高功率微波大气传播非线性问题的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了高功率微波(HPM)脉冲的大气传播与击穿等问题。通过对高功率脉冲的大气传播模型的特点分析,以及考虑到以前类似研究的效率问题,我们采用了时域有限差分(FDTD)法对其进行数值模拟,力图通过该过程来揭示高功率微波脉冲大气传播的规律,为高功率微波脉冲的传播和工程应用提供有参考意义的结论。
     本论文首先综述了高功率微波的应用背景,对国内外相关领域的研究现状进行了分析,并且简要介绍了FDTD的基本原理及应用、高功率微波的大气传播模型、该传播模型的FDTD差分格式及其在大气中的传播和击穿特点。
     结合高功率微波大气传播的物理意义及严格的数学证明,推导了由时域有限差分法对高功率微波大气传播模型中心差分所得的按时间步进的显示差分格式的稳定性条件和数值色散要求。数值结果显示了FDTD在处理高功率微波大气传播问题上具有很好的可行性和精确性,并相比其他处理方法具有很高的计算效率。通过对高功率微波的击穿条件的分析,对其在背景大气中的击穿阈值作了估算。估算结果与FDTD计算结果和实验数据对比,都比较符合。击穿场强的估算对高功率微波的工程应用和相关实验能提供重要的参考依据。
     为了进一步提高高功率微波大气传播问题的数值模拟效率,提出了一种新的处理方法,即分段FDTD计算方法。该方法是直接基于传统FDTD算法,通过将计算空间进行分段,每段之间再进行数据传递的思想来实现。分段FDTD的提出使得高功率微波脉冲长距离传播问题的数值模拟效率得以极大的提升,同时由于该方法在计算效率上具有的优势,为本文在超宽带高功率电磁脉冲的大气传播问题的研究方面提供了坚实的技术保障。
     通过对超宽带高功率微波脉冲场强有效值的求解,获取超宽带高功率微波与大气相互作用的参数。并结合改进的分段FDTD方法对超宽带高功率微波脉冲的大气传播具体过程进行数值计算。研究了高斯脉冲、调制高斯脉冲、微分高斯脉冲、阻尼正弦波等超宽带高功率微波脉冲的大气传播过程、尾蚀效应和其它非线性物理问题,同时分析了大气击穿对其频谱的影响。
     对处于高功率微波作用下的大气中自由电子密度的变化及该变化对高功率微波的反作用的过程分析,将由高功率微波电离电子所得的自生等离子体混合而成的非均匀混合大气进行分层处理,利用电磁波在非均匀介质中传播问题的FDTD求解方法,对高功率微波脉冲在该混合大气中传播过程和反射特性进行数值分析。
     在重复频率高功率微波脉冲大气传播问题的研究中,我们构建了一种半解析模型。并且提出了一个临界重复频率,同时推导出来重复频率高功率脉冲场强的击穿阈值。并且分析了重复频率高功率脉冲不同参数对该临界重复频率和击穿场强的影响。
     最后概括了本文在高功率微波脉冲大气传播方面取得的研究成果,并展望了该研究的发展方向。
The propagation and breakdown mechanism of High Power Microwave (HPM) pulse is researched in this dissertation. Taking into account the characteristics of HPM atmosphere propagation model and the efficiency of previous similar studies, the finite-difference time-domain (FDTD) method is employed to simulate the HPM atmospheric propagation model. By this approach, the law of atmospheric propagation of high power microwave pulse is revealed and an important reference for high power microwave pulse propagation and engineering applications is given.
     At first, the application background of the HPM pulse is reviewed, and the basic principles of FDTD are briefly introduced. Meanwhile, the FDTD difference schemes for high-power microwave atmospheric propagation model and the characteristics of HPM propagation and breakdown are introduced.
     Combined with the physical meaning of high power microwave atmospheric propagation and the strict mathematical proof, the stability condition of the FDTD difference schemes for high-power microwave atmospheric propagation model is derived, as well as the corresponding numerical dispersion is analyzed. The numerical results show the FDTD method has a good feasibility and validity in dealing with the issue of high-power microwave atmospheric propagation, and has a higher computational efficiency compared with other methods. By analyzing the breakdown conditions of high-power microwave, the breakdown threshold is estimated. The estimation results and FDTD results and experimental data are consistent. The estimation results of breakdown threshold can provide important reference for high-power microwave engineering applications and related experiments.
