太赫兹回旋谐波器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹辐射源技术是太赫兹科学与技术的核心之一。回旋管是目前众多太赫兹辐射源中辐射功率最大的辐射源,太赫兹回旋器件的研究对太赫兹辐射源的发展具有重要的意义。但回旋管工作频率越高,其所需的外加磁场强度也越大(工作在1THz的基波回旋器件,需外加磁场约40T,这样的强磁场体积庞大且很难实现)。采用高次回旋谐波工作的回旋器件可以大大降低对外加磁场强度的要求(工作在n次回旋谐波的回旋器件,其外加磁场减小为原来的1/n),因此,高次回旋谐波回旋管的研究在太赫兹波段显得尤为重要。本学位论文利用耦合波理论对同轴双电子注太赫兹回旋管的注波耦合机理进行了研究;利用散射矩阵理论、线性理论和自洽非线性理论,对太赫兹回旋倍频速调管的腔体设计、模式选取和注波互作用机理进行了详细的研究和讨论;利用平面波展开法,对一种新型的回旋谐振腔——光子晶体谐振腔的带隙结构计算进行了讨论;最后对作者在日本Fukui UniversityFIR研究中心参与的太赫兹回旋管的相关实验工作进行了详细的介绍并提出了同轴双电子注太赫兹回旋管和三腔太赫兹回旋倍频速调管的实验方案。
     1、在研究同轴双电子注回旋管注波互作用机理时,利用耦合波理论,对双频、单频工作的同轴双电子注回旋管的注波互作用机理进行了研究,并将单频、双频工作同轴双电子注回旋管与相同几何尺寸及电子注参数的同轴单电子注回旋管进行了比较。比较后发现,跟同轴单电子注回旋管相比,由于注波间的耦合作用,双频工作的同轴双电子注回旋管的两个模式都得到增强。
     2、对三腔太赫兹回旋倍频速调管进行了详细的研究,利用散射矩阵理论,对回旋谐振腔进行设计与分析,讨论了腔体几何结构对腔体谐振频率和品质因数的影响;利用小信号理论,讨论了回旋倍频速调管的模式选取、色散关系、起振电流及模式竞争;运用自洽非线性理论,对回旋倍频速调管的注波互作用机理进行了详细的研究,分析了电子注的调制过程,漂移区、输出腔长度、电子注电压、电流、横纵速度比和引导中心半径对互作用效率的影响,并讨论了输出腔欧姆损耗对输出功率的影响。
     3、在研究光子晶体谐振腔时,对二维平行四边形晶格介质柱、金属光子晶体的第一布里渊区及平面波展开法计算带隙结构进行了详细的研究,并通过对二维正三角形、方形晶格及第一布里渊区的临界条件下二维介质柱、金属光子晶体的带隙结构的计算和比较,证明了本文方法的有效性。
     4、对在Fukui University FIR研究中心参与的太赫兹回旋管FU CWⅡ的功率、功率随磁场变化关系、频率、波长等的测量工作进行了详细的介绍,提出了同轴双电子注太赫兹回旋管和回旋倍频速调管的实验方案。
THz radiating sources is one of the key topics in THz science and technology, the gyrotron is the most powerful source among various THz sources. Study on THz gyrotron plays an important role in the development of THz sources. However, the gyrotron operating higher frequency needs stronger magnetic field (1THz gyrotrons operating at fundamental cyclotron harmonic need 40 Tesla working magnetic field, so strong magnet is expensive and difficult to fabricate). In order to reduce the strength of magnetic field, the gyrotron needs to operate at higher cyclotron harmonics (when the gyrotron working at nth cyclotron harmonic, the corresponding working magnetic field can be reduced to 1/n). Study on high cyclotron harmonic gyrotron is important in THz region. In this dissertation, the beam-wave interactions of coaxial gyrotron with two electron beams are studied with the coupled-mode theory; meanwhile, with the linear and self-consistent nonlinear theories, the beam-wave interactions and electron bunching process of three-cavity frequency-quadrupling gyroklystron are studied and discussed in details; then, a new-type of gyrotron resonant cavity-photonic crystal cavity is studied and discussed with the plane wave expansion methods; finally, the THz gyrotron experiments the author participated in at FIR Center of Fukui University is detailed introduced.
