基于微波光子技术的低频太赫兹波的功率提升及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹(THz)波是指0.1~10THz频段之间的电磁波,它在电磁波谱中位于微波和红外光之间。低频太赫兹波是指频率范围在0.1-0.3THz之间。近年来,由于太赫兹波在材料、通信、成像和国防等众多领域有着良好的应用前景,受到了各国研究机构的重视。如何获得低噪声、低成本、高功率的太赫兹波以满足实际应用中的需求是一个亟待解决的问题。与传统的电子学技术相比,微波光子技术更为适合被用来解决这一难题。
     微波光子技术能够有效融合微波技术与光子技术,利用光子学的技术手段实现微波和太赫兹波的产生、传输、控制和处理。外调制技术是一种典型的微波光子技术,非常适合产生低相位噪声的太赫兹波。它是利用光调制器的非线性响应,产生相干的高阶光边带,再将高阶边带在光电探测器(PD)拍频,转换为太赫兹信号。通过使用成熟和高性价比的光通信器件,能有效地降低太赫兹系统的成本,提升输出的功率
     本文理论分析了基于外调制技术产生0.1THz低频太赫兹波的功率影响因素,利用商用的光电器件将输出功率提升到毫瓦量级,将该太赫兹源分别用于研究石墨烯的可饱和吸收特性和光载太赫兹高速通信系统(TOF)。本论文的主要成果和创新点如下:
     第一,提出了一种基于外调制技术产生高功率的0.1THz连续太赫兹波的方法,理论和实验研究了影响太赫兹功率提升的因素。通过实验验证了当调制器的调制深度小于2和商用PIN型的光电探测器(PD)的光输入功率小于6dBm时,太赫兹波输出功率随着调制深度和PD的光输入功率的增加而增强。商用PD的光电饱和效应是提升功率的一个瓶颈问题,通过在PD后端增加一个商用的电放大器和一个增益系数为25dBi的W波段的高频天线,可以进一步提升输出功率通过太赫兹功率计测量,在离天线距离2cm处的0.1THz太赫兹波输出功率值超过1mW。
     第二,首次实验发现石墨烯在0.1THz频段附近具有可饱和吸收的特性。通过外调制技术产生可调谐的低频太赫兹波源,调谐频率范围为96~100GHz。随着太赫兹波的入射功率增加,石墨烯对太赫兹波的可饱和吸收逐渐降低,当功率超过80μW后,饱和吸收降低到一个恒值,这证明了石墨烯具有可饱和吸收特性。经实验测量和拟合计算得出,石墨烯样品的饱和功率范围为28.8~79.6μW,饱和强度为0.016~0.045mW/cm2,调制深度范围为4.58%~12.77%。同时,比较了光频段的石墨烯可饱和吸收特性,通过开孔Z扫描技术在光通信波段和1053nm波段实验验证了相同石墨烯样品的可饱和吸收特性,在1550nm和1053nm的波段的饱和吸收强度分别为7.89MW/cm2,10.32MW/cm2。将相同的石墨烯样品作为可饱和吸收体放置在光纤激光器腔内,通过调节偏振控制器实现了锁模激光脉冲的输出,脉冲重复为1.21MHz。通过这些工作,实验验证了石墨烯是一个能工作在低频太赫兹和光波段的宽频段范围的可饱和吸收体。
     第三,提出了两级光调制产生0.1THz光载太赫兹信号的新方案,实现了无线速率为2-5Gb/s的高速通信,经无线信道传输0.1m距离后,接收单元通过相干解调,得到清晰的无线信号眼图。分别将波长重利用和光本振远程传送技术用于简化全双工的TOF系统的基站,提出了基于光波长重利用技术的全双工0.1THz的TOF系统的新方案,实验实现了下行传输速率为5Gb/s和上行传输速率为2.5Gb/s在10km色散位移光纤中的传输;提出基于半导体光放大器(SOA)四波混频效应的0.1THz的光本振远程传送的新方案,并在40GHz频段对该方案进行了实验验证,实验结果表明,经过20km标准单模光纤传输后,仍能得到清晰的40GHz的光本振信号的波形。
The terahertz (THz) wave consists of the electromagnetic waves at frequencies from0.1THz to10THz, at the frequency gap between infrared light and microwave. The THz wave at low frequency band, also known as low-frequency THz wave, ranges from0.1THz to0.3THz. A large strong wave of research interest on Terahertz wave has been initiated internationally, as encouraged by bright prospects for the application in material, communication, imaging, and national defense. To achieve low-phase noise, high power, and cost-effective THz waves for practical applications is now located at the central part of current research wave. Microwave photonic techniques are considered to possess more advantages than conventional techniques, which are normally based on electronic devices.
     Microwave photonic technology, a marriage of the microwave and optical technology, covers diversive aspects, including but not limted by the following: photonic generation, processing, control and distribution of micorwave and THz wave signals. External modulation is a typical microwave photonic technology, with the unique advantage of producing low phase noise THz wave. This technology originates from the inherent nonlinearity of the response of the optical modulator for generating high-order optical sidebands. The generation of THz wave can directly achieved through beating two high-order optical sidebands inside a photodiode (PD). Furthermore, by taking the advantage of mature and cost-effective optical telecommunication components, one can potentially reduce the cost and increase the output power in THz systems.
