糖皮质激素抑制气道上皮细胞修复的机制及干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分糖皮质激素诱导的亮氨酸拉链蛋白(GILZ)在人气道上皮细胞9HTE中的表达
     目的:明确糖皮质激素(GCs)地塞米松(DEX)诱导GILZ在人气道上皮细胞9HTE中的表达。
     方法:RT-PCR及Western Blot法检测DEX在不同时间点6小时、12小时及24小时作用后GILZ mRNA及蛋白的表达情况,同时细胞免疫荧光法检测GILZ蛋白的定位。
     结果:正常情况下,GILZ mRNA及蛋白在人气道上皮细胞9HTE的表达较低,而在DEX作用下GILZ mRNA及蛋白的表达均出现明显改变,6小时即明显增高,24小时仍持续高表达,同时观察到GILZ蛋白在9HTE细胞中主要定位在细胞质。
     结论:DEX能够快速并明显诱导人气道上皮细胞9HTE中GILZmRNA及蛋白的表达。
     第二部分小干扰RNA(si-RNA)沉默GILZ的筛选及鉴定
     目的:通过si-RNA技术设计合成三条GILZ siRNAs并筛选出GILZ沉默效果最佳的一条si-RNA用于后续实验。
     方法:设计并合成三条GILZ siRNAs:GILZ1si-RNA、GILZ2si-RNA及GILZ3si-RNA,通过脂质体2000分别转染进人气道上皮细胞9HTE,于沉默48小时后,收集细胞用Realtime-PCR、Western Blot及细胞免疫荧光法筛选并鉴定出沉默效果最佳的一条GILZ si-RNA。
     结果:通过对GILZ1si-RNA、GILZ2si-RNA及GILZ3si-RNA三条GILZ siRNAs的转染,筛选出GILZ3si-RNA为最佳的一条GILZsi-RNA,Realtime-PCR检测GILZ基因沉默效率平均可达55.8%,而通过Western Blot及细胞免疫荧光的检测发现其蛋白沉默效果显著。
     结论:通过si-RNA技术,成功合成鉴定获得一条沉默效果最佳的GILZ si-RNA,此为用于后续实验的关键。
     第三部分GILZ介导糖皮质激素抑制气道上皮细胞修复的研究
     目的:探讨GILZ介导GCs对MAPK-ERK信号通路、增殖及迁移的影响,明确其对气道上皮细胞修复的抑制作用。
     方法:在non-specific si-RNA及GILZ si-RNA转染48小时后收集细胞,Western Blot法检测人气道上皮细胞9HTE中Raf-1、Mek1/2、Erk1/2(MAPK-ERK信号通路因子)磷酸化蛋白及其总蛋白的表达,MTT、CFSE标记法检测细胞增殖情况,细胞划痕及transwell法检测
     细胞迁移情况。
     结果:DEX抑制了人气道上皮细胞9HTE中MAPK-ERK信号通路Raf-1、Mek1/2、Erk1/2磷酸化蛋白的表达,而对总蛋白的表达无明
     显影响,即抑制了MAPK-ERK信号通路的激活,同时也观察到DEX抑制了细胞的增殖和迁移。而GILZ si-RNA转染进人气道上皮细胞9HTE,GILZ的表达被抑制后,DEX对气道上皮细胞MAPK-ERK信号通路、增殖及迁移的抑制作用均明显减轻。
     结论:DEX能够抑制MAPK-ERK信号通路的激活、增殖及迁移,从而抑制了气道上皮细胞的修复作用,而DEX的这一抑制作用主要是通过GILZ介导的。
     第四部分维生素A对糖皮质激素抑制气道上皮细胞修复的干预研究
     目的:明确维生素A(VitA)在人气道上皮细胞9HTE中对GCs抑制气道上皮细胞修复的影响。
     方法:通过DEX及全反式维甲酸(ATRA)2干预24h后,ELISA法检测人气道上皮细胞9HTE培养上清液中EGF的表达,细胞免疫荧光及Western Blot法检测EGFR及磷酸化EGFR的表达;同时WesternBlot检测人气道上皮细胞9HTE中Raf-1、Mek1/2、Erk1/2(MAPK-ERK信号通路因子)磷酸化蛋白及其总蛋白的表达,MTT法检测细胞增殖情况,细胞划痕及transwell实验检测细胞迁移情况。
     结果:ATRA对人气道上皮细胞9HTE EGF的分泌无明显影响,但对EGFR及其磷酸化的蛋白的表达有促进作用。ATRA同时也增加了MAPK-ERK信号通路Raf-1、Mek1/2、Erk1/2磷酸化蛋白的表达从而减轻了DEX对MAPK-ERK信号通路激活的抑制作用;ATRA在早期对细胞增殖无明显影响,但明显促进了9HTE细胞的迁移。
     结论:ATRA能够诱导EGFR磷酸化蛋白的表达从而激活EGFR信号通路,这也激活了下游的MAPK-ERK信号通路并促进了9HTE细胞的迁移,从而降低了DEX抑制气道上皮细胞修复的副效应。
PART ONE
     THE EXPESSION OF GLUCOCORTICOID-INDUCEDLEUCINE ZIPPER(GILZ) IN HUMAN AIRWAY EPITHELIALCELLS9HTE
     Objective: To explore the expression of glucocorticoid-induced leucinezipper in human airway epithelial cells9HTE treated with glucocorticoiddexamethasone.
     Methods: RT-PCR and western Blot detected the expressions of GILZmRNA and protein treated with DEX for6h,12h and24h.Immunofluorescence assay located GILZ protein.
     Results: The expressions of GILZ mRNA and protein were low in9HTEcells under normal circumstances, but were significantly changed. Itshowed that the expressions of GILZ mRNA and protein increasedobviously after DEX treated for6h, and continued to maintain a high level
     until24h. We also observed GILZ protein was located in the cytoplasm of
     9HTE cells.