     To further enhance the simulation efficiency of high-power microwave atmospheric propagation, a new approach, that is, subsection FDTD method is proposed. The method is realized by separating computation space and transferring the data between each subsection, which directly based on the traditional FDTD algorithm. The proposed method improves the simulation efficiency of high-power microwave pulse long-distance propagation. At the same time, its high efficiency provides a solid technical support for the issue of the ultra-wideband high power microwave pulse atmospheric propagation.
     By solving the effective E field strength of the ultra-wideband HPM atmospheric propagation, the parameters of ultra-wideband high power microwave interacts with the atmosphere can be obtained. And combined with the improved subsection FDTD method, the specific process of ultra-wideband HPM atmosphere propagation is calculated. The propagation process of the atmosphere, tail erosion effect and other non-linear physical problems of Gaussian pulse, modulated Gaussian pulse, differential Gaussian pulse, damped sine wave such as ultra-wideband high power microwave pulse are studied, and the inference of air breakdown to its spectrum is analyzed.
     At first, the electron density evolution due to the HPM pulses and the reaction to HPM pulses caused by electron density evolution is studied. And then the mixture-atmosphere which is composited by plasma and non-plasma can be layered as inhomogeneous medium. Finally, the reflection characteristics of the HPM propagation in the mixture-atmosphere are investigated by FDTD in inhomogeneous medium.
     A semi-analytical model for the propagation of the repetition frequency HPM pulses is established. And a critical repetition frequency for the HPM pulse is presented. As well as the breakdown threshold of the repetition frequency HPM pulses is derived. Fianlly, the effects of different parameters of the repetition frequency HPM pulses on air breakdown are analyzed.
     At last part of the dissertation the study of propagation mechanism of HPM pulse is summarized, and the development directions of these researches are predicted.
引文
[1]林竞羽,侯德亭.高功率微波技术发展概述.航天电子对抗.2003,(04):13-17
    [2]J. Benford, J. A. Swegle and E. Schamiloglu高功率微波,江伟华,张弛.第二版.北京:国防工业出版社,2009
    [3]钟文丽.高功率微波源用阴极材料研究.国防科学技术大学研究生院硕士学位论文.2008:2
    [4]刁振河.高功率微波防护的相关问题研究.国防科学技术大学研究生院硕士学位论文.2006:1
    [5]薛谦忠,刘濮鲲.HPM在大气的传输问题研究及应用.2001年全国电磁兼容学术会议,2001.中国通信学会,2001:139-143
    [6]G. H. Khanaka, J. H. Yee and D. J. Mayhall. Modeling the propagation of long intense microwave pulse in mixtures of air and SF6. IEEE Trans, on Plas. Sci..1990,18 (2):210-213
    [7]J. G Yang, N. S. Yoon, B. C. Kim, J. H. Chio, G S. Lee and S. M. Hwang. Power absorption characteristics of an inductively coupled plasmas discharge. IEEE Trans, on Plas. Sci..1999,27 (3):676-681
    [8]李传胪.新概念武器.北京:国防工业出版社,1999
    [9]A. V. Grekhov, V. L. Granastein(Eds). Application of High-power microwaves. Boston: Artech House,1994
