深部软岩温度—应力—化学三场耦合作用下蠕变规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深部软岩工程是地下工程中的瓶颈工程。深部岩体处于多场耦合的复杂地下环境:高温度、高应力以及化学腐蚀。这些物理化学场耦合作用,使得深部岩石表现出软岩的特性:大变形、强流变特性等特点,深部岩体工程也变得极不稳定,出现难支护等特点,给施工和人员安全造成严重威胁。因此,从岩石蠕变特性方面的研究来看,仅研究单一应力场以及两场耦合是远远不够的。因此,开展温度-应力-化学三场耦合作用下岩体蠕变特性的研究对预测岩体工程稳定性影响研究具有十分重要理论意义和实际工程价值。
     本文采用试验研究、理论分析与数值模拟相结合的方法。为了试验的顺利开展,创新地设计出了高温高压三轴环境试验箱,并利用ANSYS有限元分析软件对环境试验箱进行了结构分析,验证了设计的正确性;就温度-应力-化学三场耦合作用下深部岩石蠕变特性研究开展了系统的试验研究,分析了温度-应力-化学三场耦合作用下温度和化学腐蚀对深部岩石蠕变规律的影响效应,探讨了其作用机理;建立了考虑温度和化学pH值影响因素的深部岩石粘弹塑性非线性蠕变方程;建立了深部岩石的T-M-C耦合控制方程;根据实际工程背景,对山东唐口煤矿副井深部巷道进行了温度-应力-化学三场耦合作用下的数值模拟分析。
     论文的主要研究内容如下:
     1、根据岩石实际地下环境确定了地下2000m深岩石所处环境参数,并根据材料力学和机械设计理论设计了三轴环境试验箱。利用Pro/E和ANSYS有限元分析软件相结合的方法对三轴环境试验箱进行了有限元分析,验证了设计的合理性。
     2、开展了不同温度和不同化学pH值条件下的深部页岩蠕变特性的研究,分析了不同温度和不同pH值对深部页岩蠕变特性的影响规律,探讨了页岩的温度和化学pH值作用机理。
     3、根据试验结果,对粘弹塑性元件组合模型进行了改进,模型的非线性部分是运用半线性元件改进半理论的方法:采用模型理论来描述线性流变部分,采用非线性元件来代替常规的线性元件来描述非线性流变部分,建立了能考虑温度和化学pH值影响因素的深部岩石粘弹塑性非线性蠕变模型。
     4、以多孔介质力学为基础,建立了受温度场以及化学腐蚀作用影响的岩土介质的T-M-C三场耦合控制方程。提出了由水化学腐蚀孔隙度方程组,热弹性、各向同性热弹性和热弹塑性的三种情况下的岩石静力平衡方程,以及温度控制方程等构成的岩石T-M-C耦合控制方程。
     5、以工程实例为背景,利用ANSYS有限元软件,对山东唐口煤矿副井深部巷道进行温度-应力-化学耦合作用下的蠕变特性进行数值模拟,分析了温度和化学pH值腐蚀对深部巷道围岩蠕变规律的影响。
Deep soft rock engineering is the bottleneck engineering of underground engineering. Deep rock is in the multi-field coupling underground environment: high-temperature, high-stress and chemical corrosion. These physicochemical field coupling effects make deep rock show characteristics of soft rock:lager deformation, strong rheological properties and so on, which make deep rock engineering very unstable and difficult to support, and even bring construction and personnel security to serious threat. Therefore, from study on rock creep property, only single stress filed and two fields being studied is not enough. Thence, carrying out studies on creep law under thermal-mechanical-chemical coupling have very important theoretical significance and practical value to evaluate the rock engineering stability.
     In this article a method of combining experimental research, theoretical analysis and numerical simulation was used. To carrying out smoothly testing, the high temperature and high pressure triaxial environmental chamber is innovatively designed, and chamber structural analysis was conducted by using ANSYS software, and the correctness of the design was verified; To study creep law of deep soft rock under thermal-mechanical-chemical coupling effect, systematic experimental studies were carried out, the effects of temperature and chemical corrosion of the deep rock creep law under thermal-mechanical-chemical coupling were analyzed, and its mechanism was explored; Deep rock visco-elastic-plasticity nonlinear creep equations of considering temperature and chemical pH value influencing factors were established; T-M-C coupling controlling equations of deep rock were established; According to practical engineering background, numerical simulation analysis under thermal-mechanical-chemical coupling effect of deep tunnel of auxiliary shaft of Shandong Tangkou coal mine were carrying out.