     1. The beam-wave interactions of coaxial gyrotron with two electron beams are studied. With the coupled-mode theory, the beam-wave interactions of dual-frequency, single-frequency coaxial gyrotron with two electron beams are discussed in details, compared to the one-electron-beam coaxial gyrotron with the same geometric structure and parameters of electron beams, due to the coupling between two beams and two modes, two modes of the dual-frequency coaxial gyrotron with two electron beams are enhanced.
     2. three-cavity THz frequency-quadrupling gyroklystron with successive frequency doubling in each cavity is detailed studied. The cavities are designed and analyzed with the scattering matrix methods and simulated with the CST software, the geometric parameters' effects on the resonant frequency and quality factor of the resonant cavity are discussed; the mode selection, dispersion relation, starting current and possible competing modes are considered with the linear theory, the beam-wave interactions of three-cavity frequency-quadrupling gyroklystron are studied with the self-consistent nonlinear theory, the bunching process of electrons is studied, the effect of length of drift tubes and output cavity, voltage, current, velocity pitch and guiding center radius of electron beam on the output efficiency is discussed, meanwhile, the effect of the ohmic loss on the output efficiency is considered.
     3. The photonic crystal cavity is studied with the plane wave expansion methods. The first Brillouin zone and photonic band gap calculation of two-dimensional arbitrary parallelogram lattice dielectric rods and metallic photonic crystals are discussed in details. The photonic band gap structures of triangular lattice and square lattice two-dimensional photonic crystal calculated by the method described in this dissertation agree well with the conventional method, furthermore, the calculated photonic band gap in critical conditions of the first Brillouin zone are consistent with either hexagon or quadrangle Brillouin zone, which shows that the method described here is valid.
     4. The THz gyrotron experiment the author participated in at FIR Center of Fukui University including power spectrum, frequency, wavelength, the power measurement is introduced.
引文
[1]刘盛纲.太赫兹科学技术的新进展.第270次香山科学会议,北京,2005:6-28
    [2]许景周,张希成.太赫兹科学技术和应用.北京:北京大学出版社,2007:1-21
    [3]王少宏,许景周,汪力,等.THz技术的应用及展望.物理,2001,30(10):612-615
    [4]Nagel M, Boliver P H, Brucherseifer M, et al. Integrated THz technology for label free genetic diagnostics. Appl. Phys. Lett.,2002,80(1):154-156
    [5]Dekorsy T, Auer H, Waschke C, et al. Emission of submillimeter electromagnetic waves by coherent phonons. Phys. Rev. Lett.,1995,74(5):738-741
    [6]徐新龙.从THz时间波形中提取材料参数的方法和分析:[硕士学位论文].北京:’首都师范大学,2003
    [7]赵红卫,葛敏,王文锋,等.太赫兹时域光谱技术在化学和生物学研究中的应用.化学通报,2005,68(2):87-93
    [8]Markelz A G, Roitberg A and Heilweil E J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0THz. Chem. Phys. Lett.,2000,320(12):42-48
    [9]Mickan S, Abbott D, Munch J, et al. Analysis of system trade-offs for terahertz imaging. Microelectron. J.2000,31(7):503-514
    [10]Cheville R A. Perspectives on THz time domain spectroscopy. J. Optical Society of Korea, 2004,8(1):34-52
    [11]Langdon R M, Handerek V, Harrison P, et al. Millitary applications of terahertz imaging.1st EMRS DTC Technical Conference,2004:1-8
    [12]Cooper K B, Dengler R J, Chattopadhyay, et al. A high-resolution imaging radar at 580GHz. IEEE Microw. Wirel. Co.,2007,18(1):64-66
    [13]Fitch M J, and Osiander R. Terahertz waves for communications and sensing. Johns Hopkins APL Technical Digest,2004,25(4):348-355
    [14]Piesiewicz R, Jansen C, Mittleman D, et al. Scattering analysis for the modeling of THz communication system. IEEE Trans. Antennas and Propagat,2007,55(11):3002-3009