     In this thesis, the0.1THz wave generation mechamism is theoretically studied. The THz wave output power is enhanced at milliwatt magnitude by commercial optoelectronic devices. The THz source can be used for probing the saturable absorption of graphene and terahertz over fiber (TOF), respectively. My main contribution are summarized as follows:
     Firsty, we proposed a scheme to generate high power low-frequency terahertz wave based on external modulation technique. The parameters in determining the power of THz wave are theoretically and experimentally verified. Here, we found that1) the THz wave power scales with the depth of the IM with less than2;2) the commercial PIN-PD input power with less than6dBm increase. To solve the power limitation problem caused by commercial PD saturation, a low-noise electrical amplifier and a W-band antenna with a gain of25dBi are employed to amplify the output power of a commercial PD. The detected power exceeds1mW at a2-cm distance from the antenna once an absolute THz power meter is used.
     Secondly, the first experiments on saturable absorption in graphene at0.1THz band are performed. A tunable terahertz source is generated by using external modulation technique with a tunable frequency range is from96to100GHz. Almost independent of the incident frequency, microwave absorbance of graphene always decreases with increasing the power and reaches at a constant level for power larger than80μW, evidencing the microwave saturable absorption property of graphene. By using experimental measurement and fitting calculation, the results show that the saturable power and intensity is varied from28.8μW to79.6μW and0.016~0.045mW/cm2, respectively. The modulation depth is from4.58%~12.77%. Broadband optical saturable absorption of the same graphene sample was also characterized. Optical saturable absorption of the same graphene sample was also experimentally confirmed by an open-aperture Z-scan technique by one laser at telecommunication band and another pico-second laser at1053nm, respectively. Saturable intensity of about7.89MW/cm2at the wavelength of telecommunication band and10.32MW/cm2at wavelength at1053nm are respectively obtained. When the same grapheme sample is used as a saturable absorber in fiber laser cavity, a mode locking laser pulse is generated by adjusting polarization controller. The repetition rate of pulse is1.21MHz. Here, we are able to conclude that graphene is indeed a broadband saturable absorber that can operate at both low-terahertz and optical band.
     Finally, a novel optical cascaded modulation scheme for optical0.1THz wave signal generation is proposed and the wireless rate of2~5Gb/s high-speed communication is realized. After a wireless transmission distance of0.1m, the eye diagram of wireless data remains still clear by coherent demodulation at the receiving unit. Optical wavelength reuse and local oscillator distribution technologies are applied to simplify base station of a full-duplex TOF. A novel scheme for the full-duplex0.1THz TOF based optical wavelength resue is proposed. The5Gb/s downlink and2.5Gb/s uplink data are successfully transmitted over10-km dispersion shift fiber (DSF), respectively. A novel scheme for0.1THz optical oscillating (LO) distribution based on four wave mixing (FWM) in a semiconductor optical amplifier (SOA) is proposed. We experimentally demonstrated40GHz optical local oscillating (LO) distribution by this proposed scheme. The experimental results show that the clear waveform of40GHz optical LO is obtained after20km single-mode fiber (SMF) transmission.
引文
[1]Tani M, Matsuura S, Sakai K, et al. Multiple-frequency generation of sub-terahertz radiation by multimode LD excitation of photoconductive antenna. IEEE Microwave and Guided Wave Letters,1997,7(9):282-284
    [2]Knap W, Teppe F, Meziani Y, et al. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Applied Physics Letters, 2004,85(4):675-677
    [3]Teppe F, Knap W, Veksler D, et al. Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor. Applied Physics Letters,2005,87(5):052107
    [4]Song H-J, Shimizu N, Furuta T, et al. Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications, Journal of Lightwave Technology,2008,26(15):2521-2530
    [5]Ferguson B, Zhang X. Materials for terahertz science and technology. Nature Materials,2002,1:26-33
    [6]Siegel P H. Terahertz Technology. IEEE Transactions on Microwave Theory and Techniques,2002,50(3):910-928
    [7]Bradley F,张希成.太赫兹科学与技术研究回顾.物理,2004,32(5):286-293
    [8]Wang K, Mittleman D M. Metal wires for terahertz wave guiding. Nature,2004, 432:376-379
    [9]刘盛纲.太赫兹科学技术的新发展.中国基础科学,2006,7(1):7-12
    [10]许景周,张希成.太赫兹科学技术及应用.北京:北京大学出版社,2007,2-5
    [11]Tonouchi M. Cutting-edge terahertz technology. Nature photonics,2007, 1:97-105
    [12]Redo-Sanchez A, Zhang X. Terahertz Science and Technology Trends. IEEE Journal of Selected Topics in Quantum Electronics,2008,14(2):260-269
    [13]Saeedkia D and Safavi-Naeini S. Terahertz photonics:optoelectronic techniques for generation and detection of terahertz waves.2008,26(15): 2409-2423
