小花型夏菊品种花器官愈伤辐射诱变研究与再生苗遗传变异的RAPD分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先以‘金莲’、‘白矮生’、‘矮红’3个小花型夏菊品种的舌状花和管状花作为外植体进行组织培养研究;然后利用10、15、20Gy的~(60)Co γ射线对这3个小花型夏菊品种的舌状花和管状花诱导的愈伤组织进行辐射处理;最后利用RAPD技术从分子水平上对‘金莲’辐射再生苗的遗传变异程度进行分析。研究结果表明:
     1.基因型及外植体类型影响花器官的愈伤诱导率、分化率以及愈伤平均分化芽的数目。‘金莲’品种的愈伤诱导率、分化率以及愈伤平均分化芽的数目均最好,管状花和舌状花分别为74.25%、30.61%、4.91和61.71%、27.28%、3.82。‘矮红’品种最差,分别为72.50%、19.03%、0.60和58.39%、11.02%、0.27,3个品种的愈伤分化率在5%水平上达到显著性差异,平均分化芽数差异在1%水平上达到显著差异。外植体类型对三个指标也有很大影响,管状花外植体均明显好于舌状花外植体,如‘白矮生’品种管状花的三个指标分别为71.66%、21.10%、2.53;舌状花三个指标分别为57.33%、13.21%、1.68,管状花的指标均显著高于舌状花的指标。
     2.~(60)Co γ射线对3个品种不同外植体诱导产生的愈伤组织的褐化、分化能力均有影响。随着辐射剂量的增加,不同来源的愈伤组织褐化程度均加重,分化能力减弱,当辐射剂量达到15Gy时,‘矮红’品种所有愈伤都失去分化能力,‘白矮生’舌状花产生的愈伤失去分化能力。当辐射剂量为20Gy时,只有‘金莲’品种的愈伤仍然具有分化能力,但分化能力与对照相比已很弱,管状花和舌状花产生的愈伤分化率和平均分化芽数目分别为对照的57.11%、28.51%和47.65%、31.68%。此外,基因型和不同来源的愈伤组织,对γ射线敏感性也有差异,‘矮红’品种的愈伤最敏感,舌状花产生的愈伤比管状花产生的愈伤辐射敏感性强。
     3.RAPD技术作为一种有效的分子鉴定手段可以有效、快速地检测出辐射再生苗基因组的变异程度。RAPD研究结果表明,再生辐射苗的基因组遗传变异程度与所接受γ射线剂量成正相关性,即愈伤受到辐射剂量越大,则由该愈伤分化的苗变异程度就越大。10、15和20Gy 3个处理的再生苗的遗传变异程度与对照相比,其变异系数分别为0.223、0.335和0.393。通过RAPD技术筛选出了一批变异植株,其田间表现情况正在进一步观察。
The studies include three related parts. The first one was concerned with the study on regeneration of calli derived from ray flowers and tabular flowers of three summer-flowering Chrysanthemum morifolium cultivars with small inflorescences, named 'Golden lotus', 'White dwarf' and 'Red dwarf respectively. The second one studied the effects of gamma rays on the browning and differentiation capacity of calli derived from different explants of three cultivars. The last one was variation analysis of regeneranis from tabular-flower-derived calli of 'Golden lotus' treated with 10, 15 and 20 Gy gamma rays, respectively using RAPD.
    The results are as follows.
    Firstly, both genotype and types of explants greatly influence induction and differentiation rate of calli and mean buds per callus. As far as Chrysanthemum morifolium 'Golden lotus' was concerned, induction and differentiation rate of calli and mean buds per callus were the highest among the three cultivars. Its tabular-flower-derived calli induction rate, differentiation rate and mean buds per callus were 74.25%, 30.61% and 4.91, and those of ray-flower-derived calli were 61.71%, 27.28% and 3.82, respectively. While the data of 'Red dwarf were the lowest , the tabular-flower-derived calli induction rate, differentiation rate and mean buds per callus were 72.50%, 19.03% and 0.61, and those of the ray-flower-derived callus were 58.39%, 11.02%, and 0.27, respectively. Callus differentiation rate of three cultivars had a significant difference at level of 5%, and so did mean buds per callus at level of 1%. Tabular flowers were superior to ray flowers in the capacities of callus induction and differentiation. T
    ake 'White dwarf as an example, its induction and differentiation rate of tabular-flower-derived calli and mean buds per callus were 71.66%, 21.10% and 2.53, while those of ray-flower-derived callus were 57.33%, 13.21% and 1.68, respectively.