    [15]Koch M. Terahertz communications:a 2020 vision. Netherlands:Springer,2007:1-50
    [16]Cummins H. Challenges to terahertz counter-terrorism and security-related applications. Netherlands:Springer,2007:2-42
    [17]Sinyukov A M, Zorych I, Michalopoulou Z, et al. Detection of explosives by terahertz synthetic aperture imaging-focusing and spectral classification. Comptes Rendus Physique, 2008,9(2):248-261
    [18]Sinyukov A M, Liu Z, Hor Y L, et al. Rapid-phase modulation of terahertz radiation for high-speed terahertz imaging and spectroscopy. Opt. Lett.,2008,33(14):1593-1595
    [19]曹俊诚.太赫兹辐射源与探测器研究进展.功能材料与器件学报,2003,9(2):111-117
    [20]Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature,2002,417(6885):156-159
    [21]Cao J C, Liu H C, Lei X L, et al. Quantum-well infrared photodetector with voltage-switchable quadratic and linear response. Appl. Phys. Lett.,2006,88(5):1-3
    [22]Lin X C, Li R N, Yao A Y, et al. Period and temperature tuning of cascaded optical parametric oscillator based on periodically poled LiNbO3. Chin. Phys.,2003,12(5):514-517
    [23]Lee Y S, Meade T, Perlin V, et al. Generation of narrow-band THz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate. Appl. Phys. Lett., 2000,76(18):2505-2507
    [24]Lee Y Y, Meade T, Decamp M, et al. Temperature dependence of narrow-band terahertz generation from periodically poled lithum niobate. Appl. Phys. Lett.,2000,77(9):1244-1246
    [25]刘锐,顾春明,贺莉蓉,等.ZnTe晶体中光学整流产生的THz辐射及其电光探测研究.物理学报,2004,53(4):1217-1222
    [26]Brown E R, Smith F W and Mcintosh K A. Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors. J. Appl. Phys., 1993,73(3):1480-1484
    [27]Matsuura S, Tani M and Sakai K. Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Appl. Phys. Lett.,1997,70(5):559-561
    [28]Aggarwal R, Lax B, Fetterman H R, et al. CW generation of tunable narrow-band far infrared radiation. J. Appl. Phys.,1974,45(9):3972-3974
    [29]Ding Y J and Khuurgin J B. A new sheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically poled lithium niobate. Opt. Comm.,1998,148(3): 105-109
    [30]Taniuchi T, Shikata J and Ito H. Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator. Electron. Lett.,2000,36(16):14-1416
    [31]Sasaki Y, Yuri A, Kawase K, et al. Terahertz-wave surface emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal. Appl. Phys. Lett.,2002, 81(18):3323-3325
    [32]Yin Y, Yan Y, Zhang Y X, et al. THz coherent vavilov-cherenkov radiation in a special three-mirror cavity. Int. J. Infrared and Millimeter waves,2007,28(10):797-809
    [33]Korbly S E, Kesar A s, Sirigiri J R, et al. Observation of frequency-locked coherent terahertz Smith-Purcell radition. Phys. Rev. Lett.,2005,94(5):054803
    [34]NcMillan R W, Trussell C W, Bohlander R A, et al. An experimental 225GHz pulsed coherent radar. IEEE Trans. Microwave Theory Technology,1991,39(3):555-562
    [35]Grunner G. Millimeter and submillimeter wave spectroscopy of solids. J. Appl. Phys.,1998, 74(1):51-109
    [36]Bratman V L, Dumesh B S and Fedotov A F. Broadband Orotron operation at millimeter and submillimeter waves. Int. J. Infrared and Millimeter Waves,2002,23(11):1595-1601
    [37]Urata J, Goldstein M, Kimmitt M F, et al. Superradiant Smith-Purcell emission. Phys. Rev. Lett.,1998,80(3):516-519
    [38]Idehara T, Saito T, Mori H, et al. Long pulse operation of the THz gyrotron with a pulse magnet. Int. J. Infrared and Millimeter Waves,2008,29(2):131-141
    [39]Glyavin M Y, Luchinin A G, and Golubiatnikov F Y. Generation of 1.5kW,1-THz coherent radiation from a gyrotron with a pulsed magnetic field. Phys. Rev. Lett.,2008,100(1): 015101
    [40]Twiss R Q. Radiation transfer and the possibility of negative absorption in radio astronomy. Aust. J. Phys.,1958,11(1):564-579