    [10]周光镒,朱红刚.高功率微波脉冲大气传输的一些规律.强激光与粒子束.1996,8(4):485-490
    [11]牛忠霞,周东方,侯德亭,余道杰.大气层HPM人工可控电离云及其应用.信息工程大学学报.2002,3(4):1-4
    [12]黄裕年,任国光.高功率超宽带电磁脉冲技术.微波学报.2002,18(4):90-94
    [13]W. D. Prather., C. E. Baum, R. J. Torres. Survey of worldwidth high-power wideband capabilityes. IEEE Trans. Electromagn. Compat..2004,46 (3):335-344
    [14]Chen Bin, Duan Yantao, Chen Hailin, etal. Study on UWB and HPM Propagation in Circular Tunnel Using BOR-FDTD Method. CEEM'2006. Dalian.2006,3P5-06:688-619
    [15]曹金坤,周东方,牛忠霞.重复频率高功率微波脉冲的大气击穿.强激光与粒子束.2006,18(1):115-118
    [16]邵颖,牛忠霞,周东方,邢召伟.一种改进模型计算高功率微波长脉冲大气传输.信息工程大学学报.2006,7(1):31-33
    [17]J. H. Yee, R. A. Alvarez, D. J. Mayhall, D. P. Byrne and J. DeGroot. Theory of intense electromagnetic pulse propagation through the atmosphere, Phys. Fluids.1986,29 (4):1238-1244
    [18]R. M. Beam and R. F. Warming. An implicit factored scheme for the compressible Navier-Stokes equations. AIAA Journal.1978,16:393-401
    [19]K. S. Yee. Numerical Solution of Initial Boundary Value problems Involving Maxwell's Equations in Isotropic Media. IEEE Trans on Antennas and Propagation.1966,14 (8):302-307
    [20]G. Mur. Absorbing boundary conditions for the finite-difference approximation of time-domain electromagnetic field equations. IEEE Trans. Electromagn. Compat.. Nov.1981, EMC-23(4): 377-382
    [21]J. P. Berenger. A Perefet Matehed Layer of the Absorption of Electromagnetic Waves, J. Comput. Phys..1994,1149 (2):185-200
    [22]J. P. Berenger. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys.,1996,127 (2):363-379
    [23]J. P. Berenger. Perefetly Matehed Layer for the FDTD solution of wave-structure interaction problem. IEEE Trans. Antennas Propagat..1996, AP-44 (12):110-117
    [24]王长清.电磁计算中的时域有限差分法.北京:北京大学出版社,1994
    [25]Raymond Luebbers, Li Chen. FDTD Calculation of Radiation Patterns, Impedence and Gain for a Monopole Antenna on a Conducting Box. IEEE Trans. On Antennas and Propagation.1992, AP-40 (12):1577-1583
    [26]T. G. Jurgens. A Broad band Absorbing Boundary Condition for the FDTD Modeling of Circular Waveguides. IEEE Trans. On MTT-S. May.1995:35-38
    [27]段耀勇,陈雨生.高功率微波脉冲大气击穿及其对能量传输的影响.微波学报.2000,16(3):260-264
    [28]J. H. Yee, D. J. Mayhall, G. E. Sieger and R. A. Alvarez. Propagation of intense microwave pulses in air and in a waveguide. IEEE trans. On Antennas and Propagation.1991,39 (9):1421-1426
    [29]江少恩.高功率微波大气击穿的理论分析与计算.量子电子学.1996,13(3):278-285
    [30]Dan Yang, Chen Liao, Jian Fang, Yunlin Liu. Numerical analysis and simulation of high power microwave pulses propagation in the atmosphere using FDTD method. Asia-Pacific Microwave Conference proceedings. Suzhou, Dec.4-7,2005:4
    [31]S. P. Kuo, Y. S. Zhang. Simulation of intense microwave pulse propagation in air breakdown environment. Intense Microwave and Particle Beams Ⅱ,1999, SPIE vol.1407:260-271
    [32]A. W. Ali. Intense and short pulse electric (DC and Microwave) air breakdown parameters. AD2-A172227,1986:1-30