    Secondly, 60Co gamma ray has an great influence upon browning and differentiation capacity of calli derived from different explants of the three cultivars. As the doses of gamma ray increased from 0 , 10, 15 to 20 Gy, the browning rate of the calli rose, and differentiation capacity decreased gradually. When the dose of gamma ray was 15 Gy, all the calli of 'Red dwarf' lost differentiation capacity, and so did the ray-flower-derived calli of'White dwarf. When the dose was 20Gy, 'White dwarf lost differentiation capacity, and differentiation capacity of'Golden lotus' was lower than that of the control. Compared with
    
    
    the control, its differentiation rate of tabular-derived calli and mean buds per callus decreased by 42.89% and 71.49%, and those of ray-flower-derived calli by 52.35% and 68.12%,respectively. In addition, tabular-flower-derived calli was more sensitive to gamma rays than ray-flower-derived calli, thus the latter was easier to brown and lose differentiation capacity than the former. What's more, as far as sensitivity to gamma rays was concerned , the calli of 'Red dwarf ' were most susceptible to gamma ray among the three cultivars, and ray-flower-derived calli more than tabular-flower-derived calli.
    Finally, RAPD is an effective molecular means to identify the variation of genomic DNA of regenerants quickly and reliably. The results showed that the variation range of genomic DNA of plants regenerated from inrradiated calli was proportional to the dose of gamma rays. In other words, the higher the dose of gamma ray used , the wider the variation range of the genomic DNA of plants was. In comparison with the control, the variation coefficient of the genomic DNA of plants, which produce from tabular-flower-derived calli of 'Golden lotus" irradiated with the dose of 10, 15 and 20 Gy gamma rays, was 0.223,0.335 and 0.393, respectively. A batch of mutant plants had been screened through RAPD technique. And the phenotypic characteristics of these plants are under observation in the field.
引文
[1] 景士西 园艺植物育种学总论 中国农业出版社 2000 北京
    [2] 孙大容 花生育种学 中国农业出版社 1998 北京
    [3] 佟道儒 烟草育种学 中国农业出版社 1996 北京
    [4] 何启谦 园林植物育种学 中国林业出版社 1992 北京
    [5] 王彭伟,陈俊愉.地被菊新品种选育研究.园艺学报,1990,17(8):225-228
    [6] 陈秀兰,李惠芬.小花型菊花新品种选育.植物资源与环境,1993,2(1):37-40
    [7] Xiulan Chen(陈秀兰), Hui Fen Li (李蕙芬). Development of new cultivars with small infloreseences in chrysanthemum. Acta Hort. 95,404,9-14
    [8] 许伟,李春涛,丁增成,徐宏青.唐菲园林彩叶地被植物品种与辐射诱变育种.安徽农业科学,2002,30(3):435-436
    [9] 陈树国,李瑞华,杨秋生.观赏园艺学.北京:中国农业科技出版社,1991
    [10] 李惠芬,李倩中.我国花卉育种研究进展.西南园艺,vol.27(1)1999:36-39
    [11] Broetjes C.,S. Roet, G.S. Bokelman. Mutation breeding of Chrysanthemum morifolium Ram. Using in vivo and vitro culture adventitious bud techniques. Euphytica, 1976, 25:11-19
    [12] 王彭伟,李鸿渐,张效平.切花菊单细胞突变育种研究.园艺学报,1996,23(3):285-288
    [13] 傅玉兰,郑路.冬菊新品种选育.安徽农业大学学报,1994,21(1):59—62
    [14] 郭安熙,陈树国,王世荣等.菊花花色辐射诱变研究.核农学报,1997,11(2):65-73
    [15] 夏英武,吴殿星,舒庆尧.植物诱变育种技术的研究进展及其新的领域.核农学报,1995,9(1):39-42
    [16] 周迪英等.辐射诱变菊花新品种夕霞的选育及栽培要点.浙江农业科学,1989,(5):245-246
    [17] 郭安熙,张经芬,王士荣.金光四射系6个菊花新品种的辐射选育.核农学报,1991,72(2):73-75
    [18] 丁彗清等.辐射与组培相结合能加速花卉新类型的产生与稳定.辽宁农业科学,1991,(2):49-51
    [19] 赵月芬等.菊花辐射效应及其利用组织培养加速突变体稳定的研究.核农学报,1990,11(5):207-209
