畸形波模拟及其与核电取水构筑物作用探究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畸形波是一种波高巨大的灾害性波浪,对海岸及海上建筑物和船只具有强大的破坏性。由于畸形波发生的偶然性和不可预测性,实测资料非常有限,畸形波的研究还处于起步阶段,其发生机理和发生概率还不明确,因此需要对畸形波做深入的研究,以减少畸形波给人类带来的伤害。鉴于外海监测畸形波存在极大困难,实验室模拟成为研究畸形波相关特性的重要手段。
     目前基于Longuet-Higgins模型是实验室模拟产生畸形波的有效手段和常用方法。为了克服已有模拟方法的不足,本文建立了一种数值模拟畸形波的相位调制新方法,该方法既能定点定时模拟生成畸形波,又可满足模拟波浪序列的统计特性与天然海浪的统计特性一致,还可使模拟波列的频率谱与目标谱吻合。基于该模型,探讨了畸形波特征参数和模拟效率的影响因素问题。经过模拟对比发现,高频向低频调制优于低频向高频调制,高频波浪对畸形波的形成具有极其重要的作用。采用高频向低频调制方式和本文所采用的组成波数范围内(50~100),畸形波波高、波峰高、畸形波波高与有效波高的比、畸形波波峰高与畸形波波高的比以及畸形波的模拟效率均随调制波数和谱宽度的增加而增大;在本文选取的谱峰周期范围内(8-16s),谱峰周期对畸形波的特征参数和模拟效率几乎没有影响。采用该方法模拟畸形波,建议截断频率取3.5-4倍的谱峰频率;若模拟一般畸形度的畸形波,组成波数可取50~70;若模拟畸形度较高的畸形波,组成波数可取70~100;全部调制;采用尝试法,根据模拟结果改变组成波数和调制波数。
     应用该模型模拟了多个外海实测含有畸形波的波浪序列,模拟结果既满足了波浪序列的统计特性,又保持了原有目标谱的真实结构,模拟畸形波和实测畸形波吻合完好,验证了本文方法的有效性和适用性。其中,采用本文方法可以数值模拟出畸形波波高与有效波高的比达到3.14且畸形波波峰高与畸形波波高的比达到0.76的高畸形度的实测畸形波,模拟结果与实测畸形波吻合良好,较已有方法,本文方法具有较强的适用性;然而在物理模拟中由于波浪在聚焦点前发生破碎,未能模拟出该实测高畸形度畸形波。
     本文研究了畸形波在随机波浪中生成与发展的演化过程。数值模拟结果和物理模拟结果均表明,在波浪聚焦点前后不超过半个特征波长的范围内均有一大波谷(海中之洞)形成;同时物理模拟发现,在聚焦点前后不超过一个特征波长的范围内,均有满足最大波高与有效波高之比大于等于2.0且最大波高的波峰高与最大波高之比大于等于0.65的畸形波形成;这些现象与目击者的描述和研究学者通过数值计算得出的结论是一致的。通过统计不同波况下畸形波的无因次生存时间(生存时间与谱峰周期之比)和无因次传播距离(传播距离与特征波长之比),发现两者具有很好的线性相关性,无因次生存时间大约是无因次传播距离的2.0倍;畸形波的生存时间约为2~10倍的谱峰周期,传播距离约为1~5倍的特征波长。
     核电多建设在近岸以方便取排水,复杂地形变化和岸边界的作用可能在取水构筑物前形成畸形波。鉴于畸形波强大的破坏性,有必要对畸形波与核电取水构筑物的相互作用进行探索性的研究。本文借助一个工程实例,发现近岸海域波浪中有畸形波形成,为证明近岸畸形波的存在提供了有力证据。试验结果中发现,在直墙式取水构筑物迎浪侧有异常点压力发生,经分析发现该异常点压力是由近岸畸形波传播至取水构筑物并对构筑物冲击造成的。畸形波产生的最大点压力值可以达到常规随机波浪最大点压力值的2.28倍,水平总力可以达到2.51倍,可见畸形波能够产生比普通波浪强大的压力,可能对取水构筑物造成严重的破坏。若现行设计标准中取水构筑物波浪压强值是在没有畸形波情况下得到的,建议考虑可能存在畸形波作用的情况,将现行设计承压能力加大到2.5倍。对于取水构筑物底部,畸形波和常规随机波浪作用时,最大点压力差别不大,点压力分布曲线几乎一致。
Freak waves are events that feature unusually large and cause severe damage to mariners and offshore structures. In order to avoid their hazards, it is necessary to obtain much more data to explore their generation mechanisms and occurrence properties. However, the measured data of freak waves in situ are very rare so far because most of them take place under the unknown and unexpected conditions. Therefore, the experimental generation of these giant waves in laboratory seems to be particularly important.