    [14]Liu Y, Shi H, Ma J, et al. Directional terahertz radiation through groove-assisted hole array. Applied Physics B:Lasers and Optics.2008,92(4): 623-626
    [15]Zhang X, Beigang R, Tanaka K. Introduction:Terahertz wave photonics, Journal of the Optical Society of America B,2009,26(9):TW1
    [16]刘盛纲,钟任斌.太赫兹科学技术及其应用的新发展.电子科技大学学报,2009,38(5):481-486
    [17]Tonouchi M. Galore new applications of terahertz science and technology. Terahertz Science and Technology.2009,2(3):90-101
    [18]Ding Y J, Kleine-Ostmann T, Qing H. Introduction to the Issue on Terahertz Science and Technology. IEEE Journal of Selected Topics in Quantum Electronics,2011,17(1):3-4
    [19]Clery D. Brainstorming their way to an imaging revolution. Science,2002, 297(2):761-763
    [20]Song Q, Zhao Y, Redo-Sanchez A, et al. Fast continuous terahertz wave imaging system for security. Optics Communications,2009,282(10):2019-2022
    [21]Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-Modern techniques and applications. Laser & Photonics Reviews, 2011,5(1):124-166
    [22]Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications-explosives, weapons and drugs. Semiconductor Science and Technology,2005,20(7):1240-1242
    [23]Fischer B M, Walther M, Jepsen P U. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Physics in Medicine and Biology,2002,47(21):0031-0034
    [24]Scheller M, Jansen C, Martin K. Analyzing sub-100-μm samples with transmission terahertz timedomainspectroscopy. Optics Communications,2009, 282(7):1304-1306
    [25]Maeng I, Lim S, Chae S J, et al. Gate-controlled nonlinear conductivity of dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy. Nano Letters,2012,12(2):551-555
    [26]Hills R E, Kurz R J, Peck A B. ALMA:status report on construction and early results from commissioning. In proceedings of the Society of Photo-Optical Instrumentation Engineers, California,2010,7733:38-42
    [27]Siegel P H. Terahertz technology in biology and medicine. IEEE Transactions on Microwave Theory and Techniques,2004,52(10):2438-2447
    [28]何明霞,陈涛.太赫兹科学技术在生物医学中的应用研究.电子测量与仪器学报,2012,26(6):471-483
    [29]Essen H, Wahlen A, Sommer R, et al. High-bandwidth 220 GHz experimental radar. Electronics Letters,2007,43(20):1114-1116
    [30]Cooper K B, Dengler R J, Chattopadhyay G, et al. A High-Resolution Imaging Radar at 580 GHz. IEEE Microwave and Wireless Components Letters,2008, 18(1):64-66
    [31]Cooper K B, Dengler R J, Llombart N, et al. An approach for sub-second imaging of concealed objects using terahertz (THz) radar. Journal of Infrared, Mlillimeter and Terahertz Waves,2009,30(12):1297-1307
    [32]Brown E R, Parker C D. Resonant tunnel diodes as submillimetre-wave sources. Philosophical Transactions the Royal Society A,1996,354(1717):2365-2381
    [33]Brown E R, Soderstrom J R, Parker C D, et al. Oscillations up to 712 GHz in InAs/AlSb resonant tunneling diodes. Applied Physics Letters,1991,58(20): 2291-2293
    [34]Orihashi N, Suzuki S, Asada M. One THz harmonic oscillation of resonant tunneling diodes. Applied Physics Letters,2005,87(23):233501
    [35]H. Eisele.355 GHz oscillator with GaAs TUNNETT diode. Electronics Letters, 2005,41(6):329-331
    [36]Mukherjee M N, Roy S K. Photosensitivity analysis of gallium nitride and silicon carbide terahertz IMPATT oscillators:Comparison of theoretical reliability and study on experimental feasibility. IEEE Transactions on Device and Materials Reliability,2008,8(3):608-620
    [37]Mukherjee M N, Roy S K. Optically Modulated Ⅲ-Ⅴ Nitride-Based Top-Mounted and Flip-Chip IMPATT Oscillators at Terahertz Regime:Studies on the Shift of Avalanche Transit Time Phase delay due to photogenerated carriers. IEEE Transactions on Electron Devices,2009,56(7):1411-1417
    [38]Kollberg E, Rydberg A. Quantum-barrier-varactor diodes for high-efficiency millimetre-wave multipliers. Electronics Letters,1989,25(25):1696-1698
    [39]Siles J V, Grajal J. Physics-based design and optimization of Schottky diode frequency multipliers for terahertz applications. IEEE Transactions on Microwave Theory and Techniques,2010,58(7):1933-1942
    [40]Samoska L, Peralta A, Hu M, et al. A 20 mW,150 GHz InP HEMT MMIC power amplifier module. IEEE Microwave and Wireless Components Letters, 2004,14(2):56-58
    [41]Deal W R, Mei X B, Radisic V, et al. Demonstration of a 0.48 THz Amplifier Module Using InP HEMT Transistors. IEEE Microwave and Wireless Components Letters,2010,20(5):289-291
    [42]Leong K, Radisic V, Sarkozy S, et al. Low Noise Amplification at 0.67 THz Using 30 nm InP HEMTs. IEEE Microwave and Wireless Components Letters, 2011,21(7):368-370
    [43]Liu S, Huang Y. Generation of pre-bunched electron beams in photocathode RF gun for THz-FEL superradiation. Nuclear Instruments and Methods in Physics Research Section A,2011,637(1):S172-S176
    [44]Tan P, Huang J, Liu K, et al. Terahertz radiation sources based on free electron lasers and their applications. Science China Information,2012,55(1):1-15.