    [33]S. P. Kuo, Y. S. Mang and P. Kossey. Propagation of high power microwave pulses in air breakdown environment. Intl. Conf. on Millimeter Wave and Far-Infrared Tech..1989:212-215
    [34]刘静月,方进勇,宋志敏,黄文华,刘国治.短脉冲高功率微波大气击穿研究.强激光与粒子束.2000,12(4):497-500
    [35]M. Lofgren, D. Anderson, M. Lisak and L. Lundgren. Breakdown-induced Distortion of High-Power Microwave Pubes in Air. Phys. Fluids. December,1991, B3 (12):3528-3531
    [36]J. C. Biswas and Ved Mitra. High-frequency breakdown and paschen law. Applied Physics A.1979, 19 (4):377-381
    [37]牛忠霞,余道杰,杨建宏,周东方,侯德亭.高功率微波大气传输中的非线性衰减.信息工程大学学报.2004,(2):115-117
    [38]余道杰,张长峰,彭平,张新鹏,牛忠霞.高功率微波大气传输折射指数和衰减系数计算统一模型.微波学报.2008,24(5):74-77
    [39]卢洵,赵朝锋,徐振启,侯德亭.高功率微波在大气击穿时的传输特性研究.信息与电子工程.2004,2(4):287-289
    [40]陈雅深,董志伟,赵强,孙会芳.高功率微波大气传输电离过程的物理研究.强激光与粒子束.2006,18(1):119-123
    [41]J. H. Yee, D. J. Mayhall, G. E.Sieger. Modeling the interaction of intense electromagnetic pulses with gaseous media. IEEE Trans. Electromagn. Compat..1992,34 (3):189-195
    [42]S P. Kuo, A. Ren, Y. S. Zhang. Frequency Up-Conversion for the Reflectionless Propagation of a High-Power Microwave Pulse in a Self-Generated Plasma. Proc. SPIE.1991, vol.1407:272-280
    [43]杨平.纳秒级高压高重复频率脉冲发生器的研制.硕十论文.华中科技大学.2005
    [44]S. T. Pai, and Q. Zhang. Introduction to High Power Pulse Technology. Singapore:World Scientific, 1995
    [45]T. H. Martin, M. Williams, and M. Kristiansen. J. C. Martin on Pulsed Power. New York:Plenum Press,1996
    [46]S. A. Kitsanov, A. I. Klimov, S. D. Korovin, I. K. Kurkan, I. V. Pegel, and S. D. Polevin. A vircator with electron beam premodulation based on high-current repetitively pulse accelerator. IEEE Transactions on Plasma Science.2002,30 (1):278-285
    [47]张嘉生.一种重复频率的高功率脉冲发生器.强激光与粒子束.1999,11(4):470-472
    [48]曹金坤,周东方,牛忠霞,等.重复频率高功率微波脉冲的大气击穿[J].强激光与粒子束,2006,18(1):115-118
    [49]胡涛,周东方,李庆荣,等.电子弛豫过程对重复频率高功率微波大气击穿的影响.强激光与粒子束,2009,21(4):545-549
    [50]C. D. Taylor, D. H. Lam and T. H. Shumpert. EM pulse scattering in time varying inhomogeneous media. IEEE Trans. Antennas Propagat. Sept.1969, AP-17 (5):585-589
    [51]A. Taflove and M. E. Brodwin. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations. IEEE Trans. Microwave Theory Tech.. Aug.1975, MTT-23:623-630
    [52]G A. Kriegsmann and C. S. Morawetz. Numerical solutions of exterior problems with the reduced wave equation. J. Comput. Phys.1979, vol.28:181-197
    [53]B. Enquist and A. Majda. Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. July 1977, vol.31:629-651
    [54]K. K. Mei and J. Fang. Superabsorption—A method to improve absorbing boundary conditions. IEEE Trans. Antennas Propagat.1992, vol.40:1001-1010
    [55]B. Chen, D. G. Fang and B. H. Zhou. Modified Berenger PML absorbing boundary condition for FDTD meshes. IEEE Microwave and Guided Wave Lett.1995,5 (11):399-401
    [56]M. Ozkar, G. Lazzi and A. Mortazawi. A Modified Unsplit PML Formulation for Evanescent Mode Absorption in Waveguides. IEEE Microwave and Wireless Components Lett.2003,13 (6):220-222