     Conclusion: DEX quickly and significantly induced the expressions ofGILZ mRNA and protein in airway epithelial cells9HTE.
     PART TWOTHE SCREENING AND IDENTIFICATION OF GILZSILENCING BY SMALL INTERFERING RNA(si-RNA)
     Objective: To screen the best si-RNA for silencing GILZ from three GILZsiRNAs that were designed and synthesized by si-RNA technology, and usefor subsequent experiments.
     Methods: We designed and synthesized three GILZ siRNAs: GILZ1si-RNA, GILZ2si-RNA, GILZ3si-RNA. Then they were transfected intohuman airway epithelial cells9HTE via lipofectamine2000.9HTE cellswere collected after were silenced for48h, and we screened and identifiedthe GILZ si-RNA that had the best silencing effect by Realtime-PCR,Western Blot and immunofluorescence assays.
     Results: We screened that GILZ3si-RNA was the best GILZ si-RNA after
     GILZ1si-RNA, GILZ2si-RNA, GILZ3si-RNA were transfected into9HTE
     cells. The average silencing efficiency of GILZ gene was up to55.8%byRealtime-PCR, and the silencing efficiency of GILZ protein was significant
     by Western Blot and immunofluorescence.
     Conclusion: We successfully synthesized and identified to obtain a GILZsi-RNA for best silencing effect by si-RNA technology, and it was the keyof subsequent experiments.
     PART THREETHE STUDY OF GLUCOCORTICOIDS INHIBITING humanAIRWAY EPITHELIAL CELLS REPAIR WAS MEDIARED BYGILZ
     Objective: To explore the influence of GCs mediated by GILZ onMAPK-ERK signaling pathway, proliferation and migration, and clarify theinhibitory effect on airway epithelial cells repair.
     Methods: We collected cells after non-specific si-RNA and GILZ si-RNAwere transfected into human airway epithelial cells9HTE. Then wedetected the expressions of phosphorylated and total proteins of Raf-1, Mek1/2, Erk1/2(components of the MAPK-ERK signaling pathway) in9HTE cells. MTT and CFSE assays were used to detect the cellproliferation. The cell migration was tested by wound-healing and transwellassays.
     Results: DEX inhibited phosphorylated protein expressions of Raf-1,Mek1/2, Erk1/2of the MAPK-ERK signaling pathway in human airwayepithelial cells9HTE, and had no significant effect on total proteinexpression. It showed that DEX inhibited the activation of MAPK-ERKsignaling pathway. We also observed that DEX inhibited the cellproliferation and migration. After GILZ si-RNA was transfected into9HTEcells to silence the expression of GILZ, the inhibitory effect onMAPK-ERK signaling pathway, proliferation and migration weresignificantly reduced.
     Conclusion: DEX could inhibit the activation of MAPK-ERK signalingpathway, proliferation and migration, thereby suppressing the repair ofairway epithelial cells. The inhibitory effect of DEX was mainly mediatedby GILZ.
     PART FOURTHE INTERVENTION STUDY OF VITAMIN A ONGLUCOCORTICOIDS INHIBITING AIRWAY EPITHELIALCELLS REPAIR
     Objective: To explore the effect of VitA on GCs inhibiting human airwayepithelial cells repair.
     Methods: ELISA assay was used to detect the EGF expression of culturesupernatant in human airway epithelialcells9HTE that were treated byDEX and ATRA for24h, and immunofluorescence and Western Blot assaystested the EGFR expressions of phosphorylated and total proteins. Then wedetected the expressions of phosphorylated and total proteins of Raf-1,Mek1/2, Erk1/2(components of the MAPK-ERK signaling pathway) in9HTE cells. MTT assay was used to detect the cell proliferation. The cellmigration was tested by wound-healing and transwell assays.
     Results: ATRA had no significant effect on the secretion of EGF in9HTE,but promoted the EGFR expressions of phosphorylated and total proteins.ATRA also increased the phosphorylation of Raf-1, Mek1/2, Erk1/2toreduce the inhibitory effect of DEX on MAPK-ERK signaling pathway. Inthe early stage ATRA did not influence the cell proliferation, butsignificantly increased the cell migration.
     Conclusion: ATRA could induce the phosphorylated protein expression ofEGFR to activate EGFR signaling pathway, then activated the downstream MAPK-ERK signaling pathway, and promoted the cell migration, therebyreducing the side-effect of DEX on inhibiting airway epithelial cells repair.