    [45]Matsuki Y, Ueda K, Idehara T, et al. Application of continuously frequency-tunable 0.4 THz gyrotron to dynamic nuclear polarization for 600 MHz solid-state NMR. Journal of Infrared, Millimeter and Terahertz Waves, 2012,33(7):745-755
    [46]Bratman V L, Bogdashov A A, Denisov G G, et al. Development for high power THz technologies at IAP RAS. Journal of Infrared, Millimeter and Terahertz Waves,2012,33(7):715-723
    [47]Kao S H, Chiu C C, Chu K R. A study of sub-terahertz and terahertz gyrotron oscillators. Physics of Plasmas,2012,19(2):023112
    [48]Mineo M, Paoloni C. Comparison of Thz backward wave oscillators based on corrugated waveguides. Progress in Electromagnetics Research Letters,2012, 30:163-171
    [49]Xu X, Wei Y, Shen F, et al. A watt-class 1-THz backward-wave oscillator based on sine waveguide. Physics of Plasmas,2012,19(1):013113
    [50]Inguscio M, Moruzzi G, Evenson K M, et al. A review of frequency measurements of optically pumped lasers from 0.1 to 8 THz. Journal of Applied Physics,1986,60(12):R61-R192
    [51]Wilke I, Ding Y J, Shubina T V. Optically-and Electrically-Stimulated Terahertz Radiation Emission from Indium Nitride. Journal of Infrared, Millimeter and Terahertz Waves,2012,33(6):559-592
    [52]Mishchenko V A, Petrushevich Y V, Sobolenko D N, et al. High-power terahertz optically pumped NH3 laser for plasma diagnostics.2012,38(6): 460-465
    [53]Shi W, Ding Y, Fernelius N, et al. Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal. Optics Letters,2002,27(16): 1454-1456
    [54]Tanabe T, Suto K, Nishizawa J, et al. Tunable terahertz wave generation in the 3- to 7-THz region from GaP. Applied Physics Letters,2003,83(2):237-239
    [55]Vodopyanov K L, Hurlbut W C, Kozlov V G. Photonic THz generation in GaAs via resonantly enhanced intracavity multispectral mixing. Applied Physics Letters,2011,99(4):041104
    [56]Shi W, Ding Y. A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications. Applied Physics Letters,2004,84(10):1635-1637
    [57]Petersen E B, Shi W, Chavez-Pirson A, et al. Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation. Applied Physics Letters,2011,98(12):121119
    [58]Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature,2002,417:156-159
    [59]Williams B S, Kumar S, Callebaut H, et al. Terahertz quantum-cascade laser at 100 μm, using metal waveguide for mode confinement. Applied Physics Letters, 2003,83(11):2124-2126
    [60]Gao J R, Hovenier J N, Yang Z Q, et al. Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer, Applied Physics Letters,2005,86(24):244104
    [61]Hu Q, Williams B S, Kumar Sushi, et al. Resonant-phonon-assisted THz quantum-cascade lasers with metal-metal waveguides. Semiconductor Science and Technology,2005,20(7):S228-S231
    [62]Kumar S, Chan C W, Hu Q, et al. A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB. Nature Physics,2011,7:166-171
    [63]Brown E R, McIntosh K A, Nichols K B. Photomixing up to 3.8 THz in low-temperature-grown GaAs. Applied Physics Letters,1995,66(3):285-287
    [64]Shuji G, Masahiko T, Kiyomi S. Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Applied Physics Letters,1997, 70(5):559-561
    [65]Gobel T, Schoenherr D, Sydlo C, et al. Single-sampling-point coherent detection in continuous-wave photomixing terahertz systems. Electronics Letters,2009,45(1):65-66
    [66]Roehle H, Dietz R J B, Hensel H J, et al. Next generation 1.5 μm terahertz antennas:mesa-structuring of InGaAs/InAlAs photoconductive layers. Optics Express,2010,18(3):2296-2301
    [67]Gobel T, Stanze D, Dietz R J B, et al. Next generation continuous wave photomixing THz systems. In proceedings of the Infrared, Millimeter and Terahertz Waves, Houston,2011,6105046:1-2
    [68]Park S, Choi Y, Oh Y, et al. Terahertz photoconductive antenna with metal nanoislands. Optics Express,2012,20(23):25530-25535
    [69]H. Ito, T. Furuta, F. Nakajima, et al. Photonic generation of continuous THz wave using uni-traveling-carrier photodiode. Journal of Lightwave Technology, 2005,23(12):4016-4021
    [70]Ito H, Yamamoto H, Furuta T, et al. Generation and Propagation of Sub-Terahertz Pulse Signal Using Waveguide-Integrated InP/InGaAs Uni-Traveling-Carrier Photodiode, Japanese Journal of Applied Physics.2010, 49(3):032402
    [71]Williamson R C, Esman R D. RF photonics. Journal of Lightwave Technology, 2008,26(9):1145-1153
    [72]Yao J. Microwave photonics, Journal of Lightwave Technology,2009,27(3): 314-335
    [73]Berceli T, Herczfeld P R. Microwave photonics:a historical perspective. Journal of Lightwave Technology,2010,58(11):2992-3000