    [20] M. Jerzy, and M. Zalewska flower colour recurrence in Chrysanthemum and g gerbera mutants propagased in vitro from meristems and LEAF explants. Acta Hort.447 ISHS 1997:611-614
    [21] M. Zalewska and M.Jersy Mutation Spectrum in Dendranthema grandiflora Tivelev after in vi vivo and in vitro regeneration of plants from irradiated leaves Acta Hort. 447,251SHS, 1997: 615-618
    [22] Banerji BK,Datta SK. Induction of somatic mutation in chrysanthemum cultivar "Anupam" J .Nucl.Agr.&biol.,1991,19(4):252-256
    [23] A.K.A. Mandal,D.Chakrabarty &S.K. Datta. Application of in vitro techniques in mutation breeding of chrysanthemum Plant Cell, Tissue and Organ Culture, 2000, 60:33-38
    [24] 齐孟文,王化国.我国花卉辐射育种的进展和剖析.核农学通报,1997,18(6):288-290
    [25] 何启谦.园林植物育种学 中国林业出版社 1992 北京
    [26] Talukdar MC Paswan L Gamma ray induced mutation in chrysanthemum. Journal of Nuclear Agriculture and Biology, 1997 Vol.26,No.2, 129-131
    
    
    [27] 吴洪,孙传芝.二种高能粒子射线对西红柿、菊花种子诱变效应的试验初报.集美大学学报(自然科学版),2002,第7卷第1期:20-22
    [28] 李宏彬,黄建昌,廖海坤.菊花辐射育种研究初报.广东园林,2002,第一期 35-37
    [29] Talukdar MC Paswan L Effect of gamma radiation on standard chrysanthemum cultivars. Journal of Nuclear Agriculture and Biology, 1997Vol.26, No. 2 454-256
    [30] Peng-ZhenHua; Jiang-ShouHe; Peng-ZH; Jiang-SH; Zhu-DeWei New chrysanthemum cultivars developed by radiation breeding and micropropagation. International symposium on cultivar improvement of horticultural crops. Part Ⅲ: flowers, Beijing, China, 6-10 September 1993. Acta-Horticulturae. 1995, No. 404, 128-130.
    [31] 崔永春.利用X光照射培育菊花新品种.中国花卉盆景,1993,000(010) P.10-10
    [32] 沈守江,王炎君.菊花γ-射线慢照射的诱变效果研究.浙江农业学报,1991,003(1):29-33
    [33] 李斌麒,赵月芬,菊花辐射敏感性的初步探讨.核农学通报,1991,012(004)164-167
    [34] Neto-TA; Latado-RR Cristiane' and 'Ingrid': first Chrysanthemum cultivars obtained by mutation induction in Brazil. Mutation-Breeding-Newsletter. 1996, No. 42, 18
    [35] Shukla-R; Datta-SK Mutation studies on early and late cultivars of garden Chrysanthemum. Journal-of-Nuclear-Agriculture-and-Biology. 1993, 22: 3-4, 138-142
    [36] 林祖军,孙纪霞,崔广琴,刘学庆,辛国胜,王建玲.电子束辐射菊花组培苗诱变育种研究.山东农业科学,2000 10-11
    [37] Jerzy-M; Zalewska-M Polish cultivars of Dendranthema grandiflora Tzvelev and Gerbera jamesonii Bolus bred in vitro by induced mutations Mutation-Breeding-Newsletter. 1996, No. 42, 19
    [38] 范家霖,杨保安,张建伟,柏楠.辐射菊花组织的离体培养研究.园艺学报,1996,23(4):409-410
    [39] 范家霖,杨保安.组织培养在菊花辐射育种中的应用研究.河南科学,1996,014(004)P.455-459
    [40] 杨保安,范家霖.辐射与组培复合育成“霞光”等14个菊花新品种.河南科学,1996,014(001) P.57-60
    [41] Nagatomi S Miyahira E Degi K Cadic A Induction of flower mutation comparing with chronic and acute gammairradiation using tissue culture techniques in Chrysanthemum morifolium Ramat. Acta Horticulturae ,2000 No. 508.69-73
    [42] Mandal AKA Chakrabarty D Datta SK In vitro isolation of solid novel flower colour mutants from induced chimeric ray florets of chrysanthemum. Euphytica, 2000, Vol.114,No.1, 9-12
    [43] Nagatomi-S; Degi-K; Yamaguchi-M; Miyahira-E; Sakamoto-M; Takaesu-K Six mutant cultivars of different flower colour induced by floral organ culture of chronically irradiated chrysanthemum plants, echnical-News -Institute-of-Radiation-Breeding. 1993, No. 43, 1-2.