引文
[1] Zalewska M, Furmańczyk K, Jaworski S, et al. The prevalence of asthma anddeclared asthma in Poland on the basis of ECAP survey using correspondenceanalysis [J]. Comput Math Methods Med.2013,2013:597845.Epub2013Jan16
    [2] Subbarao P, Mandhane PJ, Sears MR. Asthma: epidemiology, etiology and riskfactors [J]. CMAJ.2009,181:E181-90
    [3] Tam A, Wadsworth S, Dorscheid D, et al. The airway epithelium: more than just astructural barrier [J]. Ther Adv Respir Dis.2011,5:255-73
    [4] Knight DA, Holgate ST. The airway epithelium: structural and functional propertiesin health and disease [J]. Respirology.2003,8:432-46
    [5] Holgate ST, Lackie P, Wilson S, et al. Bronchial epithelium as a key regulator ofairway allergen sensitization and remodeling in asthma [J]. Am J Respir Crit CareMed.2000,162:S113-7
    [6] Ordo ez CL, Fahy JV. Epithelial desquamation in asthma [J]. Am J Respir CritCare Med.2001,164:1997
    [7] Holgate ST. The airway epithelium is central to the pathogenesis of asthma [J].Allergol Int.2008,57:1-10
    [8] Barbato A, Turato G, Baraldo S, et al. Epithelial damage and angiogenesis in theairways of children with asthma [J]. Am J Respir Crit Care Med.2006,174:975-81
    [9] Dorscheid DR, Wojcik KR, Sun S, et al. Apoptosis of airway epithelial cellsinduced by corticosteroids [J]. Am J Respir Crit Care Med.2001,164:1939-47
    [10]Barnes PJ, Adcock I. Anti-inflammatory actions of steroids: molecular mechanisms[J]. Trends Pharmacol Sci.1993,14:436-41
    [11]Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids-newmechanisms for old drugs [J]. N Engl J Med.2005,353:1711-23
    [12]Hoffman GS. Immunosuppressive therapy for autoimmune diseases [J]. AnnAllergy.1993,70:263-74
    [13]Spangler DL. The role of inhaled corticosteroids in asthma treatment: a healtheconomic perspective [J]. Am J Manag Care.2012,18:S35-9
    [14]Kardos Z. Treatment of chronic obstructive pulmonary disease with inhaledpharmacotherapy: role of corticosteroids [J]. Acta Pharm Hung.2012,82:33-41
    [15]De Bosscher K, Vanden Berghe W, Haegeman G. Mechanisms of anti-inflammatoryaction and of immunosuppression by glucocorticoids: negative interference ofactivated glucocorticoid receptor with transcription factors [J]. J Neuroimmunol.2000,109:16-22
    [16]Davies L, Karthikeyan N, Lynch JT, et al. Cross talk of signaling pathways in theregulation of the glucocorticoid receptor function [J]. Mol Endocrinol.2008,22:1331-44
    [17]White SR, Dorscheid DR. Corticosteroid-induced apoptosis of airway epithelium: apotential mechanism for chronic airway epithelial damage in asthma [J]. Chest.2002,122:278S-84S
    [18]Eddleston J, Herschbach J, Wagelie-Steffen AL, et al. The anti-inflammatory effectof glucocorticoids is mediated by glucocorticoid-induced leucine zipper inepithelial cells [J]. J Allergy Clin Immunol.2007,119:115-22
    [19]Guilbert TW, Moran WJ, Zeiger RS, et al. Long-term inhaled corticosteroids inpreschool children at high risk for asthma [J]. N Engl J Med.2006,354:1985-97
    [20]Benayoun L, Letuve S, Druilhe A, et al. Regulation of peroxisomeproliferator-activated receptor gamma expression in human asthmatic airways:relationship with proliferation, apoptosis, and airway remodeling [J]. Am J RespirCrit Care Med.2001,164:1467-94
    [21]Wadsworth SJ, Nijmeh HS, Hall IP. Glucocorticoids increase repair potential in a novel invitro human airway epithelial wounding model [J]. J Clin Immunol.2006,26:376-87
    [22]Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinasepathways: regulation and physiological functions [J]. Endocr Rev.2001,22:153-83
    [23]Montiel M, Quesada J, Jiménez E. Activation of calcium-dependent kinases andepidermal growth factor receptor regulate muscarinic acetylcholinereceptor-mediated MAPK/ERK activation in thyroid epithelial cells [J]. Cell Signal.2007,19:2138-46
    [24]Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinasecascade for the treatment of cancer [J]. Oncogene.2007,26:3291-310
    [25]Lind CR, Gray CW, Pearson AG, et al. The mitogen-activated/extracellularsignal-regulated kinase kinase1/2inhibitor U0126induces glial fibrillary acidicprotein expression and reduces the proliferation and migration of C6glioma cells[J]. Neuroscience.2006,141:1925-33
    [26]Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids--newmechanisms for old drugs [J]. N Engl J Med.2005,353:1711-23
    [27]Ayroldi E, Zollo O, Macchiarulo A, et al. Glucocorticoid-induced leucine zipperinhibits the Raf-extracellular signal-regulated kinase pathway by binding to Raf-1[J]. Mol Cell Biol.2002,22:7929-41
    [28]Takamura K, Nasuhara Y, Kobayashi M, et al. Retinoic acid inhibitsinterleukin-4-induced eotaxin production in a human bronchial epithelial cell line[J]. Am J Physiol Lung Cell Mol Physiol.2004,286:L777-85
