物学报,29(6):720-724.
    53.崔秀敏,王秀峰.2004.基质供水状况对番茄穴盘苗碳氮代谢及生长发育的影响[J].园艺学报,31(4):477-481.
    54.邓超.2009.不同镁肥品种和用量对烤烟生长发育和产量质量的影响[D].安徽农业大学硕士论文.
    55.杜子云,马正平,李有则.1988.Mg2+在叶绿体膜上H+-ATP酶光活化中的作用[J].生物化学与生物物理学报,20(5):512-519.
    56.高炳德,李斐,赵利梅.2003.不同品种春小麦硫、钙、镁吸收动态模型及分布运转的研究[J].华北农学报,18(4):82-85.
    57.高启明,李疆,张传来,侯江涛.2005.金光杏梅果实生长发育期间几种矿质元素含量的变化[J].果树学报,22(4):331-334.
    58.高义民,同延安,马文娟.2006.陕西关中葡萄园土壤养分状况分析与平衡施肥研究[J].西北农林科技大学学报(自然科学版),34(9):41-44.
    59.范才银.2010.不同施镁水平对烤烟干物质积累及烟碱含量的影响[J].安徽农业科学,38(8):4019-4020,4023.
    60.耿玉韬.1991.葡萄的营养生理与施肥特点[J].福建果树,1:42-44.
    61.龚云池,徐季娥,张淑珍,吕瑞江.1987.鸭梨叶片和果实中钙素含量年周期变化的研究[J].园艺学报,14(1):1-6.
    62.关广晨,屠乃美,肖汉乾,朱列书,朱英华,王中美.2008.镁对烟草生长及叶片叶绿素荧光参数的影响[J].植物营养与肥料学报,14(1):151-155.
    63.关军锋.2004.苹果幼果发育期间Ca、Mg、K含量的变化[J].河北科技师范学院学报,18(2):19-22.
    64.国家林业局.2000.中华人民共和国林业行业标准LY/T 1210—1275-1999(森林土壤分析方法).北京:中国标准出版社:279-294,301-304.
    65.郭鹏程.1996.植物钙营养植物镁营养[M].孙羲主编.中国农业百科全书-农业化学卷[M].北京:农业出版社.
    66.韩冰,郑克宽.1999.镁、锌、硼、锰元素对烤烟产量及质量影u响的研究[J].内蒙古农牧学院学报,20(1):72-77.
    67.韩冬芳,王德汉,黄培钊,段继贤,葛仁山,周伟莉.2010.不同形态镁对‘早熟5号’大白菜产量及品质的影响[J].园艺学报,37(10):1655-1660.
    68.韩振海,王倩.1995.我国果树营养研究的现状和展望-文献评述[J].园艺学报,22(2):138-146.
    69.郝建军,康宗利,于洋.2007.植物生理学实验技术[M].北京:化学工业出版社.
    70.郝再彬,苍晶,徐仲.2004.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社.
    71.贺普超.2001.葡萄学[M].北京:中国农业出版社.
    72.侯兴亮,李景富,许向阳.2002.弱光处理对番茄不同生育期形态和生理指标的影响[J].园艺学报,29(2):123-127.
    73.孔庆山.2004.中国葡萄志[M].北京:中国农业科学技术出版社.
    74.赖富发.1998.镁素肥料对芒果树生长结果效应试验和研究[J].热带作物研究,2:15-17.
    75.郎漫,刘元英,彭显龙,张文钊.2006.不同氮肥用量下镁对大豆碳氮代谢的影响[J].大豆科学,25(1):48-52.
    76.雷平.2010.我国南方葡萄设施栽培营养障碍诊断及优质施肥技术研究[D].浙江:浙江大学:28-30.
    77.李合生.2000.植物生理生化实验原理和技术[M].北京:高等教育出版社.20-80.
    78.李港丽,苏润宇,沈隽.1987.几种落叶果树叶内矿质元素含量标准值的研究[J].园艺学报,14(2):81-89.