    [44] 郭安熙,范家霖.菊花的辐射诱变与组织培养复合育种.国花卉盆景,1992,(009)4-5
    [45] 温平,李燕梅.菊花电子束辐射诱变育种的研究.核农学通报,1992,013(003) P.113-115
    [46] Ahloowalia-BS In-vitro radiation induced mutants in chrysanthemum. Mutation-Breeding-Newsletter. 1992, No. 39, 6
    [47] Datta-SK Aensitivity of mutant genotypes of chrysanthemum to gamma rays. Journal-of-Nuclear-Agriculture-and-Biology. 1994, 23:4, 251-254
    [48] Banerji-BK; Datta-SK Gamma ray induced flower shape mutation in chrysanthemum cv. 'Jaya'.
    
    Journal-of-Nuclear-Agriculture-and-Biology. 1992,21:2, 73-79
    [49] Datta-SK Gamma irradiation studies on Dendranthema grandiflora Tzueleu. Journal-of-Nuclear-Agriculture-and-Biology. 1992,21: 2, 80-83
    [50] Dwivedi-AK; Banerji-BK; Debasis-Chakrabarty; Mandal-AKA; Datta-SK; Chakrabarty-D Gamma ray induced new flower colour chimera and its management through tissue culture. Indian-Journal-of-Agricultural-Sciences. 2000, 70: 12, 853-855
    [51] Banerji-BK; Datta-SK Induction and analysis of gamma ray-induced flower head shape mutation in 'Lalima' chrysanthemum (Chrysanthemum morifolium). Indian-Journal-of-Agricultural-Sciences. 2002,72: 1,6-10
    [52] alukdar-MC; Paswan-L Effect of gamma radiation on standard chrysanthemum cultivars. Journal-of-Nuclear-Agriculture-and-Biology. 1997, 26: 4,254-256
    [53] Lamseejan-S; Jompuk-P; Wongpiyasatid-A; Deeseepan-S; Kwanthammachart-P; Siranut-Lamseejan; Peeranuch-Jompuk; Arunee-Wongpiyasatid; Surin-Deeseepan; Prapanpongse-Kwanthammachar Gamma-rays induced morphological changes in chrysanthemum. (Chrysanthemum morifolium). Kasetsart-Journal,-Natural-Sciences. 2000, 34: 3, 417-422
    [54] Datta-SK; Banerji-BK Improvement of garden chrysanthemum through induced mutation. Flora-and-Fauna. 1995,1:1,1-4
    [55] Banerji-BK; Dwivedi-AK; Datta-SK Gamma irradiation studies on rose and chrysanthemum. Journal-of-Nuclear-Agriculture-and-Biology. 1996, 25: 2, 63-67
    [56] Nagatomi-S; Tanaka-A; Watanabe-H; Tano-S Chrysanthemum mutants regenerated from in vitro explants irradiated with 12C5+ ion beam. Technical News Institute of Radiation Breeding. 1997, No. 60,2
    [57] Matsumoto-H; Onozawa-Y Development of non-chimaeric mutation lines through in vitro culture of florets in chrysanthemum. Scientific-Reports of the Faculty of Agriculture, Ibaraki-University. 1989, No. 37, 55-61
    [58] Zalewska-M; Sorvari-S (ed.); Karhu-S (ed.); Kanervo-E (ed.); Pihakaski-S In vitro formation of adventitious meristem and its significance for mutation breeding of Dendranthema grandiflora Tzvelev. Proceedings of the Fourth International Symposium on In Vitro Culture and Horticultural Breeding, Tampere, Finland, 2-7 July 2000. Acta-Horticulturae. 2001, No.560, 225-228