    [41]Hirshfield J L, Bernstein I B and Wachtel J M. Cyclotron resonance interaction of microwaves with energetic electrons. IEEE J. Quantum Electron.,1(6):237-245
    [42]Sakamoto K. Gyrotrons and mm wave technology for ITER. The Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics,2007:4-7
    [43]Kasugai A, Minami R, Takahashi K, et al. Long pulse of 170GHz ITER gyrotron by beam current control. Fusion Eng. Des.,2006,81(23):2791-2796
    [44]Idehara T, Tsuchiya H, Watanale O, et al. The first experiment of a THz gyrotron with a pulse magnet. Int. J. Infrared and Millimeter Waves,2006,27(3):319-331
    [45]Agusu L, Idehara T, Mori H, et al. Design of a CW ITHz gyrotron (Gyrotron FU CW Ⅲ) using a 20T superconducting magnet. Int. J. Infrared and Millimeter Waves,2007, 28(3):315-328
    [46]Agusu L, Idehara T, Saito T, et al. Simulation results of a CW ITHz gyrotron (Gyrotron FU CW Ⅲ). The Joint 32ud International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics,2007:319-320
    [47]Hornstain M K, Bajaj V S, Griffin R G, et al. Second harmonic operation at 460GHz and broadband continuous frequency tuning of a gyrotron oscillator. IEEE Trans. Electron Devices,2005,52(5):798-807
    [48]Hornstain M K, Bajaj V S, Griffin R G, et al. Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator. IEEE Trans. Plasma Sci.,2006,34(3):524-533
    [49]Kartikeyan M V, Borie E, and Thumm M. A 250GHz,50W, CW second harmonic gyrotron. Int. J. of Infrared and Millimeter Waves,2007,28(8):611-619
    [50]Glyavin M Y, Luchinin A G, Manuilov V N, et al. Design of a subterahertz, third-harmonic continuous-wave gyrotron. IEEE Trans. Plasma Sci.,2008,36(3):591-596
    [51]Piosczyk B, Dammertz G, Dumbrajs O, et al. A 2-MW 170-GHz coaxial cavity gyrotron. IEEE Trans. Plasma Sci.,2004,32(3):413-417
    [52]Dumbrajs O, Nusinovich G S, Caoxial gyrotron:past, present, and future. IEEE Trans. Plasma Sci.,2004,32(3):934-936
    [53]Dammertz G, Alberti S, Arnold A, et al. High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications. IEEE Trans. Plasma Sci.,2006,32(2): 173-186
    [54]Kasugai A, Takahashi K, Kobayashi N, et al. Development of 170GHz gyrotron for ITER. The Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics,2006:202
    [55]Barroso J J, Correa R A, and Castro P J. Gyrotron coaxial cylindrical resonantors with corrugated inner conductor:theory and experiment. IEEE Trans. Microwave Theory and Techniques,1998,46(9):1221-1230
    [56]Ganuly A, and Chu K R. Limiting current in gyrotron. Int. J. Infrared and Millimeter Waves, 1984,5(1):103-121
    [57]Christos T I, Stefan K, Alexander B P. Coaxial cavities with corrugated inner conductor for gyrotrons. IEEE Trans. Plasma Sci.,1996,44(1):56-64
    [58]Liu S G, Yan Y, Zhu D J, et al. The study on the coaxial gyrotron with two electron beams. The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics,2005,239-240
    [59]Yan Y, Yuan X S, Zhang Y X, et al. The study of coaxial gyrotron with two beams. The Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics,2006,341
    [60]Yuan X S, Yan Y, Liu S G, et al. Two-beam instability for THz radiation source. The Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics,2006,152
    [61]Liu S G, Yan Y, Zhu D J, et al. The study on the coaxial gyrotron with two electron beams. The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics,2005,239-240
    [62]Liu S G, Yuan X S, Fu W J, et al. The coaxial gyrotron with two electron beams. I. Linear theory and nonlinear theory. Phys. Plasmas,2007,14(10):103113
    [63]Liu S G, Yuan X S, Liu D W, et al. The coaxial gyrotron with two electron beams. II. Dual frequency operation. Phys. Plasmas,2007,14(10):103114
    [64]Marcuvitz N, and Schwinger J. On the representation of the electric and magnetic fields produced by currents and discontinuities in wave guides. J. Appl. Phys.,1951,22(6):806-820