    [29]Druilhe A, Zahm JM, Benayoun L, et al. Epithelium expression and function ofretinoid receptors in asthma [J]. Am J Respir Cell Mol Biol.2008,38:276-82
    [30]Shoseyov D, Bibi H, Biesalski H, et al. Repeated allergen challenge in ratsincreases vitamin A consumption [J]. Chest.2002,122:1407-11
    [31]Belloni PN, Garvin L, Mao CP, et al. Effects of all-trans-retinoic acid in promotingalveolar repair [J]. Chest.2000,117:235S-41S
    [32]Miller LA, Cheng LZ, Wu R. Inhibition of epidermal growth factor-like growthfactor secretion in tracheobronchial epithelial cells by vitamin A [J]. Cancer Res.1993,53:2527-33
    [33]Edin ML, Juliano RL. Raf-1serine338phosphorylation plays a key role inadhesion-dependent activation of extracellular signal-regulated kinase by epidermalgrowth factor [J]. Mol Cell Biol.2005,25:4466-75
    [34]Burgel PR, Nadel JA. Roles of epidermal growth factor receptor activation inepithelial cell repair and mucin production in airway epithelium [J]. Thorax.2004,59:992-6
    [35]Arora P, Kumar V, Batra S. Vitamin A status in children with asthma [J]. PediatrAllergy Immunol.2002,13:223-6
    [36]Luo ZX, Liu EM, Luo J. Vitamin A defi ciency and wheezing [J]. World J Pediatr.2010,6:81-4
    [1] Gomez M, Raju SV, Viswanathan A, et al. Ethanol upregulatesglucocorticoid-induced leucine zipper expression and modulates cellularinflammatory responses in lung epithelial cells [J]. J Immunol.2010,184:5715-22
    [2] Godot V, Garcia G, Capel F, et al. Dexamethasone and IL-10stimulateglucocorticoid-induced leucine zipper synthesis by human mast cells [J]. Allergy.2006,61:886-90
    [3] K berle M, G ppel D, Grandl T, et al. Yersinia enterocolitica YopT and Clostridiumdifficile toxin B induce expression of GILZ in epithelial cells [J]. PLoS One.2012,7:e40730
    [4] Van der Laan S, Sarabdjitsingh RA, Van Batenburg MF, et al. Chromatinimmunoprecipitation scanning identifies glucocorticoid receptor binding regions inthe proximal promoter of a ubiquitously expressed glucocorticoid target gene inbrain [J]. J Neurochem.2008,106:2515-23
    [5] Aguilar DC, Strom J, Xu B, et al. Expression of Glucocorticoid-Induced LeucineZipper (GILZ) in Cardiomyocytes [J]. Cardiovasc Toxicol.2012,Oct23
    [6] Eddleston J, Herschbach J, Wagelie-Steffen AL, et al. The anti-inflammatory effectof glucocorticoids is mediated by glucocorticoid-induced leucine zipper inepithelial cells [J]. J Allergy Clin Immunol.2007,119:115-22
    [7] Zhang W, Yang N, Shi XM. Regulation of mesenchymal stem cell osteogenicdifferentiation by glucocorticoid-induced leucine zipper (GILZ)[J]. J Biol Chem.2008,283:4723-9
    [8] Crystal RG, Randell SH, Engelhardt JF, et al. Airway epithelial cells: currentconcepts and challenges [J]. Proc Am Thorac Soc.2008,5:772-7
    [9] Spina D. Epithelium smooth muscle regulation and interactions [J]. Am J RespirCrit Care Med.1998,158:S141-5
    [10]Evans MJ, Plopper CG. The role of basal cells in adhesion of columnar epitheliumto airway basement membrane [J]. Am Rev Respir Dis.1988,138:481-3
    [11]Rock JR, Onaitis MW, Rawlins EL, et al. Basal cells as stem cells of the mousetrachea and human airway epithelium [J]. Proc Natl Acad Sci U S A.2009,106:12771-5
    [12]Rock JR, Randell SH, Hogan BL. Airway basal stem cells: a perspective on theirroles in epithelial homeostasis and remodeling [J]. Dis Model Mech.2010,3:545-56
    [13]De Water R, Willems LN, Van Muijen GN, et al. Ultrastructural localization ofbronchial antileukoprotease in central and peripheral human airways by agold-labeling technique using monoclonal antibodies [J]. Am Rev Respir Dis.1986,133:882-90
    [14]Grugan KD, Ma C, Singhal S, et al. Dual regulation of glucocorticoid-inducedleucine zipper (GILZ) by the glucocorticoid receptor and the PI3-kinase/AKTpathways in multiple myeloma [J]. J Steroid Biochem Mol Biol.2008,110:244-54
    [15]Eddleston J, Herschbach J, Wagelie-Steffen AL, et al. The anti-inflammatory effectof glucocorticoids is mediated by glucocorticoid-induced leucine zipper inepithelial cells [J]. J Allergy Clin Immunol.2007,119:115-22
    [1] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of21-nucleotide RNAsmediate RNA interference in cultured mammalian cells [J]. Nature.2001,411:494-8
    [2] Caplen NJ, Parrish S, Imani F, et al. Specific inhibition of gene expression by smalldouble-stranded RNAs in invertebrate and vertebrate systems [J]. Proc Matl AcadSci U S A.2001,98:9742-7
    [3] Rettig GR, Behlke MA. Progress toward in vivo use of siRNA-II [J]. Mol Ther.2012,20:483-512
    [4] D′Adamio F, Zollo O, Moraca R, et al. A new dexamethasone-induced gene of theleucine zipper family protects T lymphocytes from TCR/CD3-activated cell death[J]. Immunity.1997,7:803-12
    [5] Tynan SH, Lundeen SG, Allan GF. Cell type-specific bidirectional regulation of theglucocorticoid-induced leucine zipper (GILZ) gene by estrogen [J]. J SteroidBiochem Mol Biol.2004,91:225-39