     The main research contents of this article are as follows:
     1、 According to rock in actual underground, environment parameters were determined of underground2000, triaxial environmental chamber was designed according to materials mechanics of and mechanical design theory. Using Pro/E and ANSYS finite element analysis software, the rationality of the design was verified.
     2、 Carrying out studying on creep properties of deep shale under different temperature and chemical pH value, analyzing different temperature and chemical pH value effect of deep shale creep properties, exploring shale temperature and chemical pH value mechanism.
     3、According to testing results, visco-elastic-plastic components combination model was improved, the nonlinear part of the model was got by method of half nonlinear component improving and half theory:using theorical model describing linear rheology part, using nonlinear combination substitute conventional linear combination, visco-elastic-plastic nonlear creep model of considering temperature and chemical pH value influencing factor deep rock were established.
     4、 Based on porous media mechanics, T-M-C three fields coupling controlling equations of the temperature field and chemical corrosion effects were established. The water chemical etching porosity equations, the rock static equilibrium equations under three cases of thermo-elastic, the isotropic thermo-elastic and thermo-elasto-plastic, and temperature controlling equations were put forwarded.
     5、 As a background in engineering instance, using ANSYS software, numerical simulation analysis under thermal-mechanical-chemical coupling effect of deep tunnel of auxiliary shaft of Shandong Tangkou coal mine were carryed out, temperature and chemical pH value effects of deep tunnel creep law were analyzed.
引文
[1]何满潮.深部开采工程岩石力学的现状及其展望.北京:科学出版社,2004:88-94.
    [2]何满潮.中国煤矿软岩巷道支护理论与实践.北京:中国矿业大学出版社,1996:12-17.
    [3]Surkov,AV; Shtumpf,G.G. Heaving of floor rock in development working of coalmines and evaluation of the main controlling factors. Mining Science(English Translation),1997;No.2, 121-127.
    [4]Energy Technology Support Unit, Harwell(UK).Control of high stress and weakstrata conditions in underground coal mines.ETSU-COAL-R-093,1049.(1997) Document,82-87.
    [5]E.Maranini, M.Brignoli. Creep behavior of a weak rock experimental characterization. International Journal of Rock Mechanics and Mining Science,1999;No.1,112-116.
    [6]王永岩.软岩巷道变形与压力分析控制与预测.[博士学位论文]阜新:辽宁工程技术大学,2001.
    [7]Wang yong-yan, Qi jun. Method of combining boundary element with finite element and its application in the prediction of the pressure of surrounding rock in the underground engineering. PROCEEDINGS OF XII INTERNATIONAL CONGRESS OF INTENATIONAL SOCIETY FOR MINE SURVEYING 2004.9,2004(9):98-102.
    [8]周宏伟,谢和平,左建军.深部高地应力下岩石力学行为进展.力学进展,2005,35(1):91-99.
    [9]陈勉.我国深层岩石力学研究及在石油工程中的应用.岩石力学与工程学报,2004,23(14):2455-2462.
    [10]何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念.岩石力学与工程学报,2002,21(8):1215-1224.
    [11]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究.岩石力学与工程学报,2005,24(16):2803-2813.
    [12]姜耀东,赵毅鑫,刘文岗,等.深部开采中巷道底鼓问题的研究.岩石力学与工程学报,2004,23(7):2396-2401.
    [13]翟新献,李化敏.深井软岩巷道围岩变形特性的研究.煤,1995,4(5):24-26.
    [14]Malan,D F. Time-dependent behavior of deep level tabular excavations in hard rock. Rock Mechanics and Rock Engineering,1999,32(2):123-155.
    [15]仵彦卿.地下水与地质灾害.地下空间,1999,19(4):303-310.