    [65]刘盛纲.电子回旋脉塞和回旋管的进展.成都:四川教育出版社,1988,373-385
    [66]Liu D W, Yuan X S and Liu S G. Coupled-mode theory of coaxial gyrotron with two electrons. Fusion Eng. Des.,2008,83(4):606-612
    [67]张克潜,李德杰.微波与光电子学中德电磁理论.北京:电子工业出版社,2001,173-223
    [68]Liu D W, Yuan X S, Yan Y, et al. Coupled-mode theory of coaxial THz gyrotron with two electron beams. The Joint 33st International Conference on Infrared and Millimeter Waves and 16th International Conference on Terahertz Electronics,2008,1-2
    [69]Lindsay P A, Lumsden R J and Jones R M. A dispersion equation for gyrotron TWTs. Int. J. Electronics,1982,53(6):619-640
    [70]Mitsudo S, Hoshizuki H, Idehara T, et al. Development of material processing system by using a 300GHz CW gyrotron. J. Phys.,2006,51(1):549-552
    [71]Agusu L, Idehara T, Dumbrajs O. Mode selection for a terahertz gyrotron based on a pulse magnet system. Int. J. Infrared and Millimeter Waves,2004,25(7):1023-1036
    [72]Zapevalov V E, Lygin V K, Malygin O V,et al. Preliminary project of the 400GHz/200W/CW second harmonic gyrotron. Joint 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics,2005:439-440
    [73]Li H, Xie Z L, Wang W, et al. A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnetic system. IEEE Trans. Plasma Sci.,2003,31(2):264-271
    [74]Huang Y, and Li H F. Startup and mode competition in a 35GHz third harmonic complex cavity gyrotron.23rd International Conference on Infrared and Millimeter Waves,1998: 549-552
    [75]Li H F, Wang W X, Du P Z, et al. A study on third harmonic gyrotron.25th International Conference on Infrared and Millimeter Waves,2000:263-264
    [76]Idehara T, Ogawa I, Mitsudo S, et al. A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet. IEEE Trans. Plasmas Sci.,2004,32(3):903-909
    [77]Bratman V L, Grom Y D, Kalynov Y K, et al. Relativistic gyrotron at the 5th cyclotron harmonic.3rd International Kharkov Symposium on Physics and Engineeringg of Millimeter and Submillimeter Waves,1998:191-193
    [78]Bratman V L, Fedotov A E, Kalynov Y K, et al. Moderately relativistic high-harmonic gyrotrons for millimeter/submillimeter wavelength band. IEEE Trans. Plasmas Sci.,1999, 27(2):456-461
    [79]Bandurkin I V, Bratman V L, Kalynov Y K, et al. Terahertz high-harmonic gyrotrons and gyro-multipliers, the Joint 33rd International Conference on Infrared and Millimeter Waves and 16th International Conference on Terahertz Electronics,2008:1-2
    [80]Nusinovich G S, Dumbrajs O, Two-harmonic prebunching of electrons in multicavity gyrodevices. Phys. Plasmas,1995,2(2):568-577
    [81]Nusinovich G S, Levush B, Dumbrajs O, Optimization of multistage harmonic gyrodevices. Phys. Plasmas,1996,3(8):3133-3144
    [82]Savilov A V, Nusinovich G S. On the theory of frequency-quadrupling gyroklystrons. Phys. Plasmas,2007,14(5):053113
    [83]Savilov A V, and Nusinovich G S. Stability of frequency-multiplying harmonic gyrotronstrons. Phys. Plasmas,2008,15(1):013112.
    [84]Nusinovich G S, Levush B, and Danly B G. Gain and bandwidth in stagger-tunned gyroklystrons and gyrotwystrons. IEEE Trans. Plasmas Sci.,1999,27(2):422-428
    [85]Wexler A. Solution of waveguide discontinuities by modal analysis. IEEE Trans. Microwave Theory and Techniques,1967,15(9):508-517
    [86]Neilson J M, Latham P E, CapLan M, et al. Determination of the resonant frequencies in a complex cavity using the scattering matrix formulation. IEEE Trans. Microwave Theory and Techniques,1989,37(8):1165-1170.
    [87]James G. Analysis and design of TE11-to HE11 corrugated cylindrical waveguide mode converters. IEEE Trans. Microwave Theory and Techniques,1981,29(10):1059-1066.
    [88]Wagner D, Gantenbein G., Kasparek W, et al. Improved gyrotron cavity with high quality factor. Int. J. Infrared and Millimeter Waves,1995,16(9):1481-1489.