     Up to now, the formation of freak waves based on the Longuet-Higgins wave model theory is offen used in laboratory. In order to overcome the short-comings of the existed methods, a new numerical method called new phase modulation method is developed. The new method can not only keep the statistical properties of the wave train and the structure of the target wave spectrum, but also keep the statistical properties of the simulated wave train identical with those of the realistic random sea state and generate freak waves at certain time and space with high efficiency. Based on the new method, factors influence freak waves characteristics and simulation efficiency are disscused. Results show the modulation way of high frequency to low frequency is superior to the way of low frequency to high frequency. Waves with high frequency are important factor on formation of freak waves. In the modulation way of high frequency to low frequency, freak wave height and its crest height, the ratio of the freak wave height to the significant wave height and the ratio of the crest height to the freak wave height and also the freak waves simulation efficiency are increased as the number of modulated waves and the spectrum band width increased. The spectrum peak periods (8 to 16s) adopted in the paper have little influence on the freak wave characteristics and simulation efficiency. Through numerical simulation, this paper makes recommendation values of cut frequency to be 3.5 to 4 times the spectrum peak frequency, and wave number components of 50~70 to simulate normal freak waves, wave number components of 70~100 to simulate high nonlinear freak waves. The wave number components and wave number to be modulated are selected according to a tentative simulation.
     Freak waves recorded in situ are simulated by the new method sucessfully. The simulation results satisfy the wave series statistics and keep identical with the target spectrums; effectiveness and applicability of the new method are validated. Comparing to the existing methods, the new approach can generate a high nonlinear freak wave numerically which height is 3.14 times the significant wave height and crest height is 0.76 times freak wave height. However, this high nonlinear freak wave can not be simulated in physical wave flume because of wave breaking in front of the focal point.
     Freak waves generation and development process are studied. Numerical and physical simulation results both show that less than half characteristic wavelength in front and back of the focal point there is a big trough (hole) in sea; and less than one characteristic wavelength in front and back of the focal point there is a freak wave occurred physically which height is more than 2.0 times the significant wave height and crest height is more than 0.65 times freak wave height. The above appearances are coincidence with eyewitness and researchers'results. Freak waves life and propagation distance are strongly related linearly. The ratio of life time to spectrum peak period is about two times the ratio of propagation distance to characteristic wavelength. The shortest and longest life time of freak wave are 2 and 10 times the spectrum peak period, respectively; The shortest and longest propagation distance of freak wave are 1 and 5 times the characteristic wavelength, respectively.
     Nuclear power station is usually located in coastal area. Freak waves may be occurred in front of ingarage structure because of variation of bathymetries and boundaries effects. As to strong destructiveness of freak waves, it is necessary to study the interactions between freak waves and ingarage structure. Freak waves near coastal sea were recorded in an experimental and this proves the existence of coastal freak waves. It is found that abnormal wave pressure on the ingarage structure towards to wave direction is caused by freak wave formed in front of the structure. The abnormal wave pressure caused by freak wave can be 2.28 times wave pressure caused by normal random wave, the total lateral force caused by the former is 2.51 times of the latter, so it is seen that freak wave is quite different from normal random waves and it may cause severe damage to the structure. If wave pressures on the structure are obtained without freak waves, it is suggested that the situation of freak wave existence be considered and wave pressures adopted shoud be enhanced to 2.5 times. As to the bottom pressures on ingarage structure, there is only a slight difference of maximum wave pressures and pressure distribution caused by freak wave and normal random wave.
引文
[1]LAWTON G. Monsters of the deep (The perfect wave)[J]. New Scientist,2001,170(2297):28-32.
    [2]KHARIF C, PELINOVSKY E. Physical mechanisms of the rogue wave phenomenon[J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS,2003,22(6):603-634.
    [3]DYSTHE K, KROGSTAD H E, MULLER P. Oceanic rogue waves[J]. Annual Review of Fluid Mechanics,2008,40:287-310.
    [4]HAVER S. A Possible freak wave event measured at the DrauPner Jacket January 1 1995:Rogue waves 2004, Brest, France,2004[C]. Ifremer.
    [5]MULLER P, GARRETT C, OSBORNE A. Rogue waves[J]. Oceanography Society, 2005,18(3):66-75.