    [16]E.Detoumay. Coupling analysis of mechanics, thermal, water and chemistry[C]. General Report of the 9th International Symposium on rock mechanics, Paris.1999.
    [17]李淑伟.唐口煤矿煤质特征分析及综合利用.煤质技术,2008,1:26-27.
    [18]任明博.深部高应力巷道围岩控制技术研究.山东煤炭科技,2011,4:158-161.
    [19]乔卫国,孟庆彬,林登阁,等.深部软岩巷道锚注联合支护技术研究.西安科技大学学报,2011,31(1):22-27.
    [20]黄书翔,孙京凯,陈金玉.浅谈唐口煤矿降温技术.煤矿安全,2007,06:63-65.
    [21]乔卫国,孟庆彬,林登阁,等.深部高应力膨胀性软岩巷道锚注支护技术及相似模拟试验研究.矿冶工程,2011,31(2):24-28.
    [22]Griggs, D T. Creep of rocks, J of Geol,1939,47:225-251.
    [23]Ito H. Creep of rock based on long-term experiments Proc of 4th Cong of ISRM,1983.
    [24]Ito H and Sasajima S. A ten year creep experiment on small rock specimens. Int J Rock Mech Min Sci Geomech Abstr 1987,24(2):113-121.
    [25]Ito H. The phenomenon and examples of rock creep In Hudson, JA, etal(Eds), Comprehensive Rock Engineering, vol 3 Pergamon Press, Oxofrd,1993, PP:693-708.
    [26]Langer M. Rheological behavior of rock masses Proc of 4th Cong of ISRM,1979.
    [27]Cornelins R R, Scott P A. A materials failure relation of accelerating creep as empirical description of damage accululation Rock Mech and Rock Engng 1993,26(3):233-252.
    [28]Munson D E. Constitutive model of creep in rock salt applied to underground room closure. Int J Rock Mech Min Sci,1997,34(2):233-247.
    [29]Callahan G D, Mellegard K D, Hansne F D. Constitutive behavior of reconsolidating erushed salt. Int J Rock Mech Min Sci,1998,35(4-5):422-423.
    [30]Okubo S, Nishimatsu Y and Fukui K. Complete creep curves under uniaxial compression, Int J Rock Mech Min Sci Geomevh Absrt,1991,28(1), pp:77-82.
    [31]G Vouille, SM Tijani and F de Grenier. Experimental determination of the reological behaviour of Tersanne rock salt, Proc of the lth Conference on the Mechanical Behaviour of salt,1981,408-420.
    [32]Malan, D F, Vogler U W, Drescher K. Time-dependent behavior of hard rock in deep level gold mines. Journal of the South African Institute of Mining and Metallurgy,1997,97: 135-147.
    [33]Malan D F. An Investigation into the identification and modelling of time-dependent behavior of deep level excavations in hard rock, PhD thesis, University of the Wiwatersrand, Johannesburg, South Africa,1998.
    [34]Malan D F. Simulation of the time-dependent behavior of excavations in hard rock. Rock Mechanics and Rock Engineering,2002,35(4):225-254.
    [35]Maranini E, Brignoh M. Creep behavior of a weak rock experimental characterization. Int J Rock Mech Min Sci,1999,36(1):127-138.
    [36]E Maranini, Tsutomu Yamaguchi. A non-associated viscoplastic model of the behavior of granite in triaxial collmpression. Mechanics of Materials,2001,33:283-293.
    [37]Matsumoto M, Tatsuoka F. Study of reological modelling of creep behavior for sedimentary soft rock. In:Proc of the 51th Annual Conference of the Japan Society of Civil Engineers. 1996,660-661.
    [38]XU P, YANG T Q. A study on creep of granite[C]//Proc. Of IMMM'95. [S.n.],[s.n.],1995: 245-249.
    [39]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究.岩土工程学报,1996,18(4):63-67.
    [40]张向东,郑雨天.肖裕性.第三系软弱岩体蠕变理论.东北大学学报(自然科学版),1997,18(1):31-35.
    [41]徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果.岩土力学,2005,26(4):531-537.