    [6] Bhalla V, Soundararajan R, Pao AC, et al. Disinhibitory pathways for control ofsodium transport: regulation of ENaC by SGK1and GILZ [J]. Am J Physiol RenalPhysiol.2006,291:F714-21
    [7] Fiol DF, Mak SK, Kultz D. Specific TSC22domain transcripts are hypertonicallyinduced and alternatively spliced to protect mouse kidney cells during osmoticstress [J]. FEBS J.2007,274:109-24
    [8] Ayroldi E, Migliorati G, Bruscoli S, et al. Modulation of T-cell activation by theglucocorticoid-induced leucine zipper factor via inhibition of nuclear factor-kappaB[J]. Blood.2001,98:743-53
    [9] Delfino DV, Agostini M, Spinicelli S, et al. Decrease of Bcl-xL and augmentationof thymocyte apoptosis in GILZ overexpressing transgenic mice [J]. Blood.2004,104:4134-41
    [10]Ayroldi E, Zollo O, Bastianelli A, et al. GILZ mediates the antiproliferative activityof glucocorticoids by negative regulation of Ras signaling [J]. J Clin Invest,2007,117:1605-15
    [11]Cannarile L, Cuzzocrea S, Santucci L, et al. Glucocorticoid-induced leucine zipperis protective in Th1-mediated models of colitis [J]. Gastroenterology.2009,136:530-41
    [12]Hamdi H, Godot V, Maillot MC, et al. Induction of antigen-specific regulatory Tlymphocytes by human dendritic cells expressing the glucocorticoid-inducedleucine zipper [J]. Blood.2007,110:211-9
    [13]Soundararajan R, Melters D, Shih IC, et al. Epithelial sodium channel regulated bydifferential composition of a signaling complex [J]. Proc Natl Acad Sci U S A.2009,106:7804-9
    [14]Soundararajan R, Zhang TT, Wang J, et al. A novel role for glucocorticoid-inducedleucine zipper protein in epithelial sodium channel-mediated sodium transport [J]. JBiol Chem.2005,280:39970-81
    [15]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference bydouble-stranded RNA in Caenorhabditis elegans [J]. Nature.1998,391:806-11
    [16]Bernstein E, Candy AA, Hammond SM, et al. Role for a bidentate ribonuclease inthe initiation step of RNA interference [J]. Nature.2001,409:363-6
    [17]Hammond SM, Boettcher S, Caudy AA, et al. Argonaute2, a link between geneticand biochemical analyses of RNAi [J]. Science.2001,293:1146-50
    [18]Yang N, Zhang W, Shi XM. Glucocorticoid-induced leucine zipper (GILZ)mediates glucocorticoid action and inhibits inflammatory cytokine-induced COX-2expression [J]. J Cell Biochem.2008,103:1760-71
    [19]Beaulieu E, Ngo D, Santos L, et al. Glucocorticoid-induced leucine zipper is anendogenous antiinflammatory mediator in arthritis [J]. Arthritis Rheum.2010,62:2651-61
    [20]Cohen N, Mouly E, Hamdi H, et al. GILZ expression in human dendritic cellsredirects their maturation and prevents antigen-specific T lymphocyte response [J].Blood.2006,107:2037-44
    [1] Erjef lt JS, Erjef lt I, Sundler F, et al. In vivo restitution of airway epithelium [J].Cell Tissue Res.1995,281:305-16
    [2] Dunnill MS, Massarella GR, Anderson JA. A comparison of the quantitativeanatomy of the bronchi in normal subjects, in status asthmaticus, in chronicbronchitis, and in emphysema [J]. Thorax.1969,24:176-9
    [3] Dorscheid DR, Low E, Conforti A, et al. Corticosteroid-induced apoptosis in mouseairway epithelium: effect in normal airways and after allergen-induced airwayinflammation [J]. J Allergy Clin Immunol.2003,111:360-6
    [4] De Boer WI, Sharma HS, Baelemans SM, et al. Altered expression of epithelialjunctional proteins in atopic asthma: possible role in inflammation [J]. Can JPhysiol Pharmacol.2008,86:105-12
    [5] Trautmann A, Kruger K, Akdis M, et al. Apoptosis and loss of adhesion ofbronchial epithelial cells in asthma [J]. Int Arch Allergy Immunol.2005,138:142-50
    [6] Kicic A, Sutanto EN, Stevens PT, et al. Intrinsic biochemical and functionaldifferences in bronchial epithelial cells of children with asthma [J]. Am J RespirCrit Care Med.2006,174:1110-8
    [7] Stevens PT, Kicic A, Sutanto EN, et al. Dysregulated repair in asthmatic paediatricairway epithelial cells: the role of plasminogen activator inhibitor-1[J]. Clin ExpAllergy.2008,38:1901-10
    [8] Hackett TL, Warner SM, Stefanowicz D, et al. Induction of epithelial-mesenchymaltransition in primary airway epithelial cells from patients with asthma bytransforming growth factor-beta1[J]. Am J Respir Crit Care Med.2009,180:122-33
    [9] Munck A, Mendel DB, Smith LI, et al. Glucocorticoid receptor and actions [J]. AmRev Respir Dis.1990,141:S2-10
    [10]Schleimer PR. Effects of glucocorticosteroids on inflammatory cells relevant totheir therapeutic applications in asthma [J]. Am Rev Respir Dis.1990,141:S59-69
    [11]Guilbert TW, Moran WJ, Zeiger RS, et al. Long-term inhaled corticosteroids inpreschool children at high risk for asthma [J]. N Engl J Med.2006,354:1985-97
    [12]Dorscheid DR, Patchell BJ, Estrada O, et al. Effects of corticosteroid-inducedapoptosis on airway epithelial wound closure in vitro [J]. Am J Physiol Lung CellMol Physiol.2006,291:L794-801