    79.李国良,姚丽贤.2007.香蕉钾镁配施效应研究[J].广东农业科学,1:45-47.
    80.李秀菊,刘用生,束怀瑞.2000.不同成熟型苹果果实生长发育过程中几种植物内源激素含量变化比较[J].植物生理学通讯,36(1):7-10.
    81.李廷.1995.缺镁对水稻生理代谢的影响及诊断指标研究[J].浙江农业人学学报,21(3):279-283.
    82.李延,刘星辉.2001.缺镁对龙眼光合作用的影响[J].园艺学报,28(2):101-106.
    83.李延,刘星辉,庄卫民.2001.缺镁胁迫对龙眼苗期氮代谢的影响[J].植物营养与肥料学报,7(2):218-222.
    84.李延,刘星辉,庄卫民.2000.植物Mg素营养生理的研究进展[J].福建农业大学学报,29(10):74-80.
    85.李延,泰遂初.1995.镁对水稻糖、淀粉积累与运转的影响[J].福建农业大学学报,24(1):54-57.
    86.李延,张建丽,陈秋.2000.缺镁对龙眼碳、氮代谢若干生理指标的影响[J].福建农业学报,13:48-52.
    87.李晓东.2006.葡萄果实白藜芦醇含量及其与多酚代谢的关系和UV诱导的作用[D].北京:中国农业大学.
    88.李晓东,郑先波,闫树堂,李绍华.2007.水杨酸和紫外线对诱导采后葡萄果皮内白藜芦醇合成作用研究[J].果树学报,24(1):30-33.
    89.李永忠,蒋志宏,刘雅婷,杨志新,罗鹏涛.2002.供Mg水平对烤烟累积N、K、Ca、Mg的影响[J].福建农林大学学报,31(3):294-296.
    90.林仁辉.2009.小白菜镁素营养生理研究[D].福建:福建农林大学.
    91.林植芳,李双顺,林桂珠.1998.衰老叶片叶绿体中H202的累积与膜脂过氧化的关系[J].植物生理学报,14:14-16.
    92.凌丽俐,彭良志,曹立,江才伦,淳长品,张广越,王振兴.2009.缺镁对北碚447锦橙光合作用特性的影响[J].果树学报,26(3):275-280.
    93.凌丽俐,彭良志,淳长品,曹立,江才伦,雷霆.2010.赣南纽荷尔脐橙叶片黄化与营养元素丰缺的相关性[J].中国农业科学,43(17):3602-3607.
    94.刘闯萍,王军.2008.葡萄花色昔的生物合成[J].植物生理学通讯,44(2):363-377.
    95.刘厚诚,陈细明,陈日远,宋世威,孙光闻.2006.缺镁对菜薹光合作用特性的影响[J].园艺学报,33(2):311-316.
    96.刘世亮,刘芳,介晓磊,雷广海,化党领.2010.不同浓度镁营养液对烟草矿质营养吸收与积累的影响[J].土壤通报,41(2):155-159.
    97.刘树文,李华,房玉林.1999.葡萄酒的营养与保健[J].酿酒,134:40-42.
    98.刘勇,刘善军,霍光华,肖德兴,罗米水.2000.甜柿果实发育期问矿质元素和营养成分变化[J].江西农业大学学报,22(2):265-270.
    99.刘媛,李胜,马绍英,张真,薛冲,罗丽媛,张青松.2010.肉桂酸和不同光质对葡萄愈伤组织增殖及白藜芦醇累积的效应[J].甘肃农业大学学报,45:41-46.
    100.罗安才,杨晓红,邓英毅,李纯凡,向可术,李道高.2003.柑橘果实发育过程中有机酸含量及相关代谢酶活性的变化[J].中国农业科学,36(8):941-944.
    101.孟凡娟,庞洪影,王建中.2011.NaC1和Na2SO4胁迫下两种刺槐叶肉细胞叶绿体超微结构[J].生态学报,31(3):734-741.