    [42]徐卫亚,杨圣奇,谢守益,等.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析.岩土力学,2005,26(5):693-698.
    [43]张向东,尹晓文,傅强.分级加载条件下紫色泥岩三轴蠕变特性研究.岩石力学,2011,26(1):61-66.
    [44]Wang yong-yan, Qi jun. Method of combining boundary element with finite element and its application in the prediction of the pressure of surrounding rock in the underground engineering. 《 PROCEEDINGS OF XII INTERNATIONAL CONGRESS OF INTENATIONAL SOCIETY FOR MINE SURVEYING 2004.9)) 2004,No.9.
    [45]王永岩,齐珺,杨彩虹,等.深部岩体非线性蠕变规律.岩土力学,2005,26(1):117-121.
    [46]王永岩,魏佳,齐珺,等.深部岩体非线性蠕变变形预测的研究.煤炭学报,2005,30(4):409-413.
    [47]李剑光,王永岩,王皓.深部岩体多孔介质流变模型的研究.岩土力学,2008,29(9):2355-2364.
    [48]韩立军,王延宁,蒋斌松,等.泥质砂岩蠕变特性与锚固控制效应试验研究.岩土力学,2012,33(1):65-72.
    [49]刘钦,李术才,李利萍,等.软弱破碎围岩隧道炭质页岩蠕变特性试验研究.岩土力学,2012,33(supp2):21-28.
    [50]CARTER N L. Mechanical and transport properties of rocks at high temperatures and pressures, task I. the physical nature of fracturing at depth[R]. [S.I.]:[s.n.],1981.
    [51]Vouile, G., Tijani, S. M., and de Grenier, F. Experimental determination of the reological behavior of Tersanne rock salt, Proc. Of the 1st Conference on the Mechanical Behavior of salt,1981,408-420.
    [52]HANSEN F R. Semibrittle creep of selected crustal rocks at 1000MPa.[M. S. Thesis]. Texas: Texas A and M University,1982.
    [53]Wawersik W R. Alternatives to a power-law creep model for rock salt at temperature below 160℃. In:The Mechanical Behavior of Salt, Proceedings of the Second Conference. Clausthal:Trans. Tech. Publications,1984.103-131.
    [54]Stein E, Wetjen D. Equations for the description of thermomechanical creep of rock salt and parametric studies by the aid of finite element computations. In:Langer, the Mechanical Behavior of Salt Proceedings of the Second Conference. Clausthal:Trans. Tech. Publications,1984,445-459.
    [55]YANG C H, DAEMEN J J. Temperature effects on creep of tuff and its time-dependent damage analysis. International Journal of Rock Mechanics and Mining Sciences,1997,34(3/4):383-384.
    [56]陈斌,彭向和.计及温度的常规三轴泥岩蠕变实验研究.地下空间,1999,19(5):783-786.
    [57]刘泉声.三峡花岗岩温度及时问相关的力学性质试验研究.岩石力学与工程学报,2001,20(5):715-719.
    [58]郭开元.盐岩蠕变特性研究.[硕士学位论文]重庆:重庆大学,2003.
    [59]邓广哲,王广地.北山花岗岩热黏弹塑性流变特性分析.岩石力学与工程学报,2004,23(增1):4368-4372.
    [60]万玲.岩石类材料黏弹塑性损伤本构模型及其应用.[博士学位论文]重庆:重庆大学,2004.
    [61]高小平,杨春和,吴文,等.盐岩蠕变特性温度效应的实验研究.岩石力学与工程学报,2005,24(12):2054-2059.
    [62]左建平,满轲,曹浩,等.热力耦合作用下岩石流变模型的本构研究.岩石力学与工程学报,2008,27(增1):2610-2616.
    [63]胡其志,冯夏庭,周辉.考虑温度损伤的盐岩蠕变本构关系研究[J].岩石力学与工程学报,2009,30(8):2245-2248.
    [64]高峰,徐小丽,杨效军,等.岩石热黏弹塑性模型研究.岩石力学与工程学报,2009,28(1):74-80.
    [65]张宁,赵阳升,万志军,等.高温三维应力下花岗岩三维蠕变的模型研究.岩石力学与工程学报,2009,28(5):875-881.