    [13]刘静月,符州,罗征秀,等.糖皮质激素诱导人气道上皮9HTE0凋亡的研究[J].免疫学杂志.2011,27(9):781-784
    [14]Benayoun L, Letuve S, Druilhe A, et al. Regulation of peroxisomeproliferator-activated receptor gamma expression in human asthmatic airways:relationship with proliferation, apoptosis, and airway remodeling [J]. Am J RespirCrit Care Med.2001,164:1467-94
    [15]Wadsworth SJ, Nijmeh HS, Hall IP. Glucocorticoids increase repair potential in anovel in vitro human airway epithelial wounding model [J]. J Clin Immunol.2006,26:376-87
    [16]Ayroldi E, Migliorati G, Bruscoli S, et al. Modulation of T-cell activation by theglucocorticoid-induced leucine zipper factor via inhibition of nuclear factor-kappaB[J]. Blood.2001,98:743-53
    [17]Mittelstadt PR, Ashwell JD. Inhibition of AP-1by the Glucocorticoid-inducibleProtein GILZ [J]. J Biol Chem.2001,276:29603-10
    [18]Yang N, Zhang W, Shi XM. Glucocorticoid-induced leucine zipper (GILZ)mediates glucocorticoid action and inhibits inflammatory cytokine-induced COX-2expression [J]. J Cell Biochem.2008,103:1760-71
    [19]Beaulieu E, Ngo D, Santos L, et al. Glucocorticoid-induced leucine zipper is anendogenous antiinflammatory mediator in arthritis [J]. Arthritis Rheum.2010,62:2651-61
    [20]Wadsworth SJ, Nijmeh HS, Hall IP. Glucocorticoids increase repair potential in a novel invitro human airway epithelial wounding model [J]. J Clin Immunol.2006,26:376-87
    [21]Montiel M, Quesada J, Jiménez E. Activation of calcium-dependent kinases andepidermal growth factor receptor regulate muscarinic acetylcholinereceptor-mediated MAPK/ERK activation in thyroid epithelial cells [J]. Cell Signal.2007,19:2138-46
    [22]Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinasecascade for the treatment of cancer [J]. Oncogene.2007,26:3291-310
    [23]Lind CR, Gray CW, Pearson AG, et al. The mitogen-activated/extracellularsignal-regulated kinase kinase1/2inhibitor U0126induces glial fibrillary acidicprotein expression and reduces the proliferation and migration of C6glioma cells[J]. Neuroscience.2006,141:1925-33
    [24]Ayroldi E, Zollo O, Macchiarulo A, et al. Glucocorticoid-Induced Leucine ZipperInhibits the Raf-Extracellular Signal-Regulated Kinase Pathway by Binding toRaf-1[J]. Mol Cell Biol.2002,22:7929-41
    [25]Widén C, Zilliacus J, Gustafsson JA, et al. Glucocorticoid receptor interaction with14-3-3and Raf-1, a proposed mechanism for cross-talk of two signal transductionpathways [J]. J Biol Chem.2000,275:39296-301
    [26]Rider LG, Hirasawa N, Santini F, et al. Activation of the mitogen-activated proteinkinase cascade is suppressed by low concentrations of dexamethasone in mast cells[J]. J Immunol.1996,157:2374-80
    [1] Arora P, Kumar V, Batra S. Vitamin A status in children with asthma [J]. PediatrAllergy Immunol.2002,13:223-6
    [2] Luo ZX, Liu EM, Luo J. Vitamin A defi ciency and wheezing [J]. World J Pediatr.2010,6:81-4
    [3] Miller LA, Cheng LZ, Wu R. Inhibition of epidermal growth factor-like growthfactor secretion in tracheobronchial epithelial cells by vitamin A [J]. Cancer Res.1993,53:2527-33
    [4] Edin ML, Juliano RL. Raf-1serine338phosphorylation plays a key role inadhesion-dependent activation of extracellular signal-regulated kinase by epidermalgrowth factor [J]. Mol Cell Biol.2005,25:4466-75
    [5] Burgel PR, Nadel JA. Roles of epidermal growth factor receptor activation inepithelial cell repair and mucin production in airway epithelium [J]. Thorax.2004,59:992-6
    [6] Takamura K, Nasuhara Y, Kobayashi M, et al. Retinoic acid inhibitsinterleukin-4-induced eotaxin production in a human bronchial epithelial cell line[J]. Am J Physiol Lung Cell Mol Physiol.2004,286:L777-85
    [7] Druilhe A, Zahm JM, Benayoun L, et al. Epithelium expression and function ofretinoid receptors in asthma [J]. Am J Respir Cell Mol Biol.2008,38:276-82
    [8] McGowan SE, Smith J, Holmes AJ, et al. Vitamin A deficiency promotes bronchialhyperreactivity in rats by altering muscarinic M(2) receptor function [J]. Am JPhysiol Lung Cell Mol Physiol.2002,282:L1031-9
    [9] Belloni PN, Garvin L, Mao CP, et al. Effects of all-trans-retinoic acid in promotingalveolar repair [J]. Chest.2000,117:235S-41S
    [10]Wadsworth SJ, Nijmeh HS, Hall IP. Glucocorticoids increase repair potential in anovel in vitro human airway epithelial wounding model [J]. J Clin Immunol.2006,26:376-87
    [11]Miller LA, Cheng LZ, Wu R. Inhibition of epidermal growth factor-like growthfactor secretion in tracheobronchial epithelial cells by vitamin A [J]. Cancer Res.1993,53:2527-33
    [12]Baybutt RC, Smith BW, Donskaya EV, et al. The proliferative effects of retinoicacid on primary cultures of adult rat type II pneumocytes depend upon cell density[J]. In Vitro Cell Dev Biol Anim.2010,46:20-7