    [57]A. P. Zhao. Generalized-material-indendent PML absorbers used for the FDTD simulation of electromagnetic wave in 3-D arbitrary anisotropic dielectric magnetic media. IEEE Trans, on Microwave Theory Tec.1998,46 (10):1511-1513
    [58]J. Y. Fang and Z. Wu. Generalized perfectly matched layer-an extension of Berenger's perfectly matched layer boundary condition. IEEE MGML.1995,5(12):451-453
    [59]D. Zhou, D. G Fang and B. Chen. Modified Berenger PML absorbing boundary condition for FDTD meshes in lossy media. Conference Digest of ICM-MT'98. Beijing.1998:990-992
    [60]W. H. Weedon, W. C. Chew and C. M. Rappaport. Computationally efficient FDTD simulation of open-region scattering problems on the Connection Machine CM-5. IEEE Antennas and Propagation Society International Symposium Digest, (Seattle, WA), June 1994:19-24
    [61]U. Pekel and R. Mittra. An application of the perfectly matched layer (PML) concept to the finite element method frequency domain analysis of scattering problems. IEEE Microwave and Guided Wave Lett.1995,5:258-260
    [62]T. B. YU, B. H. Zhou and B. Chen. An Unsplit Formulation of the Berenger's PMLAbsorbing Boundary Condition for FDTD Meshes. IEEE Microwave and Wireless Components Lea.2003, 13(8):348-350
    [63]Z. S. Sacks and D. M. Kingsland. A Perfectly matched Anisotropic Absorber for Use as an Absorbing Boundary Condition. IEEE trans, on Antennas and Propagation Dec.1995,43 (12): 1460-1463
    [64]R. Luebbers, F. Hunsberger, K. Kunz, R. Standler, and M. Schneider. A frequency-dependent finite difference time domain formulation for dispersive materials. IEEE Trans. Electromagn. Compat.1990, vol.32:222-227
    [65]R. Luebbers and F. Hunsberger. Fdtd for n-th order dispersive media. IEEE Trans. Antennas Propag., 1992, vol.40:1297-1301
    [66]肖飞,庸小宏,马海虹.三维最优时域有限差分方法.微波学报.2006,22(5):7-10
    [67]方大纲,陈彬.完全匹配层(PML)的研究.南京理工大学学报:自然科学版.1996,20(6):572-576
    [68]陈彬,方大纲,高成.一般各向异性介质中的改进完全匹配层(MPML)南京理工大学学报:自然科学版.1997,21(5):453-456
    [69]杨利霞,葛德彪.磁各向异性色散介质散射的Pad6时域有限差分方法分析.物理学报.2006,55(4):1751-1708
    [70]M. Krumpholz, L. P. B. Katehi. MRTD:new time-domain schemes based on multiresolution analysis. IEEE Transactions on Microwave Theory and Techniques.1996,44 (4):555-571
    [71]Q. H. Liu. The PSTD algorithm:A time-domain method requiring only two cells per wavelength. Microwave and Optical Technology Letters.1997,15 (3):159-165
    [72]刘波,高本庆.电磁场时域数值方法及其混合技术概述.微波学报.2006,22(2):1-6
    [73]T. Namiki. A new FDTD algorithm based on altematingdirection implicit method. IEEE Transactions on Microwave Theory and Techniques.1999,47 (10):2003-2007
    [74]G. D. Kondylis, E. D. Flaviis, G J. Pottie, T. Itoh. A memory-efficient formulation of the finite-difference time-domain method for the solution of Maxwell equation. IEEE Trans Microwave Theory Tech.2001,49 (7):1310-1320
    [75]余同彬.时域有限差分法及HEMP耦合研究.解放军理工大学工程兵工程学院博士论文.2003
    [76]B. Liu, B. Q. Gao, W. Tan and W. Ren. An efficient algorithm in time domain-AD I/R-FDTD. Chinese Journal of Electronics.2003,12 (2):293-296