    [59] 高建,卢惠萍.花卉辐射育种研究进展.1997,11(2) :65-73
    [60] Debasis Chakrabarty, A.K.Mandal , S.K. M .Datta management of chimera through direct shoot regeneration from florets of Chrysanthemum 'morifolium. Journal of Horticultural Science &Biotechnology, 1999, 74(3) :293-296
    [61] J. B. ,M. Huttema, Preil, W., G.C. Gussenhoven & M. Schneiderr. Methods of selection of low-temperature tolerance mutants of Chrysanthemum morifolium Ramat. using irradiated cell suspension cultures. Plant breeding,1991,102:140-147
    [62] Williams J G ,Kubelik A R, LiVak K J ,et al. DNA polymorphis amplified by primers are useful as a genetic markers. Nucleic Acids Research, 1990,18(23) :6531-6535
    [63] Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers . Nucleic Acids Research, 1990,18(24) :7213-7218
    
    
    [64] 唐岱,熊济华,王仕玉.切花菊育种问题探讨.云南农业大学,2001,第16卷 第1期46-49
    [65] 许耀奎.作物诱变育种.上海:上海科技出版社,1985,101-109
    [66] Broertjes C等.不定芽的单细胞起源.国外生物科技,1986,(3):76-77
    [67] Malaure-RS; Barclay-G; Power-JB; Davey-MR The production of novel plants from florets of Chrysanthemum morifolium using tissue culture Journal-of-Plant-Physiology. 1991.139:1, 14-18
    [68] 牛维和,徐玉冰等.诱导君子兰多倍体的初步研究.园艺学报,1986,13(1):61~63
    [69] 张学方,岳桦.诱导金鱼草多倍体的初步研究.园艺学报,1990,17(1):76~80.
    [70] 陈发棣,蒋甲福,房伟民.秋水仙素诱导菊花脑多倍体的研究.上海农业学报,2002,18(1):46~50
    [71] Boase, M.R., Miller, R, Deroles, S.C. Chrysanthemum systematic ,genetics, and breeding, In Jules Janick(ed) : Plant breeding reviews, John Wiley &Sons, Inc. 1997,14:321-36
    [72] 柳学余.农作物化学诱变育种.东南大学出版社 南京 1992
    [73] Kalyani Datta, Datta SK, Datta K Palynological interpretation of gamma ray and colchicine induced mutation in chrysanthemum cultivars Israel journal of plant sciences Vol.46,No.3,1998 p. 199-207
    [74] Endo-M; Kawaraya-M; Inada-I Creation of mutants through tissue culture of chrysanthemum, Dendranthema X grandiflorum (Ram.) Kitam. An attempt to create chromosome-reduced plants in a liquid medium treated with\para\-fluorophenylalanine. Journal-of-the-Faculty-of-Agriculture,-Iwate-University. 1994, 21 : 4, 231-243
    [75] 王琳清.科技导报,1992,(11):24~261
    [76] 李桂英.辐射促成植物异源基因转移的研究与进展.核农学通报,1997,18(4):182~186
    [77] 苏学合,高国强,时香玉,朱斗北.利用花粉辐照技术进行棉花种间远缘杂交研究.山东农业科学,2000,第2期 8-10
    [78] 陈义纯等.核农学报,1992,6(1):1~7
    [79] ShintakuJJ. TheorApplGenet,1988,76: 293~298
    [80] 北京农业大学编.放射生物学.1983.257~2593
    [81] 孙雪新等.遗传,1995,(5):24~26
    [82] 朱壬葆等编.辐射生物学.北京:科学出版社,1987.154
    [83] 李玉花等.激光生物学报,1995,4(2):636~641
    [84] 胡小元等.核农学通报,1994,15(2):59~61
    [85] JanuskevicSI.PlantBreedAbstr,1963,33:1247