    [13]Edin ML, Juliano RL. Raf-1serine338phosphorylation plays a key role inadhesion-dependent activation of extracellular signal-regulated kinase by epidermalgrowth factor [J]. Mol Cell Biol.2005,25:4466-75
    [14]Duquesnes N, Vincent F, Morel E, et al. The EGF receptor activates ERK but notJNK Ras-dependently in basal conditions but ERK and JNK activation pathwaysare predominantly Ras-independent during cardiomyocyte stretch [J]. Int J BiochemCell Biol.2009,41:1173-81
    [15]Montiel M, Quesada J, Jiménez E. Activation of calcium-dependent kinases andepidermal growth factor receptor regulate muscarinic acetylcholinereceptor-mediated MAPK/ERK activation in thyroid epithelial cells [J]. Cell Signal.2007,19:2138-46
    [16]Kashimata M, Sayeed S, Ka A, et al. The ERK-1/2signaling pathway is involved inthe stimulation of branching morphogenesis of fetal mouse submandibular glandsby EGF [J]. Dev Biol.2000,220:183-96
    [17]Pasonen-Sepp nen SM, Maytin EV, T rr nen KJ, et al. All-trans retinoicacid-induced hyaluronan production and hyperplasia are partly mediated by EGFRsignaling in epidermal keratinocytes [J]. J Invest Dermatol.2008,128:797-807
    [18]Song X, Xu A, Pan W, et al. Nicotinamide attenuates aquaporin3overexpressioninduced by retinoic acid through inhibition of EGFR/ERK in cultured human skinkeratinocytes [J]. Int J Mol Med.2008,22:229-36
    [19]Crosby LM, Waters CM. Epithelial repair mechanisms in the lung [J]. Am J PhysiolLung Cell Mol Physiol.2010,298:L715-31
    [1] Barnes PJ, Adcock I. Anti-inflammatory actions of steroids: molecular mechanisms[J]. Trends Pharmacol Sci.1993,14:436-41
    [2] Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids--newmechanisms for old drugs [J]. N Engl J Med.2005,353:1711-23
    [3] Hoffman GS. Immunosuppressive therapy for autoimmune diseases [J]. AnnAllergy.1993,70:263-74
    [4] Spangler DL. The role of inhaled corticosteroids in asthma treatment: a healtheconomic perspective [J]. Am J Manag Care.2012,18:S35-9
    [5] Kardos Z. Treatment of chronic obstructive pulmonary disease with inhaledpharmacotherapy: role of corticosteroids [J]. Acta Pharm Hung.2012,82:33-41
    [6] Kumar R, Thompson EB. Gene regulation by the glucocorticoid receptor: structure:function relationship [J]. J Steroid Biochem Mol Biol.2005,94:383-94
    [7] Giguere V, Hollenberg SM, Rosenfeld MG, et al. Functional domains of the humanglucocorticoid receptor [J]. Cell.1986,46:645-52
    [8] Goulding NJ, Guyre PM. Regulation of inflammation by lipocortin1[J]. ImmunolToday.1992,13:295-7
    [9] Payne DN, Adcock IM. Molecular mechanisms of corticosteroid actions [J].Paediatr Respir Rev.2001,2:145-50
    [10]Abraham SM, Lawrence T, Kleiman A, et al. Antiinflammatory effects ofdexamethasone are partly dependent on induction of dual specificity phosphatase1[J]. J Exp Med.2006,203:1883-9
    [11]De Bosscher K, Vanden Berghe W, Haegeman G. Mechanisms of anti-inflammatoryaction and of immunosuppression by glucocorticoids: negative interference ofactivated glucocorticoid receptor with transcription factors [J]. J Neuroimmunol.2000,109:16-22
    [12]Davies L, Karthikeyan N, Lynch JT, et al. Cross talk of signaling pathways in theregulation of the glucocorticoid receptor function [J]. Mol Endocrinol.2008,22:1331-44
    [13]Gottlicher M, Heck S, Herrlich P. Transcriptional cross-talk, the second mode ofsteroid hormone receptor action [J]. J Mol Med.1998,76:480-9
    [14]Oakley RH, Jewell CM, Yudt MR, et al. The dominant negative activity of thehuman glucocorticoid receptor beta isoform. Specificity and mechanisms of action[J]. J Biol Chem.1999,274:27857-66
    [15]D′Adamio F, Zollo O, Moraca R, et al. A new dexamethasone-induced gene of theleucine zipper family protects T lymphocytes from TCR/CD3-activated cell death[J]. Immunity.1997,7:803-12
    [16]Tynan SH, Lundeen SG, Allan GF. Cell type-specific bidirectional regulation of theglucocorticoid-induced leucine zipper (GILZ) gene by estrogen [J]. J SteroidBiochem Mol Biol.2004,91:225-39
    [17]Bhalla V, Soundararajan R, Pao AC, et al. Disinhibitory pathways for control ofsodium transport: regulation of ENaC by SGK1and GILZ [J]. Am J Physiol RenalPhysiol.2006,291:F714-21
    [18]Fiol DF, Mak SK, Kultz D. Specific TSC22domain transcripts are hypertonicallyinduced and alternatively spliced to protect mouse kidney cells during osmoticstress [J]. FEBS J.2007,274:109-24
    [19]Ayroldi E, Riccardi C. Glucocorticoid-induced leucine zipper (GILZ): a newimportant mediator of glucocorticoid action [J]. FASEB J.2009,23:3649-58
    [20]Asselin-Labat ML, David M, Biola-Vidamment A, et al. GILZ, a new target for thetranscription factor FoxO3, protects T lymphocytes from interleukin-2withdrawal-induced apoptosis [J]. Blood.2004,104:215-23
    [21]Soundararajan R, Wang J, Melters D, et al. Differential activities ofglucocorticoid-induced leucine zipper protein isoforms [J]. J Biol Chem,2007,282(50):36303-13.