    [77]B. Fidel, E. Heyman, R.Kastner and R. W. Ziolkowski. Hybrid ray-FDTD moving window approach to pulse propagation. Proc. of the 1994 International IEEE/AP-S Symposium.1994, Seattle, WA,1414-1417
    [78]Y. Pemper, B. Fidel, E. Heyman, R. Kastner and R. W. Ziolkowski. Absorbing boundary conditions in the context of the hybrid ray-FDTD moving window solution. In Proc IEEE AP-S International Symposium, Montreal, PQ, Canada,1997:14-19
    [79]F. Akleman and L. Sevgi. A Novel Finite-Difference Time-Domain Wave Propagator. IEEE Trans. On Antennas and Propagation.2000,48 (5):839-841
    [80]F. Akleman and L. Sevgi. Time and Frequency Domain Wave Propagator. Applied Computational Electromagnetics Society Journal.2000,15(3):186-208
    [81]李勇.移动坐标系FDTD方法在电磁脉冲传播中的应用研究.中国科学技术大学硕士学位论文.2009,14-16
    [82]张建华,周彬.高功率微波大气传输的研究.中国电子学会电子对抗分会第十三届学术年会论文集.2003,第13卷:160-164
    [83]张超,周东方,饶育萍,侯德亭FDTD方法分析高功率微波对大气的电离与击穿.强激光与粒子束.2009,21(5):719-723
    [84]杨丹,廖成.高功率电磁波脉冲在电离层中的传播.强激光与粒子束.2009,21(8):1221-1224
    [85]杨丹.高功率微波脉冲的耦合与传播研究.西南交通大学博士学位论文.2005
    [86]王秉中.计算电磁学.北京:科学出版社.2002
    [87]王诚泰.统计物理学.北京:清华大学出版社,1991
    [88]Wee Woo and J. S. DeGroot. Microwave Absorption and Plasma Heating Due to Microwave Breakdown in the Atmosphere. Phys. Fluids. February 1984,27 (2):475-487
    [89]翟厚涛VF/ELF电磁波在电离层中的传播机理研究.浙江大学硕士学位论文.2007
    [90]王磐,牛忠霞.高功率微波大气击穿阈值分析.现代雷达.2008,30(5):33-36
    [91]David J. Mayhall, Jick H. Yee, and Raymond A. Alvarez. High-power microwave bandwidth broadening by air breakdown.1992, Vol.1631:283
    [92]T. B. Zhang, H. Y. Chen, Y. Chen and R. Fan. Numerical simulation of high power microwave pulse propagation through the atmosphere. SPIE Vol.1872, Intense Microwave Pulses.1993:325-332
    [93]A. Taflove and S. C. Hagness, Computatioal Electrodynamics the Finite-Difference Time-Domain Method,3rd ed. Reading, MA:Artech House, Jun.2005
    [94]Marc Thevenot, Jean-Pierre Berenger and Thierry Monediere, etal., "A FDTD Scheme for the Computation of VLF-LF Propagation in the Anisotropic Earth-ionosphere Waveguide," Ann Telecommun.1999,54(5):297-310
    [95]杨丹,廖成.高功率电磁脉冲在电离层中的传播.强激光与粒子束.2009,21(8):1221-1224
    [96]邵维.空域差分—时域矩量法的研究及应用.电子科技大学博士学位论文.2006
    [971葛德彪,闫玉波.电磁波时域有限差分方法(第二版).西安:西安电子科技大学出版社,2005
    [98]忻孝康,刘儒,蒋伯初.计算流体力学.长沙:国防科技大学出版社,1989
    [99]赵永凯,高殿荣,梁启国,等.流体力学有限元分析中的边界条件处理.东北重型机械学院学报.1997,21(3):189-195
    [100]何友文.高功率微波激励的等离子体效应的概述.电波科学学报.2005,20(3):390-394
    [101]S. P. Kuo and Y. S. Zhang. Bragg scattering of electromagnetic waves by microwave produced plasma layers. Phys. Fluids B.1990,2 (3):667-673
    [102]G. E.Sieger, D. J.Mayhall, J. H. Yee. Numerical simulation of the propagation and absorption due to air breakdown of long microwave pulses.8th Int. Workshop on Laser Interaction and Related Plasma Phenomena, Monterey, Calif.,27 Oct.1987, Vol.8:139
    [103]赵朋和,廖成,唐涛,高清敏.高功率微波低空水平传输的FDTD求解与击穿分析.重庆邮电大学学报自然科学版.2010,22(4):431435
    [104]莫锦军,刘少斌,袁乃昌,张光甫.一种节省内存的降维时域有限差分法及其在散射计算中的应用.微波学报.2004,20(1):45-49