    [66]张宁,陈国文,刘静波,等.鲁灰花岗岩蠕变特征转变温度门槛值的试验研究.太原理工大学学报,2009,40(1):78-81.
    [67]郤保平,赵阳升,万志军,等.热力耦合作用下花岗岩流变模型的本构关系研究.岩石力学与工程学报,2009,28(5):957-966.
    [68]郤保平,赵阳升,赵金昌,等.层状盐岩温度应力耦合作用蠕变特性研究.岩石力学与工程学报,2008,27(1):90-96.
    [69]郤保平,赵阳升,徐素国,等.含高盐分泥岩夹层的盐岩高温蠕变特性研究,第九届全国岩石力学与工程学术大会论文集.
    [70]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性--第一部分:试验研究.岩石力学与工程学报,2000,19(4):403-407.
    [71]刘建,李鹏,乔丽苹,等.砂岩蠕变特性的水物理化学作用效应试验研究.岩石力学与工程学报,2008,27(12):2540-2550.
    [72]乔丽苹.砂岩弹塑性及蠕变特性的水物理化学作用效应试验与本构研究.[博士学位论文]武汉:中国科学院研究生院(武汉岩土力学研究所),2008.
    [73]崔强.化学溶液流动-应力耦合作用下砂岩的孔隙结构演化与蠕变特征研究.[博士学位论文]:东北大学,2009.
    [74]吕宜美.化学腐蚀对深部软岩蠕变特性的影响研究.[硕士学位论文]青岛:青岛科技大学,2010.
    [75]Cruden, D.M. A Technique for estimating the complete creep curve of a sub-bituminus coal under uniaxial cprssion. Int. J. RockMech. Min. Sci.&Geomech. Abstr.,1987,24(4):265-269.
    [76]Okubo, S., Nishimatsu, Y andFukui, K. Complete creep curves under uniaxial compression. Int. J. Rock Mech. Min. Sci. Geomech.Abstr.,1991,28(1):77-82.
    [77]张向东,李永靖,张树光,等.软岩蠕变理论及其工程应用.岩石力学与工程学报,2004,23(10):1635-1639.
    [78]丙勇勤,徐小荷,马新民,等.露天煤矿边坡中软弱夹层的蠕动变形特性分析.东北大学学报,1999,20(6):612-614.
    [79]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型.岩石力学与工程学报,2002,21(5):632-634.
    [80]刘光廷,胡星,陈凤歧,等.软岩多轴流变特性及其对拱坝的影响.岩石力学与工程学报,2004,23(8):1237-1241.
    [81]Boukharov G N, Chanda M W, Boukharov N G. The three proeesses of brittle crystalline rock creep. Int. J. Rock Mech. Min. Sci. Geomech.Abstr.,1995,32(4):325-335.
    [82]陈沉江,潘长良,曹平,等.软岩流变的一种新力学模型.岩土力学,2003,24(2):209-214.
    [83]韦立德,徐卫亚,朱珍德,等.岩石粘弹塑性模型的研究.岩土力学,2002,23(5):583-586.
    [84]汪华安,杨庆刚,陈记.弹粘塑本构模型辨识的半经验法及三阀值流变模型.西部探矿工程,2003,8:44-46.
    [85]邓荣贵,周德培,张悼元,等.一种新的岩石流变模型.岩石力学与工程学报,2001,20(6):780-784.
    [86]张学忠,王龙,张代钧,等.攀钢朱矿东山头边坡辉长岩流变特性试验研究.重庆大学学报,1999,22(5):99-103.
    [87]宋飞,赵法锁,李亚兰.石膏角砾岩蠕变特性试验研究.水文地质工程地质,2005,3:94-96.
    [88]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征.岩石力学与工程学报,1993,12(4):304-312.
    [89]凌建明.岩体蠕变裂纹起裂与扩展的损伤力学分析方法.同济大学学报,1995,23(2):141-146.
    [90]徐海滨,朱维申,白世伟.岩体粘弹塑性损伤本构模型及其有限元分析.岩土力学,1992,13(1):11-20.