    102.秦煊南.1996.喷施硼锌镁对提高锦橙产量和果实品质的影响[J].西南农业大学学报, 18(1):40-45.
    103.邵玺文,韩梅,韩忠明.2009.不同生境条件下黄芩光合日变化与环境因子的关系[J].生态学报,29:1470-1477.
    104.史瑞和.1983.植物营养原理[M].江苏:江苏科学技术出版社,248-256.
    105.舒展,张晓素,陈娟,陈根云,许大全.2010.叶绿素含量测定的简化[J].植物生理学通讯,46(4):399-402.
    106.石伟勇.2005.植物营养诊断与施肥[M].北京:中国农业出版社,312.
    107.宋国苗,杨力,刘光栋.1998.营养液镁浓度对结球甘蓝生长发育及镁吸收影响的研究[J].山东农业科学,1:12-16.
    108.宋小林,刘强,宋海星,官春云,荣湘民,王纪玥,王署娟.2010.不同处理条件下油菜茎叶可溶性糖和游离氨基酸总量及其对籽粒产量的影响[J].西北农业学报,19(6):187-191.
    109.宋珍霞,高明,关博谦,许安定,代先强.2006.硼对烤烟干物质积累和养分吸收的动态模拟[J].植物营养与肥料学报,12(4):565-570.
    110.苏淑钗.1994.葡萄着色问题研究进展[J].葡萄栽培与酿酒,2:1-4.
    111.孙青慧.2010.苦瓜镁素营养生理的研究[D]。福建:福建农林大学,42.
    112.孙玉桃,廖育林,郑圣先,戴平安,聂军,谢坚.2008.连续施用硫酸钾镁肥对柑橘的效应[J].中国土壤与肥料,2:40-43.
    113.孙骞,杨军,张绍阳,张风琪,丁士林.2006.钾营养与果树光合生理及果实品质关系研究进展[J].广东农业科学,(12):126-128.
    114.田连福.2010.镁离子转运基因AtMGT7的功能研究[D].湖南:湖南师范大学.
    115.唐小付,龙明华,于文进.2003.不同水平镁对厚皮甜瓜生长和品质的影响[J].广西热带农业,88(3):1-3.
    116.唐小付,龙明华,于文进.2008.不同钾、钙、镁水平对厚皮甜瓜产量和品质的影响[J].北方园艺,4:17-20.
    117.童贯和.2004.不同供钾水平对小麦旗叶光合速率日变化的影响[J].植物生态学报,28(4):547-553.
    118.童贯和,肖家军,孙坤.2007.不同供镁水平对不同时期小麦幼苗生长速率的影响[J].中国农学通报,24(11):132-138.
    119.王爱国,罗广华.1990.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通(6):55-57.
    120.王爱国,邵从本,罗广华.1996.丙二醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯,2:55-57.
    121.王芳,刘鹏.2003.土壤镁的植物效应的研究进展[J].江西林业科技,1:34-37.
    122.王芳,刘鹏,史锋.2006.镁对大豆叶片抗氧化代谢的影响[J].中国油料作物学报,28(1):32-38.
    123.王芳,刘鹏,朱靖文.2004.镁对大豆根系活力叶绿素含量和膜透性的影响[J].农业环境科学学报,23(2):235-239.
    124.王芳,刘鹏,朱靖文.2004.镁对大豆游离脯氨酸、可溶性糖和可溶性蛋白质含量的影响[J].河南农业科学,6:35-38.
    125.王晨,房经贵,刘洪.2009.葡萄与葡萄酒的营养成分[J].江苏林业科技,36(4):38-40.
    126.汪洪,褚天铎.1998.缺镁对菜豆幼苗膜脂过氧化及体内活性氧清除酶系统的影响[J].植物营养与肥料学报,4(4):386-392.
    127.汪洪,褚天铎.1999.植物镁素营养的研究进展[J].植物学通报,16(3):245-250.