    [74]Ponnampalam L, Pozzi F, Rouvalis E, et al. Photonically enabled communication systems beyond 1000 GHz. In proceedings of the Microwave Photonics, London,2008,55-58
    [75]A. Brenier. Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3+:KGd(WO4)2 laser with chirped volume Bragg gratings. Laser Physics Letters,2011,8(7):520-524
    [76]Chi M, Jensen O B, Petersen P M. High-power dual-wavelength external-cavity diode laser based on tapered amplifier with tunable terahertz frequency difference. Optics Letters,2011,36(14):2626-2628
    [77]Goldberg L, Taylor H F, Weller J F, et al. Microwave signal generation with injection locked laser diodes. Electronics Letters,1983,19(13):491-493
    [78]Williams K J, Goldberg L, Esman R D, et al.6-34GHz offset phase locking of Nd:YAG 1319nm nonplanar ring lasers. Electronics Letters,1989, 25(18):1242-1243
    [79]Hyodo M, Saito, S, Kasai Y. Optical phase-locked loop with fibre lasers for low phase noise millimetre-wave signal generation. Electronics Letters,45(17): 878-880
    [80]Steed R J, Ponnampalam L, Fice M J, et al. Hybrid integrated optical phase-lock loops for photonic terahertz sources. IEEE Journal of Selected Topics in Quantum Electronics,2011,17(1):210-217
    [81]O' Reilly J J, Lane P M, Heidemann R, et al. Optical generation of very narrowlinewidth millimetrewave signals. Electronics Letters,1992,28(25): 2309-2311
    [82]O' Reilly J J, Lane P M. Remote delivery of video services using mm-wave and optics. Journal of Lightwave Technology,1994,12(2):369-375.
    [83]Qi G, Yao J, Seregelyi J, et al. Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique. IEEE Transactions Microwave Theory Technology,2005, 53(10):3090-3097
    [84]Qi, G, Yao J, Seregelyi J, et al. Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator. Journal of Lightwave Technology,2005,23(9):2687-2695.
    [85]Yu J, Jia Z, Yi L, et al. Optical millimeter-wave generation or up-conversion using external modulators. IEEE Photonics Technology Letters,2006,18(1): 265-267
    [86]Zhang J, Chen H, Chen M, et al. Photonic generation of a millimeter-wave signal based on sextuple-frequency multiplication. Optics Letters,2007,32(9): 1020-1022.
    [87]Lin C, Shih P, Chen J, et al. Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering. IEEE Photonics Technology Letters,2008,20(12):1027-1029
    [88]Shen P, James J, Gomes N J, et al. Low-cost, continuously tunable, millimeter-wave photonic LO generation using optical phase modulation and DWDM filters. IEEE Photonics Technology Letters,2008,20(23):1986-1988
    [89]Lu J, Dong Z, Chen L. High-repetitive frequency millimeter-wave signal generation using multi-cascaded external modulators based on carrier suppression technique. Optics Communications,2008,281(19):4889-4892
    [90]Li W, Yao J. Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability. IEEE Photonics Journal,2010,2(6):954-959
    [91]Shih P T, Chen J J, Lin C T, et al. Optical millimeter-wave signal generation via frequency 12-tupling. Journal of Lightwave Technology,2010,28(1):71-78
    [92]Li W, Yao J. Investigation of photonically assisted microwave frequency multiplication based on external modulation. IEEE Transactions on Microwave Theory and Techniques,2010,58(11):3259-3268
    [93]Geim A K, Novoselov K S. The rise of graphene. Nature Materials,2007,6: 183-191
    [94]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science,2004,306(5696):666-669
    [95]Ando T, Zheng Y, Suzuura H. Dynamical conductivity and zero-mode anomaly in honeycomb lattices. Journal of the Physical Socity of Japan,2002, 71:1318-1324
    [96]Kuzmenko A B, Heumen E, Carbone F, et al. Universal optical conductance of graphite. Physical Review Letters,2008,100(11):117401
    [97]Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene. Physical Review Letters,2008,101(19):196405
    [98]Nairl R R, Blakel P, Grigorenkol A N, et al. Fine structure constant defines visual transparency of graphene. Science,2008,320(5881):1308
    [99]E. McCann. Asymmetry gap in the electronic band structure of bilayer graphene. Physical Reviewe B,2006,74(16):161403
    [100]Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438:197-200
    [101]Esurivire E D, Simpson J R, Becher P C. High-gain erbium-doped traveling-wave fiber amplifier. Optics Letters,1987,12(11):886-890
    [102]Robert N Z. Saturated optical absorption through band filling in semiconductors. Applied Physics Letters,1969,14(2):73-74
    [103]Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Function Materials,2009,19(19): 3077-3083
    [104]Tan W D, Su C Y, Knize R J, et al. Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber. Applied Physics Letters,2010,96(3):031106