    [6]DIDENKULOVA I I, SLUNYAEV A V, PELINOVSKY E N, et al. Freak waves in 2005[J]. Nat. Hazards Earth Syst. Sci.,2006,6:1007-1015.
    [7]庞红犁,于定勇.极端瞬态波浪的特征分析[J].海岸工程,2001(4):15-20.
    [8]杨冠声,董艳秋,陈学闯.畸形波(freak wave)[J].海洋工程,2002,20(4):105-108.
    [9]杨冠声.张力腿平台非线性波浪载荷和运动响应研究[D].天津大学天津大学港口海岸及近海工程,2002.
    [10]黄国兴.畸形波的模拟方法及基本特性研究[D].大连理工大学,2002.
    [11]陈冠宇.疯狗浪的可能机制[J].海洋工程学刊,2002,20(4):93-106.
    [12]庞红犁,张庆河,秦崇仁.异常波及其对海上结构铃振现象的影响[J].水道港口,2003,24(3):109-114.
    [13]庞红犁.极端波浪作用下海上结构物高频共振响应的数值模拟研究[D].天津大学,2003.
    [14]董艳秋,陈学闯,杨冠声.关于一种危害船舶安全的波浪—Freak波的探讨[J].船舶力学,2003,7(2):33-38.
    [15]陈学闯,董艳秋,杨冠声.非线性freak波分析及模拟理论探讨[J].海洋工程,2003,21(1):105-108.
    [16]孙一艳,柳淑学,李金宣,等.聚焦波浪的试验研究:第二十届全国水动力学研讨会,太原,2006[C].
    [17]裴玉国,张宁川,张运秋.畸形波数值模拟和定点生成[J].海洋工程,2006,24(4):20-26.
    [18]裴玉国,张宁川,张运秋.数值模拟生成畸形波的一种新方法[J].海洋通报,2007,26(2):71-77.
    [19]裴玉国,张宁川,张运秋.利用波浪频谱数值模拟畸形波的方法探究[J].海洋学报(中文版),2007,29(3):172-178.
    [20]裴玉国.畸形波的生成及基本特性研究[D].大连理工大学大连理工大学港口、海岸及近海工程,2007.
    [21]刘晓霞.三维波浪场中畸形波的数值模拟[D].大连理工大学,2008.
    [22]赵西增,孙昭晨,梁书秀.模拟畸形波的聚焦波浪模型[J].力学学报,2008,40(4):447-454.
    [23]柳淑学,李金宣,Hong KEYYONG多向聚焦破碎波的实验研究[J].水动力学研究与进展A辑,2007,22(3):293-304.
    [24]李金宣.多向聚焦极限波浪的模拟研究[D].大连理工大学大连理工大学港口、海岸及近海工程,2007.
    [25]高璞,汪留松,赵西增.畸形波特性研究[J].中国港湾建设,2007(6):28-31.
    [26]赵西增,孙昭晨,梁书秀.高阶谱数值方法及其应用[J].船舶力学,2008,12(5):685-691.
    [27]张运秋,张宁川,裴玉国.畸形波数值模拟的一个有效模型[J].大连理工大学学报,2008,48(3):406-410.
    [28]张运秋.深水畸形波的数值模拟研究[D].大连理工大学,2008.
    [29]孙一艳,柳淑学,臧军,等.聚焦波浪对直立圆柱作用的试验研究[J].大连海事大学学报,2008,34(1):5-9.
    [30]李金宣,柳淑学,孙一艳,等.方向分布对三维聚焦波浪波面特性影响研究[J].海洋工程,2008,26(2):26-33.
    [31]赵西增,孙昭晨,梁书秀.高阶谱方法建立三维畸形波聚焦模拟模型[J].海洋工程,2009,27(1):33-39.
    [32]赵西增.畸形波的实验研究和数值模拟[D].大连理工大学,2009.
    [33]黄玉新,裴玉国,张宁川.基于小波变换的畸形波生成过程时频特性研究[J].水动力学研究与进展A辑,2009,24(6):754-760.
    [34]赵西增,孙昭晨.破碎波对随机波统计特性影响的实验研究[J].船舶与海洋工程学报(英文版),2010,9(1):8-13.
    [35]刘首华.畸形波的海浪数值模拟研究[D].中国海洋大学,2010.
    [36]LONGUET-HIGGINS M S. On the statistical distribution of the heights of sea waves[J]. Journal of Marine Research,1952,11(3):245-266.