    [86] 赵世绪.作物生殖生物学.北京:北京农业大学出版社,1986.167~174
    [87] PickersgillB. PlantBreeding: PrinciplesandProspects.1994.63~77
    [88] 王侯聪等.水稻辐照花粉对籽粒发育的影响.核农学迎报,1993,14(1):12-18
    [89] 赵世绪.γ射线照射花粉对玉米胚胎发育的影响.核农学通报,1987,8(3):11~12
    [90] 刘替.细胞杂交与胞质基因组的研究.生物学通报,1996 vol(8) 19-20
    [91] 许智宏,卫志明.植物原生质体培养和遗传操作.上海科学技术出版社 1998
    [92] 田志宏,孟金陵.芸(?)属作物原生质体融合及基因转移.中国油料,1997,vol.19(1)70-75
    [93] J.S.Al-Atabee and J.B.Power. plant regeneration from protoplasts of Dimorphotheca and Rudbeckia Plant Cell Reports(1987)6:414-416
    [94] V.Pillai,M. R. Davey, and J.B.Power. plant regenetation from mesophyll protoplasts of Centaurea Cyanus,Senecio×hybridus and Callistephus chinensis Plant Cell Reports(1990)9:402-405
    
    
    [95] 李名扬,陈薇.菊花花瓣愈伤组织原生质体培养再生植株.农业生物技术学报,1996,4(3):243-248
    [96] 熊兴耀,龙岳林,甘霖.菊花原生质体培养及植株再生.园艺学论文集,北京农业大学出版社,1995,615-618
    [97] Graeme C.Lindsay, Susan E.Leder, A protoplast to plant system for the Chrysanthemum Dendranthema zawadskii×D, grandiflora, Plant Cell Reports, 1993, 12:278-280
    [98] 李鸿渐.中国菊花.江苏科学技术出版社.1993 南京
    [99] Nagatomi-S; Miyahira-E; Degi-K Combined effect of gamma irradiation methods and in vitro explant sources on mutation induction of flower colour in Chrysanthemum morifolium Ramat. Gamma-Field-Symposia. 1996, No. 35, 51-69
    [100] 李玉芬.几种菊花花器官培养及愈伤组织分化频率研究.生物技术,7(2):24-26,1997
    [101] 刘雄伦,李旬.RAPD技术在植物遗传育种上的应用.生物工程进展,2000,Vol(20).No.5 21-24
    [102] 盖树鹏,孟祥栋.利用R A P D技术进行植物性状标记及辅助选择.生物技术通报,1999年,第6期 33-38
    [103] 谢军.分子标记技术在植物遗传育种中的应用.吉林农业科学,1998年第3期 20-26
    [104] 戴思兰,陈俊愉,李文彬.菊属植物RAPD反应体系的建立.北京林业大学学报,1996,18(1):46-51
    [105] KWolff, J.,Peters-V.Riju.Heredity, 1993,71,335~341
    [106] 戴思兰,陈俊愉,李文彬.菊花起源的RAPD分析.植物学报,1998,40(11):1053~1059
    [107] 李红,吴丽芳,宋道军.余增亮.离子束介导玉米DNA导入水稻引起遗传变异的RAPD分析.激光生物学报,1999,Vol.8 No.4 261-265
    [108] 伍玲,李平,刘熔山.外源DNA导入水稻的变异材料随机扩增多态性分析.西南农业学报,1998,Vol.11 No.4 28-32
    [109] 傅骏骅,李连城,吴景锋,田志国,余增亮.RAPD技术在玉米纯系离子束诱变材料中的初步应用.安徽农业科学,1996,24卷1期 48-49
    [110] 李淘,王建东,谢伟军,顾德法,龚秦秦.用RAPD技术分析软X-射线诱变育成的香梗稻.上海农业科学,1996,12(2):18-23
    [111] 易继财,庄楚雄,姚涓,王会,陈志强,梅曼彤.空间搭载诱导水稻种子突变的分子标记多态性分析.生物物理学报,2002,Vol.18 No.4 478-483
    [112] 沈法富,刘风珍,于元杰.分子标记在植物遗传育种中的应用.山东农业大学学报,1999,28(1):83-91
    [113] Stromberg L. etal.Cropsci. 1994,34:1221~1225
    [114] Frank Cheng ,Norman Weeden,and Susan Brown, Hortiscience ,29(5):529,1994
    [115] 陈秀玲,夏光敏.RAPD技术在植物遗传育种研究中的应用进展.生物技术通报,2002,第5期 13-16
    [116] 孙兰珍,姚方印,等.作物学报,2001,27(2):144~148.
    [117] 肖顺元,Frederick G.Gmitter等.遗传,1995,17(4):40~42.
    [118] 周爱芬,向凤宁,等.山东大学学报(自然科学版),1998,34(2):224~229.
    [119] 郑红军,于元杰,尹承佾等.外源DNA导入小麦的RAPD验证及遗传分析.西北植物学报,2002,22(4):758-765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700