    [105]Zhao L M, Tang D Y, Zhang H, et al. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Optics Letters,2010,35(21),3622-3624
    [106]Cho W B, Kim J W, Lee H W, et al. High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm. Optics Letters, 2011,36(20):4089-4091
    [107]Zhang H, Tang D, Knize R J, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Applied Physics Letters,2010,96(11):111112
    [108]Liu J, Wang Y G, Qu Z S, et al. Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser. Laser Physics Letters,2012,9(1):15-19
    [109]Chang Y M, Kim H, Lee J H, et al. Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers, Applied Physics Letters,2010,97(21):211102
    [110]Martinez A, Fuse K, Yamashita S. Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers. Applied Physics Letters,2011,99(12): 121107
    [111]Song Y W, Jang S Y, Han W S, et al. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction Applied Physics Letters,2010, 96(5):051122
    [112]Kim H, Cho J, Jang S Y, et al. Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Applied Physics Letters,2011,98(2): 021104
    [113]Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Applied Physics Letters,2010,97(20):203106
    [114]Xia F, Mueller T, Lin Y, et al. Ultrafast graphene photodetector. Nature Nanotechnology,2009,4:839-843
    [115]Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature,2011,474:64-67
    [116]Bao Q, Zhang H, Wang B, et al. Broadband graphene polarizer. Nature Photonics,2011,5:411-415
    [117]Gusynin V P, Sharapov S G, Carbotte J P. Unusual microwave response of Dirac quasiparticles in graphene. Physical Reviewe Letter,2006,96(25): 256802
    [118]Deligeorgis G, Dragoman M, Neculoiu D, et al. Microwave propagation in graphene. Applied Physics Letters,2009,95(7):073107
    [119]Deligeorgis G, Dragoman M, Neculoiu D, et al. Microwave switching of graphene field effect transistor at and far from the Dirac point. Applied Physics Letters,2010,96(10):103105
    [120]Wang H, Nezich D, Kong J, et al. Graphene frequency multipliers. IEEE Electron Device Letters,2009,30(5):547-549
    [121]Sensale-Rodriguez B, Yan R, M. Kelly, et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nature Communications,2012,3: 1-7
    [122]Mikhailov S A, Ziegler K. Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. Journal of Physics Condensed Matter,2008,20(38):384204
    [123]Wright A R, Xu X G, Cao J C, et al. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters.2009,95(7):072101
    [124]Wright A R, Cao J C, Zhang C. Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime. Physical Reviewe Letters,2009, 103(20):207401
    [125]Hendry E, Hale P J, Moger J, et al. Coherent nonlinear optical response of graphene. Physical Reviewe Letters,2010,105(9):097401
    [126]姚建铨,迟楠,杨鹏飞,等.太赫兹通信技术的研究与展望.2009,36(9):2213-2233
    [127]Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research, Journal of Infrared, Millimeter and Terahertz Waves.2011,32(2): 143-171
    [128]Federici J, Moeller L. Review of terahertz and subterahertz wireless communications. Journal of Applied Physics,2010,107(11):111101
    [129]Piesiewicz R, Jacob M, Koch M, et al. Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments. IEEE Journal of Selected Topics in Quantum Electronics,2008,14(2):421-430
    [130]Piesiewicz R, Kleine-Ostmann T, Krumbholz N, et al. Short-range ultra-broadband terahertz communications:concepts and perspectives. IEEE Antennas and Propagation Magazine,2007,49(6):24-39
    [131]Song H, Nagatsuma, T. Present and future of terahertz communications, IEEE Transactions on Terahertz Science and Technology,2011,1(1):256-263
    [132]Hirata A, Harada M, Nagatsuma T.120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals. Journal of Lightwave Technology,2003,21(10):2145-2153.
    [133]Hirata A, Kosugi T, Takahashi H, et al. T.120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission. IEEE Transactions on Microwave Theory and Techniques,2006,54(4):1937-1944
    [134]Hirata A, Takahashi, H, Yamaguchi R, et al. Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies. Journal of Lightwave Technology,2008,26(15):2338-2344
    [135]Kosugi T, Kosugi T, Hirata A, et al. MM-wave long-range wireless systems. IEEE Microwave Magazine,2009,10(2):68-76
    [136]Hirata A, Yamaguchi R, Kosugi T, et al.10-Gbit/s wireless link using Inp HEMT MMICs for generating 120-GHz-band millimeter-wave signal. IEEE Transactions on Microwave Theory and Techniques,2009,57(5):1102-1109
    [137]Kleine-Ostmann T, Pierz K, Hein G, et al. Audio signal transmission over THz communication channel using semiconductor modulator. Electronics Letters, 2004,40(2):124-126