    [37]SUNDAR V, KOOLA P M, SCHLENKHOFF A U. Dynamic pressures on inclined cylinders due to freak waves[J]. OCEAN ENGINEERING,1999,26(9):841-863.
    [38]SPARBOOM U, WIENKE J, OUMERACI H. Laboratory "freak wave" generation for the study of extreme wave loads on piles:Proceedings of the International Symposium on Ocean Wave Measurement and Analysis, San Francisco, CA, United states,2001 [C].
    [39]KIM N, KIM C H. Investigation of a dynamic property of Draupner freak wave[J]. International Journal of Offshore and Polar Engineering,2003,13(1):38-42.
    [40]VOOGT A, BUCHNER B. Wave impacts on moored ship-type offshore structures due to steep fronted waves:RINA, Royal Institution of Naval Architects International Conference-Design and Operation for Abnormal Conditions Ⅲ, London, United kingdom,2005 [C].
    [41]CLAUSS G F, SCHMITTNER C E, HENNIG J. Systematically varied rogue wave sequences for the experimental investigation of extreme structure behavior[J]. JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2008,130(0210092).
    [42]ROUX DE REILHAC P, BONNEFOY F, ROUSSET J M, et al. Improved transient water wave technique for the experimental estimation of ship responses [J]. Journal of Fluids and Structures, 2011,27(3):456-466.
    [43]DRAPER L.'Freak' wave[J]. Marine Observer,1965,35:193-195.
    [44]PELINOVSKY E, KHARIF C. Extreme ocean waves[M]. Berlin:Springer,2008.
    [45]KHARIF C, PELINOVSKY E, SLUNYAEV A. Rogue Waves in the Ocean[M]. Berlin:Springer, 2009.
    [46]DYACHENKO A I, ZAKHAROV V E. Modulation Instability of Stokes Wave→FreakWave[J]. JETP Letters,2005,81(6):255-259.
    [47]KLINTING P, SAND S. Analysis of prototype freak waves:Coastal Hydrodynamics, ASCE, 1987[C].
    [48]DEAN R. Abnormal waves:a possible explanation:Water Wave Kinematics, Kluwer, Dordrecht, 1990[C].
    [49]OCHI M K. Ocean waves, the stochastic approach[M]. Cambridge University press,1998.
    [50]KJELDSEN S P. The wave follower experiment:Proc. Symp. Air-Sea Interface Radio Acoustic Sensing Turbulence and Wave Dynam., Marseilles, France,1993[C].
    [51]CHIEN H, KAO C C, CHUANG L ZH. On the characteristics of observed coastal freak waves[J]. Coastal Engineering Journal,2002,44(4):301-319.
    [52]MORI N, LIU P C, YASUDA T. Analysis of freak wave measurements in the Sea of Japan[J]. OCEAN ENGINEERING,2002,29(11):1399-1414.
    [53]ONORATO M, OSBORNE A R, SERIO M, et al. Extreme waves, modulational instability and second order theory:wave flume experiments on irregular waves[J]. European Journal of Mechanics, B/Fluids,2006,25(5):586-601.
    [54]PETROVA P, GUEDES SOARES C. Maximum wave crest and height statistics of irregular and abnormal waves in an offshore basin[J]. Applied Ocean Research,2008,30(2):144-152.
    [55]WARWIEK R W. Hurrieane'Luis', the Queen Elizabeth 2 and a rogue wave[J]. Marine Observer, 1996,66:134.
    [56]SCIENCE-FRONTIERS. Rogue wave smashes the Queen Elizabeth ii[EB/OL]. http://www.science-frontiers.com/sf109/sf109p11.htm.
    [57]LECHUGA A. Were freak waves involved in the sinking of the Tanker "Prestige"?[J]. Nat. Hazards Earth Syst. Sci.,2006,6:973-978.
    [58]SEA-ALARM. Prestige 2002[EB/OL]. http://www.sea-alarm.org/?page_id=91.
    [59]WIKIPEDIA. Prestige oil spill[EB/OL]. http://en.wikipedia.org/wiki/Prestige_oil_spill.
    [60]PUGH K. Coast Guard Capsize[EB/OL]. http://madmariner.com/seamanship/weather/story/ COAST_GUARD_CAPSIZE_MORRO_BAY_122007_SW.
    [61]MCGUINNESSPUBLISHING. A 'rogue wave' is large, unexpected, and dangerous freak wave![EB/OL]. http://www.deathwaves.com/.