    128.汪洪,诸天铎.2000.北京郊[区潮土中镁素释放特点及对作物的有效性[J].华北农业大学学报,15(1):86-91.
    129.汪洪,褚天铎,刘新保.1999.缺镁与正常供镁的菜豆组织结构比较研究[J].中国农业科学,32(4):63-67.
    130.王晶英,敖红,张杰.2003.植物生理生化实验技术与原理[M].哈尔滨:东北农业大学出版社,7-134.
    131.汗耀富,孙德梅,徐传快,程玉渊.2004.干旱胁迫下氮用量对烤烟养分积累与分配及烟叶产量和品质的影响[J].植物营养与肥料学报,10(3):306-311.
    132.王涛,冯先桔,林媚,黄雪燕,陈丹霞,温明霞.2008.大棚栽培对翠冠梨叶片和果实矿质元素吸收与积累的影响[J].浙江农业学报,20(3):190-194.
    133.王新风,富健,孟凡钢,马巍.2008.影响大豆籽粒蛋白质含量因素及其改良途径[J].大豆科学,27(3):515-520.
    134.吴广亮.2008.镁、锌、钼对银杏生长及叶品质的效应研究[D].南京:南京林业大学.
    135.吴春艳.2007.水果中维生素C含量的测定及比较[J].武汉理工大学学报,29(3):43-48.
    136.夏阳.1993.水分逆境对果树游离脯氨酸和叶绿素含量变化的影响[J].甘肃农业大学学报,28(1):26-31.
    137.肖常沛.2000.不同钙、镁肥对蔬菜产量和品质的影响[J].长江蔬菜,4:27-29.
    138.肖家欣,彭抒昂,张红艳.2004.单性结实与自花结实柑橘果实发育中钙钾动态的研究[J].园艺学报,31(1):7-10.
    139.萧浪涛,王三根.2005.植物生理学实验技术[M].北京:中国农业出版社:110-114.
    140.小林章.1960.果树营养[M].北京:农业出版社.
    141.谢建昌,陈际型,朱月珍.1963.红壤区几种主要土壤的镁素供应状况及镁肥肥效的初步研究[J].土壤学报,11(3):294-305.
    142.谢建吕.1965.红壤区土壤中镁肥肥效的研究[J].土壤学报,13(4):377-386.
    143.谢小玉,刘晓建,刘海涛.2009.不同温度下镁胁迫对黄瓜光合特性和活性氧清除系统的影响[J].植物营养与肥料学报,15(5):1231-1235.
    144.谢小玉,邹志荣,江雪飞.2007.影响无土栽培黄瓜叶片中镁含量的因素研究[J].干旱地区农业研究,25(6):85-88.
    145.熊福生,高煜珠,詹昌勇.1994.植物叶片蔗糖、淀粉积累与其降解酶活性关系研究[J].作物学报,20(1):52-58.
    146.熊英杰,陈少风,李恩香,孙宝腾.2010.植物缺镁研究进展及展望[J].安徽农业科学,38(15):7754-7757.
    147.熊英杰,赵立群,钟韬韬.2010.外源NO对缺镁胁迫下玉米幼苗生长和离子平衡的影响[J].植物生理学通讯,46(7):707-713.
    148.许大全.1990.光合作用“午睡”现象的生态、生理与生化[J].植物生理学通讯,26(6):5-10.
    149.许大全.2006.光合作用测定及研究中一些值得注意的问题[J].植物生理学通讯,46(4):1163-1167.
    150.徐畅,陈祖富,高明.2009.供镁水平对烤烟生长及养分吸收的影响[J].植物营养与肥料学报,15(1):191-196.
    151.许能醌,肖召民,梁福露.1985.从粤西植胶区三种土壤看矿质肥料对胶苗组分、缺素症状和生长的影响[J].热带作物学报,7(2):47-55.
    152.徐培智,陈建生,张发宝.2000.香蕉荔枝龙眼施镁效研究[J].广东农业科学,6:35-37.