    [91]浦奎英,范华林.流变损伤模型及其应用.河海大学学报,2001,29(增):17-20.
    [92]杨延毅.节理裂隙岩体损伤-断裂力学模型及其在岩体工程中的应用.[博士论文论文]北京:清华大学,1990.
    [93]秦跃平,王林,孙文标,等.岩石损伤流变理论模型研究.岩石力学与工程学报,2002,21(增2):2291-2295.
    [94]缪协兴,陈至达.岩石材料的一种蠕变损伤方程.固体力学学报,1995,16(4):343-346.
    [95]陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用.水利学报,1999,12:33-37.
    [96]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究.岩石力学与工程学报,2002,21(11):1602-1604.
    [97]郑永来,周澄,夏颂佑.岩土材料粘弹性连续损伤本构模型探讨.河海大学学报,1997,25(2):114-116.
    [98]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用.北京:科学出版社,2002.
    [99]朱维申.粘弹-塑性介质中围岩与衬砌的应力状态.力学学报,1981,1:56-67.
    [100]赵仁义.岩石蠕变试验仪器的研制.试验技术与试验机,1992.
    [101]任爱华.新研制的800 t.高温高压伺服三轴流变仪.地球物理学报,1988,31(2):9.
    [102]石泽全,周枚青.800 MPa高温高压三轴室设计研究.地球物理学报,1990,33(2):202-207.
    [103]TAN T K, KANG W. The development and current state of rock mechanics in China[C]// Proc. the 5th Cong. Int. Soc. Rock Mech..Melbourne:[s. n.],1983:251.
    [104]赵阳升,万志军,张渊,等.20MN伺服控制高温高压岩体三轴试验机的研制.岩石力学与工程学报,2008,27(1):1-8.
    [105]陈卫忠,于洪丹,王晓全,等.双联动软岩渗流-应力耦合流变仪的研制.岩石力学与 工程学报,2009,28(11):2176-2183.
    [106]杨建平,陈卫忠,田洪铭,等.低渗透介质温度-应力-渗流耦合三轴流变仪研制及其应用.岩石力学与工程学报,2009,28(12):2377-2382.
    [107]谢和平.深部高应力下的资源开采——现状、基础科学问题与展望.科学前沿与未来(第六集).北京:中国环境科学出版社,2002:179-191.
    [108]王永岩,李剑光,魏佳,等.黏弹性有限元反分析方法及其在软岩流变问题中的应用.煤炭学报,2007,32(11):1162-1165.
    [109]王永岩,吕宜美,肖志娟,等.化学腐蚀下砂岩蠕变模型的研究.煤炭学报,2010,35(07):1095-1098.
    [110]Wang Yong yan, Xu Fei, Wang Yan chun, et.al. Comparison and Verification Analysis on The Fitting Curves of Several Different Creep Models, The 2nd International Conference on Advanced Engineering Materials and Technology,2012,3:458-461.
    [111]杨彩虹,王永岩,李剑光,等.含水率对岩石蠕变规律影响的试验研究.煤炭学报,2007,32(7):698-699.
    [112]李剑光,王永岩,王皓.深部岩体多孔介质流变模型的研究.岩土力学,2008,29(9):2355-2358.
    [113]Wang Yongyan, Wang Yanchun, Study on Triaxial Environment Test Box of Rock in Depth with High Temperature and High Pressure, Advanced Materials Research, Vols. 211-212(2011)pp 259-263.
    [114]王永岩主编.工程力学.北京:科学出版社,2010.
    [115]西北工业大学机械原理及机械零件教研室编.机械设计.北京:高等教育出版社,1991.
    [116]机械工程材料性能数据手册编委会.机械工程材料性能数据手册.北京:机械工业出版社,1995.
    [117]刘雄.岩石流变学概论.北京:地质出版社,1994.
    [118]孙钧.岩土材料流变及其工程应用.北京:中国建筑工业出版社,1994.
    [119]M. Lion, F.Skoczylas, B.Ledesert. Effect of heating on the hydraulic and poroelastic properties of Bourgogne limestone. International Journal of Rock Mechanics and Mining Sciences.42(2005):508-520.