    [89]罗勇,李宏福,赵青,邓学,徐勇,王晖.回旋速调放大器输入谐振腔分析及数值模拟.强激光与粒子束,2004,16(3):358-362
    [90]罗勇,李宏福,谢仲怜,喻胜.回旋速调管群聚腔研究.电子学报,2003,31(6):864-866.
    [91]徐勇,罗勇,刘迎辉,王建勋,李宏福,王晖,熊彩东.Ka波段TE01模回旋速调管输出腔.强激光与粒子束,2008,20(3):426-429
    [92]刘盛纲.相对论电子学.北京:科学出版社,1987:107-128
    [93]McDonald N A. Electric and magnetic coupling through small apertures in shield walls of any thickness. IEEE Trans. Microwave Theory and Techniques,1972,20(10):689-695
    [94]徐寿喜,刘濮鲲,张世昌.Ka波段二次谐波回旋速调管放大器输入耦合器的分析与模拟.强激光与粒子束,2004,16(4):477480
    [95]王建勋.70GHz二次谐波倍频回旋速调管高频系统的研究:[硕士学位论文].成都:电子科技大学,2007
    [96]梁显锋.8mm二次谐波三腔回旋速调管放大器的研究:[博士学位论文].北京:中国科学院电子学研究所,2004
    [97]Flyagin V A, Gaponov A V, Peterlin M I, et al. The gyrotron. IEEE Trans. Microwave Theory and Techniques,1977,25(6):514-521
    [98]Zasypkin E V, Moiseev M A, Sokolov E V, et al. Effect of penultimate cavity position and tuning on three-cavity gyroklystron amplifier performance. Int. J. Electronics,1995,78(2): 423-233
    [99]Nusinovich G S, Danly B G, and Levush B. Gain and bandwidth in stagger-tuned gyroklystrons. Phys. Plasmas,1997,4(2):469-478
    [100]Fliflet A. W., Read M. E., Chu K. R., et al. A self-consistent field theory for gyrotron oscillators:application to a low Q gyromontron. Int. J. Electronics,1982,53(6):505-521
    [101]Danly B. G., and Temkin R. J. Generalized nonlinear harmonic gyrotron theory. Phys. Fluids, 1986,2(2):561-567
    [102]Nusinovich G S, and Li H.Theory of gyro-travelling-wave tubes at cyclotron harmonics. Int. J. Electronics,1992,72(5):895-907
    [103]Latham P E, Lawson W, and Irwin V.The design of a 100 MW, Ku band second harmonic gyroklystron experiment. IEEE Trans. Plasmas Sci.,1994,22(5):804-817
    [104]Zavolsky N A, Zapevalov V E, and Moiseev M A. Influence of the energy and velocity spread in the electron beam on the starting conditions and efficiency of a gyrotron. Radiophys. Quantum Electronics,2006,49(2):108-119
    [105]Thumm M. State-of-the-art of high power gyro-devices and free electron masers-update 2003. Forschungszentrumkarl-sruhe, Karlsruhe, Germany, Rep. FZKA6957,2004:1-100
    [106]Salop A, Caplan M. Self-consistent field large signal analysis of the gyroklystron. Int. J. Electronics,1986,61(6):1005-1024
    [107]耿志辉,刘濮鲲.Ka波段二次谐波回旋速调管放大器的研究.电子学报,2005,33(12):2161-2164
    [108]耿志辉.毫米波回旋速调管放大器的自洽非线性理论与模拟:[博士学位论文].北京:中国科学院研究生院,2005
    [109]Fliflet A W, Lee R C, Read M E. Self-consistent field model for the complex cavity gyrotron. Int. J.Electronics,1988,65(3):273-283
    [110]Fliflet A W Linear and non-linear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM waveguide modes. Int. J. Electronics,1986,61(6):1049-1080
    [111]Dumbrajs O, and Nusinovich G S. Coaxial gyrotrons:past present, and future(review). IEEE Trans. Plasmas Sci.,2004,32(3):934-1016
    [112]Iatrou C T, Kern S, and Pavelyev A B. Coaxial cavities with corrugated inner conductor for gyrotrons. IEEE Trans. Microwave Theory and Techniques,1996,44(1):56-64
    [113]Idehara T, Tatsukawa T, Ogawa I, et al. Competition between fundamental and second-harmonic operations in a submillimeter wave gyrotron. Appl. Phys. Lett.,58(15): 1954-1956
    [114]Sirigiri J R, Kreischer K E, Machuzak J, et al. Photonic-band-gap resonator gyrotron. Phys. Rev. Lett.,2001,86(24):5628-5631