    [22]Gomez M, Raju SV, Viswanathan A, et al. Ethanol upregulatesglucocorticoid-induced leucine zipper expression and modulates cellularinflammatory responses in lung epithelial cells [J]. J Immunol.2010,184:5715-22
    [23]Godot V, Garcia G, Capel F, et al. Dexamethasone and IL-10stimulateglucocorticoid-induced leucine zipper synthesis by human mast cells [J]. Allergy.2006,61:886-90
    [24]K berle M, G ppel D, Grandl T, et al. Yersinia enterocolitica YopT and Clostridiumdifficile toxin B induce expression of GILZ in epithelial cells [J]. PLoS One.2012,7:e40730
    [25]Van der Laan S, Sarabdjitsingh RA, Van Batenburg MF, et al. Chromatinimmunoprecipitation scanning identifies glucocorticoid receptor binding regions inthe proximal promoter of a ubiquitously expressed glucocorticoid target gene inbrain [J]. J Neurochem.2008,106:2515-23
    [26]Aguilar DC, Strom J, Xu B, et al. Expression of Glucocorticoid-Induced LeucineZipper (GILZ) in Cardiomyocytes [J]. Cardiovasc Toxicol.2012,Oct23
    [27]Ayroldi E, Migliorati G, Bruscoli S, et al. Modulation of T-cell activation by theglucocorticoid-induced leucine zipper factor via inhibition of nuclear factor-kappaB[J]. Blood.2001,98:743-53
    [28]Delfino DV, Agostini M, Spinicelli S, et al. Decrease of Bcl-xL and augmentationof thymocyte apoptosis in GILZ overexpressing transgenic mice [J]. Blood.2004,104:4134-41
    [29]Ayroldi E, Zollo O, Bastianelli A, et al. GILZ mediates the antiproliferative activityof glucocorticoids by negative regulation of Ras signaling [J]. J Clin Invest.2007,117:1605-15
    [30]Cannarile L, Cuzzocrea S, Santucci L, et al. Glucocorticoid-induced leucine zipperis protective in Th1-mediated models of colitis [J]. Gastroenterology.2009,136:530-41
    [31]Hamdi H, Godot V, Maillot MC, et al. Induction of antigen-specific regulatory Tlymphocytes by human dendritic cells expressing the glucocorticoid-inducedleucine zipper [J]. Blood.2007,110:211-9
    [32]Soundararajan R, Melters D, Shih IC, et al. Epithelial sodium channel regulated bydifferential composition of a signaling complex [J]. Proc Natl Acad Sci U S A.2009,106:7804-9
    [33]Soundararajan R, Zhang TT, Wang J, et al. A novel role for glucocorticoid-inducedleucine zipper protein in epithelial sodium channel-mediated sodium transport [J]. JBiol Chem.2005,280:39970-81
    [34]Eddleston J, Herschbach J, Wagelie-Steffen AL, et al. The anti-inflammatory effectof glucocorticoids is mediated by glucocorticoid-induced leucine zipper inepithelial cells [J]. J Allergy Clin Immunol.2007,119:115-22
    [35]Zhang W, Yang N, Shi XM. Regulation of mesenchymal stem cell osteogenicdifferentiation by glucocorticoid-induced leucine zipper (GILZ)[J]. J Biol Chem.2008,283:4723-9
    [36]Riccardi C. GILZ (glucocorticoid-induced leucine zipper), a mediator of theanti-inflammatory and immunosuppressive activity of glucocorticoids [J]. Ann Ig.2010,22:53-9
    [37]Di Marco B, Massetti M, Bruscoli S, et al. Glucocorticoid-induced leucine zipper(GILZ)/NF-kappaB interaction: role of GILZ homo-dimerization and Cterminaldomain [J]. Nucleic Acids Res.2007,35:517-28
    [38]Mittelstadt PR, Ashwell JD. Inhibition of AP-1by the Glucocorticoid-inducibleProtein GILZ [J]. J Biol Chem.2001,276:29603-10
    [39]Yang N, Zhang W, Shi XM. Glucocorticoid-induced leucine zipper (GILZ)mediates glucocorticoid action and inhibits inflammatory cytokine-induced COX-2expression [J]. J Cell Biochem.2008,103:1760-71
    [40]Beaulieu E, Ngo D, Santos L, et al. Glucocorticoid-induced leucine zipper is anendogenous antiinflammatory mediator in arthritis [J]. Arthritis Rheum.2010,62:2651-61
    [41]Elenkov IJ. Glucocorticoids and the Th1/Th2balance [J]. Ann N Y Acad Sci.2004,1024:138-46
    [42]Cannarile L, Fallarino F, Agostini M, et al. Increased GILZ expression in transgenicmice up-regulates Th-2lymphokines [J]. Blood.2006,107:1039-47
    [43]Ayroldi E, Zollo O, Macchiarulo A, et al. Glucocorticoid-Induced Leucine ZipperInhibits the Raf-Extracellular Signal-Regulated Kinase Pathway by Binding toRaf-1[J]. Mol Cell Biol.2002,22:7929-41
    [44]Widén C, Zilliacus J, Gustafsson JA, et al. Glucocorticoid receptor interaction with14-3-3and Raf-1, a proposed mechanism for cross-talk of two signal transductionpathways [J]. J Biol Chem.2000,275:39296-301
    [45]Rider LG, Hirasawa N, Santini F, et al. Activation of the mitogen-activated proteinkinase cascade is suppressed by low concentrations of dexamethasone in mast cells[J]. J Immunol.1996,157:2374-80
    [46]Cohen N, Mouly E, Hamdi H, et al. GILZ expression in human dendritic cellsredirects their maturation and prevents antigen-specific T lymphocyte response [J].Blood.2006,107:2037-44
    [47]Krzysiek R. Role of glucocorticoid-induced leucine zipper (GILZ) expression bydendritic cells in tolerance induction [J]. Transplant Proc.2010,42:3331-2
    [48]Robert-Nicoud M, Flahaut M, Elalouf JM, et al. Transcriptome of a mouse kidneycortical collecting duct cell line: effects of aldosterone and vasopressin [J]. ProcNatl Acad Sci U S A.2001,98:2712-6
    [49]Verrey F. Early aldosterone action: toward filling the gap between transcription andtransport [J]. Am J Physiol.1999,277:F319-27
    [50]Grossmann C, Freudinger R, Mildenberger S, et al. Evidence for epidermal growthfactor receptor as negative-feedback control in aldosterone-induced Na+reabsorption [J]. Am J Physiol Renal Physiol.2004,286:1226-31
    [51]Pearce D, Bhargava A, Cole TJ. Aldosterone: its receptor, target genes, and actions[J]. Vitam Horm.2003,66:29-76
    [52]Snyder PM, Olson DR, Thomas BC. Serum and glucocorticoid-regulated kinasemodulates Nedd4-2-mediated inhibition of the epithelial Na+channel [J]. J BiolChem.2002,277:5-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700