    153.杨广东,朱祝军,许玉娥.2002.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响[J].植物营养学报,8(1):115-118.
    154.杨文祥,王强盛,王绍华.2006.镁肥对水稻镁吸收与分配及稻米食味品质的影响[J].西北植物学报,26(12):2473-2478.
    155.杨勇,蒋德安,孙俊威.2005.不同供镁水平对水稻叶片叶绿素荧光特性和能量耗散的影响[J].植物营养与肥料学报,11(1):79-56.
    156.杨竹青.1994.镁肥对番茄产量品质和养分吸收的影响[J].土壤肥料,2:14-18.
    157.杨竹青,陶为民.1994.不同浓度钙镁营养液对番茄生育的影响及其与元素吸收的关系[J].土壤通报,25(4):190-194.
    158.姚丽贤,李国良,许潮漩,等.镁肥在荔枝和柑橘上的施用效应[J].磷肥与复肥,2006,21(4):76-78.
    159.叶子飘,于强.2009.光合作用对胞间和大气CO2响应曲线的比较[J].生态学杂志,28:2233-2238.
    160.印莉萍,黄勤妮,吴平.2006.植物营养分子生物学及信号转导[M].北京:科学出版社.
    161.翟衡,杜远鹏,孙庆华.2007.论我国葡萄产业的发展[J].果树学报,24(6):820-825.
    162.张俊环,黄卫东.2007.葡萄幼苗在温度逆境交叉适应过程中活性氧及抗氧化酶的变化[J].园艺学报,34(5):1073-1080.
    163.张其德,卢从明,刘丽娜.1997.CO2浓度倍增对垂柳和杜仲叶绿体吸收光能和激发能分配的影响[J].植物学报,39(9):845-848.
    164.张承林,Ben Ami Bravdo.2001根系限制对酿酒葡萄生长发育的影响[J],园艺学报,28(5):448-450.
    165.张上隆,陈昆松.2006.果实品质形成与调控的分子生理[M].北京:中国农业出版社.
    166.张守仁,高荣孚,王连军.2004.杂种杨无性系的光系统Ⅱ放氧活性、光合色素及叶绿体超微结构对光胁迫的响应[J].植物生态学报,28(2):143-149.
    167.张志良.2003.植物生理学实验指导(第三版)[M].北京:高等教育出版社.
    168.赵冰,毛小云,廖宗文.2006.几种镁肥对番茄肥效的比较研究[J].土壤通报,37(4):830-832.
    169.赵世杰,史国安,董新纯.2002.植物生理学实验指导[M].北京:中国农业科学技术出版社,45-48,142-143.
    170.赵竹青,于运华.1998.矿质营养对生长素代谢影响的研究现状与展望[J].植物学通报,1:17-20.
    171.郑炳松.2006.现代植物生理生化研究技术[M].北京:气象出版社.
    172.郑先波,李晓东,吴本宏,王利军,刘春艳,李绍华.2010.葡萄离体叶片和果实白藜芦醇及其糖苷合成对UV-C辐射诱导的响应[J].园艺学报,37(8):1227-1234.
    173.朱永兴,陈福兴.2000.南方丘陵红壤茶园的镁营养[J].茶叶科学,20(2):95-100.
    174.朱永兴,陈福兴.2003.红壤丘陵茶园镁营养调控研究[J].茶叶科学,33:34-37.
    175.朱晓晖.2006.镁肥和芸苔素内酯对香蕉产量、品质及养分吸收的影响[D].武汉:华中农业大学.
    176.朱晓晖,周柳强,谢如林.2006.镁及镁与芸苔素内醋配合对香蕉幼苗生长的影响[J].广西农业科学,37(4):414-418.
    177.邹帮基.1991.植物的微量元素营养[M].北京:农业出版社.
    178.左宝玉,李世仪,王仁儒,匡廷云,段续川.1979.叶绿体膜的结构和功能:镁离子及K离子对两种类型叶绿体膜超微结构的影响[J].植物学报,21(4):328-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700