    [120]蔡美峰.岩石力学与工程.北京:科学出版社,2002.
    [121]谢和平,陈忠辉.岩石力学.北京:科学出版社,2004.
    [122]肖树芳,杨淑碧.岩体力学.北京:地质出版社,1991.
    [123]郑雨天.岩石力学的弹塑粘性理论基础.北京:煤炭工业出版社,1988.
    [124]蒋昱州,张明鸣,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别.岩石力学与工程学报,2008,27(4):832-839.
    [125]邓荣贵,周德培,张悼元,等.一种新的岩石流变模型.岩石力学与工程学报,2001, 20(6):780-784.
    [126]徐卫亚,杨圣奇,谢守益,等.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析.岩土力学,2005,26(5):693-698.
    [127]韦立德,邵建富,等.岩石黏弹塑性模型的研究.岩土力学,2002,23(5):583-586.
    [128]秦跃平,王林,等.岩石损伤流变理论模型研究.岩石力学与工程学报,2002,21(A02):2291-2295.
    [129]韦立德.岩石力学损伤和流变本构模型研究.岩石力学与工程学报,2004,23(24):4265-4265.
    [130]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究.岩石力学与工程学报,2002,21(11):1602-1604.
    [131]Wang Guijun. A new constitutive creep-damage model for salt rock and its Characteristics. International Journal of Rock Mechanics and Mining Sciences.2004,41 (51):1-7.
    [132]Challamel Noel, Lanos Christophe, Casandjian Charles. Creep damage modeling for quasi-brittle materials. European Journal of Mechanics,2005,24(4):593-613.
    [133]杨松林,徐卫亚.裂隙蠕变的稳定性准则.岩土力学,2003,24(3):423-427.
    [134]徐卫亚,杨松林.裂隙岩体松弛模量分析.河海大学学报(自然科学版),2003,31(3):295-298.
    [135]陈有亮,孙钧.岩石的蠕变断裂特性分析.同济大学学报(自然科学版),1996,24(5):504-508.
    [136]范庆忠,高廷法,崔希海.软岩非线性蠕变模型研究.岩土工程学报,2007,29(4):505-509.
    [137]Wang Guijun. A new constitutive creep-damage model for salt rock and its characteristics. International Journal of Rock Mechanics and Mining Seiences,41(SUPPL.1),1A11-7, May2004
    [138]Borchert.KLlrt-M, Hebener.Hans et al. Creep calculation on salt by using an endochronic material law compared to other creep formulation. Trans The Publications, P573-587,1984.
    [139]Aubertin.M, Gill.D.E, Landayi.B. Internal variable model for the creep of rock salt. Rock mechanics and rock engineering,1991,24(2),81-97.
    [140]AdachiT, Oka F, Koike M. An elasto-viscoplastic constitutive model with strain-softening for soft sedimentary rocks. Soils and Foundations.2005,45(2):125-133.
    [141]郭增玉,刘守慧,张朝鹏.高湿度Q2黄土的非线性流变本构模型及参数.地下空间,2001,21(2):94-99.
    [142]张敏江,张丽萍,张树标,等.结构性软土非线性流变本构关系模型的研究.吉林大学学报(地球科学版),2004,34(2):242-246.
    [143]张敏江,姚敏,邱欣,等.辽南海积软土流变本构模型的研究.沈阳建筑工程学院院报(地球科学版),2003,19(4):260-263.
    [144]张丽萍,关超,阎婧.营口地区软土流变模型参数及流变特性研究.沈阳建筑工程学院院报(自然科学版),2004,20(4):261-264.
    [145]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型.岩土力学与工程学报,2002,21(5):632-634.
    [146]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用.岩土力学与工程学报,2006,25(3):433-447.
    [147]陈沅江,潘长良,曹平,等.软岩流变的一种新力学模型.岩土力学,2003,24(2):209-214.
    [148]Wang Yanchun, Wang Yongyan, Study on Nonlinear Viscoelasto-plastic Creep Model of Deep Soft Rock, Advanced Materials Research, vols.430-432(2012) pp 168-172.