    [105]高本庆,Om P. Gandhi一种广义时域有限差分算法.电子学报.1993,21(3):31-36
    [106]王长清,祝西里.电磁场计算中的时域有限差分法.北京:北京大学出版社,1994
    [107]K. Wu, J. Schuster, R. Ohs, R. Luebbers. Application of moving window FDTD to modeling the effects of atmospheric variations and foliage on radio wave propagation over terrain.2004 IEEE Military Communications Conference 2004, Vol.3:1515-1521
    [108]唐涛,廖成,杨丹FDTD求解高功率微波大气传播问题的可行性研究.电波科学学报.2010,25(1):122-126
    [109]唐涛,廖成,钟选明,赵朋程.高功率微波大气传播数值计算的加速方法.微波学报.2010,26(1):19-21
    [110]D. V. Giri. High-Power Electromagnetic Radiators. Cambridge MA:Harvard Unversity. Press.2004, Ch.3-5
    [111]F. J. Agg. Ultra-wideband transmitter research. IEEE Trans. Plasma Sci.1998,26 (3):860-873
    [112]黄裕年.高功率微波武器即将进入武器库.微波学报.2003,19(1):12-15
    [113]D. V. Giri and F. M. Tesche. Classification of Intentional Electromagnetic Environments (IEME). IEEE Trans. Electromag. Compat.46 (3):322-327
    [114]E. Schamiloglu. High power microwave sources and applications. IEEE, Piscataway NJ, USA,2004
    [115]C. E. Baum. JOLT: a highly directive, very intensive, impulse-like radiator. Proc. IEEE.2004, Vol. 92:1096
    [116]D. Anderson and M. Lisak. Breakdown in air-filled microwave waveguides during pulsed operation. J. Appl. Phys.1984,56 (5):1414-1419
    [117]侯德亭,周东方,牛忠霞, 余仲秋.高功率微波有效电场强度对大气折射率的影响.强激光与粒子束.2004,16(9):1183-1185
    [118]李国翠,李国平,刘凤辉,苗志诚.华北地区水汽总量特征及其与地面水汽压关系.热带气象学报.2009,25(4):488-494
    [119]翁笃鸣,罗哲贤.山区地形气候.北京:气象出版社,1990
    [120]A. W. Ali. Nanosecond air breakdown parameters for electron and microwave beam propagation. Laser and Particle Beams.1988, vol.6:105-117
    [121]范瑞逢.谐波源及谐波理论基础.浙江电力.1994,Vol.6:52-58
    [122]赵韧,曹俊英.铝电解厂整流装置谐波计算.轻金属.1998,Vol.1:55-59
    [123]T. L. Chow. Mathematical Methods for Physicists:a concise introduction. Cambridge:Cambridge Univerisity Press,2000
    [124]A. D. MacDonald. Microwave Breakdown in Gases. New York, Wiley,1966
    [125]D. W. Scholfield, K. J. Hendricks, and F. J. Agee. Derivation of the effective E field for short electromagnetic pulse. Rev. Sci. Instrum.1994,65 (11):3592-3593
    [126]丁玉美,高西全.数字信号处理.陕西:西安电子科技大学出版社,2001
    [127]于宝祥.信号与系统(修订版).哈尔滨:哈尔滨工业大学出版社,2005
    [128]葛德彪,閆玉波.电磁波时域有限差分方法(第二版).西安:西安电子科技大学出版社,2005
    [129]胡广书.数字信号处理理论、算法与实现(第二版).北京:清华大学出版社,2003
    [130]D. W. Scholfield, J. M. Gahl, and Naoyuki Shimomura. Effective Electric Field for an Arbitrary Electromagnetic Pulse. IEEE Trans, on Plasma.1999,27 (2):628-632
    [131]S. P. Kuo and A. Ren, Frequency Up-conversion and Spectral Breaking of a High Power Microwave Pulse Propagating in a Self-generated Plasma. IEEE Plasma Science. Vancouver, BC, Canada, Jun 7-9,1993:184
    [132]陈红胜,王勇,陈抗生.一维不均匀介质中波传播瞬态响应的传输线模型分析.微波学报.2003,19(3):25-29
    [133]赵荣,侯德亭,陈勇,周东方.高功率微波在自生等离子体中的传输特性.信息与电子工程.2008,6(3):216-219
    [134]汪景烨,江长荫.非电离与电离混合大气层的折射指数.电波科学学报.2005,20(1):34-36
    [135]C. R. Rao and G. R. Govinda Raju. The ratio of diffusion coefficient to mobility for slow electrons in dry air. J. Phys. D:Appl. Phys.1971,4 (6):769

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700