    [138]Jastrow C, Munter K, Piesiewicz R, et al.300 GHz channel measurement and transmission system. In proceedings of the Infrared, Millimeter and Terahertz Waves, Pasadena,2008,4665446:1-2
    [139]王成,刘杰,吴尚昀,等.信息与电子工程,2011,9(3):265-269
    [140]NOEL L, Wake D, Moodie D. Novel techniques for high-capacity 60GHz fiber-radio transmission systems. IEEE Transactions on Microwave Theory and Techniques,1997,45(8):1416-1623
    [141]Kuri T, Kitayama K, STOHR A, et al. Fiber-optic millimeter-wave downlink system using 60GHz band external modulation. Journal of Lightwave Technology,1999,17(5):799-806
    [142]Braum R, Grosskopf G, Rohde D. Optical millimetre-wave generation and transmission experiments for mobile 60GHz band communications. Electronics Letters,1996,32(7):626-628
    [143]Motamed A, Vahldieck R. Utilization of Mach-Zehnder modulator to generate fourth harmonic microwave frequencies-theory and experiment. In proceedings of the Europeon Microwave Conference, Vahldieck,1997,2:1216-1221
    [144]Attygalle M, Lim C, Pendock G. Transmission improvement in fiber wireless links using fiber Bragg gratings. IEEE Photonics Technology Letters,2005, 17(1):190-192
    [145]Hirala A, Mjnoiani T, Nagatsuma T. Millimeter-wave photonics for 10-Gbit/s wireless links. In proceedings of Lasers and Electro-Optics Society, Glasgow, 2002,2:477-478
    [146]Kawanishi T, Kiuchi H, Yamada M. Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulators for photonic local oscillators. In proceedings of the Microwave Photonics, Seoul, 2005,1590343:1-4
    [147]Yu J, Jia Z, Chang G K. All-optical mixer based on cross-absorption modulation in electro-absorption modulator. IEEE Photonics Technology Letters,2005,17(11):2421-2423
    [148]Yu J, Jia Z, Xu L, et al. DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver. IEEE Photonics Technology Letters,2006,18(13):1418-1420
    [149]Ma J, Yu J, Yu C, et al. Fiber dispersion influence on transmission of the optical millimeter-Waves generated using LN-MZM intensity modulation. Journal of Lightwave Technology,2007,25(11):3244-3256
    [150]Chen L, Wen S, Li Y. Optical front-ends to generate optical millimeter-wave signal in radio-over-fiber systems with different architectures. Journal of Lightwave Technology,2007,25(11):3381-3387
    [151]Chen L, Yu J, Wen S, et al. A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system. Journal of lightwave technology,2009,27(14):2786-2791
    [152]Lu J, Dong Z, Cao Z, et al. Polarization insensitive all-optical up-conversion for ROF systems based on parallel pump FWM in a SOA. Optics Express,2009, 17(9):6962-6967
    [153]Dong Z, Lu J, Cao Z, et al. Low-cost optical line terminal for a WDM-PON compatible with radio-over-fiber systems. Journal of Optical Networking,2009, 8(3):244-248
    [154]Chen L, Dong Z, Lu J, et al. Centralized lightwave radio-over-fiber system using only one phase modulator for optical millimeter-wave generation. Optical Engineering,2008,47(7):075006-075010
    [155]Chen L, Pi Y, Wen H, et al. All-optical mm-wave generation by using direct-modulation DFB laser and external modulator. Microwave and Optical Technology Letters,2007,49(6):1265-1267
    [156]Li Y, Chen L, Wen S, et al. Optical mm-wave DWDM signal generation with photonic frequency quadruple by only one external modulator. Microwave and Optical Technology Letters,2008,50(5):1152-1155
    [157]胡黎亮,陈林,余建军,等.一种改进的双边带调制产生光毫米波的方案.光学学报,2008,28(2):238-242
    [158]黄诚,胡黎亮,陈林,等.基于单相位调制器产生毫米波.中国激光,2008,35(1):73-76
    [159]陈罗湘,卢嘉,董泽,等.采用两个级联外部调制器产生四倍频光载毫米波的光纤无线通信系统.中国激光,2008,35(12):1910-1913
    [160]刘丽敏,董泽,皮雅稚,等.采用外调制器产生四倍频的光载毫米波光纤无线通信系统.中国激光,2009,36(1):148-153
    [161]陈林,董泽,李瑛.采用电光调制器产生光毫米波的全双工通信光纤无线通信系统.通信学报,2007,28(9):85-90
    [162]李建强.基于铌酸锂调制器的微波光子信号处理技术与毫米波频段ROF系统设计:[北京邮电大学博士学位论文].北京:北京邮电大学,2009
    [163]卢嘉.四波混频效应在Radio-over-Fiber系统和全光波长变换中的应用研究:[湖南大学博士学位论文].长沙:湖南大学,2011
    [164]董泽.光纤无线和相干光通信的若干关键技术的研究:[湖南大学博士学位论文].长沙:湖南大学,2011
    [165]Cartledge J C, Rolland C, Lemerle S, et al. Theoretical performance of 10Gb/s lightwave systems using a Ⅲ-Ⅴ semiconductor Mach-Zehnder Modulator. IEEE Photonics Technology Letters,1994,6(2):282-284
    [166]Cartledge J C. Performance of 10 Gb/s lightwave systems based on lithium niobate mach-zehnder modulators with asymmetric Y-branch waveguides. IEEE Photonics Technology Letters.1995,7(9):1090-1092
    [167]G. P. Agrawal. Nonlinear Fiber Opties. New Yoker:Academic Press,1995, 13-16
    [168]Nagatsuma T. Generating millimeter and terahertz waves. IEEE Microwave Magazine,2009,10(4):64-74
    [169]Cox C H, Analog Optical Links:theory and practice. Cambridge, U.K.: Cambridge Univ. Press,2004.