    [149]陶波,伍法权,郭改梅,等.西原模型对岩石流变特性的适用性及其参数确定.岩石力学与工程学报,2005,24(17):3165-3171.
    [150]何学秋,薛二龙,聂百胜,等.含瓦斯煤岩流变特性研究.辽宁工程技术大学学报:自然科学版,2007,26(2):202-203.
    [151]冒海军,杨春和,刘江,等.板岩蠕变特性试验研究与模拟分析.岩石力学与工程学报,2006,25(6):1204-1209.
    [152]Wang Yongyan, Xu Fei, Wang Yanchun, el at, Comparison and Verification Analysis on The Fitting Curves of Several Different Creep Models, Advanced Materials Research, Vols.538-541 (2012) pp 458-461.
    [153]袁海平,曹平,万文,等.分级加载条件下软弱复杂矿岩蠕变规律研究.岩石力学与工程学报,2006,25(8):1573-1551.
    [154]赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究.岩土力学,2003,24(4):583-586.
    [155]李云鹏,王芝银,丁秀丽.流变荷载试验曲线的模型识别及其应用.石油大学学报(自然科学版),2005,29(2):73-77.
    [156]丁志坤,吕爱钟.岩石黏弹性非定常蠕变方程的参数辨识.岩土力学,2004,25(51):3740.
    [157]S.L.Brantley, J.D.Kubieki, A.F.White. Kinetics of Water-Rock Interaction. New York: Springer,2008.
    [158]D.L. parkhurst, C.A.J. Appelo. User's guide to PHREEQC(version 2)-a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations, Denver, Colorado,1999.
    [159]L.N.Plummer, T.M.L.Wigley, D.L.Parkhurst.The kinetics of calcite dissolution in CO2-water systems at 5 to 60 and 0.0 to 1.0 atm CO2. American Journal of Science, 1978, 278(2):179-216.
    [160]J.D.Rimstidt, H.L.Barnes. The kinetics of silica-water reactions. Geochimica et CosmochimicaActa,1980,44(11):1683-1699.
    [161]H.U.Sverdrup. The kinetics of base cation release due to chemical weathering. Sweden:Lund Univ. Press,1990.
    [162]BIOT M A. General theory of three dimensional consolidation. J.Appl Phys.1941,12:155-164
    [163]Skempton AW. The effective stresses in saturated clays strained at constant volume. Proc 7th Inc Congr App Mech,1984,1:374-378.
    [164]Amos Nur, Byerlee J D. An exact effective stress law for elastic deformation. Jour Geophys Res,1973,76(26):6414-6419.
    [165]陈正汉,王永胜,谢定义.非饱和土的有效应力探讨.岩土工程学报,1994,16(3):62-69.
    [166]李传亮,孔祥言,徐献芝,等.多孔介质的双重有效应力.自然杂志,1999,21(5):288-292
    [167]钱家欢.土力学.南京:河海大学出版社,1988.
    [168]刘正兴,孙雁.计算固体力学.上海:上海交通大学出版社,2000:54-56.
    [169]Noorishad J,Tsang C.F. and Witherspoon P. A. Coupled Thermal-Hydraulic-Mechanical Phenomena in Saturated Fractured Porous Rocks:Numerical Approach, J. Geophysical Res.1984,89(B12):10365-10373.
    [170]王补宣.工程传热传质学.北京:北京科学出版社,1982:41-44.
    [171]赵阳升,万志军,康建荣.高温岩体地热开发导论.北京:科学出版社,2004:149-153.
    [172]张强林,王媛.岩体THM耦合模型控制方程建立.西安石油大学学报,2007,22(2):139-145.
    [173]王永岩,王艳春,温度-应力-化学三场耦合作用下深部软岩巷道蠕变规律数值模拟,煤炭学报,2012,Vo1.37,S.2,p275-279.
    [174]Wang Yanchun, Li Yuan, Li Jianguang, Simulation and Analysis of temperature, chemical and stress effect in creep surrounding rock, Advanced Materials Research, Vol.561 (2013) pp 657-662.
    [175]邵蕴秋.ANSYS 8.0有限元分析实例导航.北京:中国铁道出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700