    [115]Shapiro M A, Chen C, Sirigiri J R, et al. Photonic bandgap structures for high power microwave application. IEEE MTT-s International Microwave Symposium Digest,2004: 1005-1008
    [116]Joo Y D, Won J H, and Park G S. Study on photonic crystal cavity for harmonic multiplying gyroklystron using axis-encircling electron beam. IEEE 2006 International Vacumm Electron Sources,2006:467-468
    [117]Yablonovitch E, and Gmitter T J. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett.,1987,58(20):2059-2062
    [118]John S. Strong localization of photons in certain disordered dielectric super lattices. Phys.Rev. Lett.,1987,58(23):2486-2489
    [119]Ho K M, Chan C T, and Soukoulis C M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett.,1990,65(25):3152-3155
    [120]Zhang Z, and Satpathy S. Electromagnetic wave propagation in periodic structures:Bolch wave solution of the maxwell's equations. Phys. Rev. Lett.,1990,65(21):2650-2653
    [121]Kuzmiak V, Maradudin A A, and Pincemin F. Photonic band structures of two-dimensional systems containing metallic components. Phys. Rev. B,1994,50(23):16835-16844
    [122]Leung K M, and Qiu Y. Multiple-scattering calculation of the two-dimensional photonic band structure. Phys. Rev. B,1993,48(11):7767-7771
    [123]Yannopapas V, Modinos A, and Stefanou N. Optical properties of metallodielectric photonic crystals. Phys. Rev. B,1999,60(8):5359-5365
    [124]Zhang W Y, Lei X Y, Wang Z L, et al. Robust photonic band gap from tunable scatters. Phys. Rev. Lett.,2000,84(13):2853-2856
    [125]Pendry J B, and MacKinnon. Calculation of photon dispersion relations. Phys. Rev. Lett.,1992, 69(19):2772-2775
    [126]Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic microstructures. Phys. Rev. Lett.,1996,76(25):4773-4776
    [127]Garcia-Vidal F J, and Pendry J B. Collective theory for surface enhanced raman scattering. Phys. Rev. Lett.,1996,77(6):1163-1166
    [128]Ward A J, and Pendry J B. Calculating photonic Green's functions using a nonorthogonal finite-difference time-domian method. Phys. Rev. B,1998,58(11):7252-7259
    [129]Qiu M, and He S. A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions. J.Appl. Phys.,2000,87(12):8268-8275
    [130]Sigalas M M, Biswas R, Ho K M, et al. Waveguides in three-dimensional metallic photonic band gap materials. Phys. Rev. B,1999,60(7):4426-4429
    [131]郝保良,刘濮鲲,唐昌建.二维非正交坐标斜方格金属光子带隙结构.物理学报,2006,55(4):1862-1867
    [132]李树德.布里渊区的定义及二维倒易点阵布里渊区的图像.南京师范大学学报,1984,3(1):52-58
    [133]易明芳.关于固体物理能带论中布里渊区的注记.安庆师范学院学报,2005,11(4):75-77
    [134]Sakoda K. Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices. Phys. Rev. B,1995,52(11):7982-7986
    [135]肖三水.光子晶体计算方法和设计的研究:[博士学位论文].杭州:浙江大学,2004.
    [136]刘頔威,刘盛纲.二维单斜点阵光子晶体的第一布里渊区及带隙计算.物理学报,2007,56(5):2747-2780
    [137]McGurn A R, and Maradudin A A. Photonic band structures of two-and three-dimensional periodic metal or semiconductor arrays. Phys. Rev. B,1993,48(23):17576-17579.
    [138]Agusu L, Idehara T, Ogawa I, et al. Detailed consideration of experimental results of gyrotron FU CW II developed as a radiation source DNP-NMR spectroscopy. Int. J. Infrared and Millimeter Waves,2007,28(3):499-511
    [139]Idehara T, Ogawa I, Agusu L, et al. Development of 394.6GHz CW gyrotron (Gyrotron FU CW II) for DNP/Proton NMR at 600 MHz. Int. J. Infrared and Millimeter Waves,2007, 28(6):433-442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700