    [170]Cox C H, Ackerman E I, Betts G E, et al. Limits on the performance of RF-over-fiber links and their impact on device design. IEEE Transactions on Microwave Theory and Techniques,2006,54(2):906-920
    [171]Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology,2008,3:563-568
    [172]Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society,2009,131(10):3611-3620
    [173]Sheik-Bahae M, Said A A, Wei T H, et al. High-sensitive, single beam n2 measurement. Optics Letters,1989,14(17):955-957
    [174]Sheik-Bahae M, Said A A, Wei T H, et al. Sensitive measurement of optical nonlinearities using a single beam. IEEE Journal of Quantum Electronics, 1990,26(4):760-769
    [175]Chapple P B, Staromlynska J, McDuff R G. Z-scan studies in the thin-and the thick-sample limits. Journal of the Optical Society of America B,1994,11(6): 975-982
    [176]Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene. Reviews of Modern Physics,2009,81(1):109-162
    [177]Mertz L. Mode-locked maser theory of pulsars. Astrophysics and Space Science, 1974,30(1):43-55
    [178]Park C, Oh C, Lee C, et al. A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM. IEEE Photonics Technology Letters,2005,17(9):1950-1952
    [179]Yu J, Jia Z, Wang T, et al. Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation. IEEE Photonics Technology Letters,2007,19(19):1499-1501
    [180]Yu J, Chang G K, Jia Z, et al. Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems. Journal of Lightwave Technology,2010,28(16):2376-2397
    [181]Yu X, Jensen J B, Zibar D, et al. Converged wireless and wireline access system based on optical phase modulation for both radio-over-fiber and baseband signals. IEEE Photonics Technology Letters,2008,20(21): 1814-1816
    [182]Xu Z, Zhang X, Yu J. Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks. Optics Express,2007, 15(25):16737-16747
    [183]Jia Z, Yu J, Boivin D, et al. Bidirectional ROF links using optically up-converted DPSK for downstream and remodulated OOK for upstream. IEEE Photonics Technology Letters,2007,19(19):653-655
    [184]Larrode M, Koonen A M J, Olmos J J V, et al. Bidirectional radio-over-fiber link employing optical frequency multiplication. IEEE Photonics Technology Letters,2006,18(1):241-243
    [185]Zhou G, Zhang X, Yao J. A novel photonic frequency down-shifting technique for millimeter-wave-band radio-over-fiber systems. IEEE Photonics Technology Letters,2005,17(8):1728-1730
    [186]朱江波,侯春宁,刘霄,等.双级单边带调制产生光纤载太赫兹信号的系统性能分析.红外与激光工程,2009,38(6):1014-1019
    [187]侯春宁,刘霄,李欣颖,等.0.1 THz光载太赫兹信号产生的新方法及特性分析.光电工程,2010,37(8):29-45
    [188]Smith G H, Novak D, Lim C. A millimeter-wave full duplex fiber-radio star-tree Architecture incorporating WDM and SCM. IEEE Photonics Technology Letters,1998,10:1650-1652
    [189]Nirmalathas A, Lim C, Novak D, et al. Optical interface without light sources for base-station designs in fiber-wireless systems incorporating WDM. In proceedings of the Microwave Photonics, Melbourne,1999,1:119-122
    [190]Nirmalathas A. Wavelength reuse in the WDM optical interface of a millimeter-wave fiber-wireless antenna base station. IEEE Transactions on Microwave Theory and Techniques,2001,49(10):2006-2012
    [191]Kaszubowska A, Hu L, Barry L P. Remote down conversion with wavelength reuse for the radio/fiber uplink connection. IEEE Photonics Technology Letters, 2006,18(4):562-564
    [192]Chen L, Wen H, Wen S. A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection. IEEE Photonics Technology Letters,2006,19(18):2056-2058
    [193]Masella B, Zhang X. A novel single wavelength balanced system for radio over fiber Links. IEEE Photonics Technology Letters,2006,18(1):301-303
    [194]Dong Z, Lu J, Pi Y et al. Optical millimeter-wave signal generation and wavelength reuse for upstream connection in radio-over-fiber systems. Journal of Optical Networking,2008,7(8):736-743
    [195]Chen L, Lei X, Wen S. A novel radio over fiber system with DWDM mm-wave generation and wavelength reuse for upstream data connection. Optics Express, 2007,15(9):5893-5897
    [196]Chen L, Shao Y, Lei X, et al. A novel radio-over-fiber system with wavelength reuse for upstream data connection. IEEE Photonics Technology Letters,2007, 19(6):387-389
    [197]Smith G, Novak D, Lim C, et al. Full-duplex broadband millimeter-wave optical transport system for Fiber-wireless access. Electron Letters,1997, 33(13):1159-1160
    [198]Lim C, Nimarthalas A, Novak D, et al. Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery. Journal of Lightwave Technology,2000,18(10): 1355-1363
    [199]Kitayama K, Stohr A, Kuri T, et al. An approach to single optical component antenna base stations for broadband millimeter-wave fiber-radio access systems. IEEE transactions on microwave theory and techniques,2000,48(12): 2588-2595
    [200]Li M, Chen H, Yin F, et al. Full-duplex 60-GHz ROF system with optical local oscillating carrier distribution scheme based on FWM effect in SOA. IEEE Photonics Technology Letters,2009,21(22):1716-1718
    [201]Li J, Ning T, Pei L, et al. A bidirectional 60 GHz RoF system based on FWM in a semiconductor optical amplifier. Optics Communications,2010,283(10): 2238-2242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700