    [62]IOL. Three shark-diving tourists die[EB/OL]. http://www.iol.co.za/news/south-africa/three-shark-diving-tourists-die-1.396411.
    [63]FOXNEWS. Giant Rogue Wave Slams Into Ship Off French Coast, Killing 2[EB/OL]. http://www.foxnews.com/story/0,2933,587885,00.html.
    [64]HAVER S. Freak waves:rare realizations of a typical population or typical realizations of a rare population? Proceedings of the tenth international offshore and polar engineering conference, Seattle, USA,2000[C].
    [65]WALKER D A G, TAYLOR P H, TAYLOR R E. The shape of large surface waves on the open sea and the Draupner New Year wave[J]. Applied Ocean Research,2004,26(3-4):73-83.
    [66]COOPER C. Rogue Waves in Sea and Land Disasters[EB/OL]. http://www.brighthub.com/ engineering/marine/articles/27980.aspx.
    [67]LIU P C, PINHO U F. Freak waves-more frequent than rare[J]. Annales Geophysicae, 2004,22:1839-1842.
    [68]PELINOVSKY E, SLUNYAEV A, LOPATOUKHIN L, et al. Freak Wave Event in the Black Sea:observation and modeling[J]. Dokl Earth Sci,2004,395A:438-443.
    [69]STANSELL P. Distributions of freak wave heights measured in the North Sea[J]. Applied Ocean Research,2004,26(1-2):35-48.
    [70]STANSELL P. Distributions of extreme wave, crest and trough heights measured in the North Sea[J].2005,32(8/9):1015-1036.
    [71]SLUNYAEV A, PELINOVSKY E, GUEDES SOARES C. Modeling freak waves from the North Sea[J]. Applied Ocean Research,2005,27(1):12-22.
    [72]GUEDES SOARES C, CHERNEVA Z, ANTAO E M. Characteristics of abnormal waves in North Sea storm sea states[J]. Applied Ocean Research,2003,25(6):337-344.
    [73]OLAGNON M. About the frequency of occurrence of rogue waves:Rogue waves 2008, Brest, France,2008[C]. Ifremer.
    [74]SERGEEVA A, PELINOVSKY E, TALIPOVA T. Nonlinear random wave field in shallow water:variable Korteweg-de Vries framework[J]. Natural Hazards and Earth System, 2011,11(2):323-330.
    [75]WHITE B S, FORNBERG B. On the chance of freak waves at sea[J]. Journal of Fluid Mechanics, 1998,355:113-138.
    [76]Freak wave episodes[EB/OL]. www.shipmotions.nl/RDM/RDM-AR/AR-1973A-Bencruachan. pdf.
    [77]LAVRENOV I V, PORUBOV A V. Three reasons for freak wave generation in the non-uniform current[J]. European Journal of Mechanics, B/Fluids,2006,25(5):574-585.
    [78]GIOVANANGELI J P, KHARIF C, PELINOVSKY E. Experimental study of the wind effect on the focusing of transient wave groups:Rogue waves 2004, Brest, France,2004[C]. Ifremer.
    [79]YAN S, MA Q W. Numerical simulation of interaction between wind and 2D freak waves[J]. European Journal of Mechanics, B/Fluids,2010,29(1):18-31.
    [80]KRIEBEL D L. Efficient simulation of extreme waves in a random sea:Rogue waves 2000, Brest, France,2000[C]. Ifremer.
    [81]KRIEBEL D L, ALSINA M V. Simulation of extreme waves in a background random sea:Proc. of the 10th ISOPE, Seattle,2000[C].
    [82]MORI N, JANSSEN P, ONORATO M. Freak wave prediction from spectra:10th International Workshop on Wave Hindcasting and Forecasting, Hawaii, USA,2007[C].
    [83]LIGHTHILL M J. Contribution to the theory of waves in nonlinear dispersive systems[J]. J. Inst. Math. Appl.,1965,1:269-306.
    [84]BENJAMIN T B, FEIR J E. The disintegration of wave trains on deep water. Part 1. Theory[J]. J. Fluid Mech.,1967,27:417-430.
    [85]ZAKHAROV V E. Stability of nonlinear waves in dispersive media[J]. J. Teor. Prikl. Fiz., 1966,51:668-671.
    [86]FEIR J E. Discussion:Some results from wave pulse experiments:Proc. Roy. Soc. London Ser. A, 1967[C].
    [87]LIGHTHILL M J. Waves in fluids[M]. Cambridge University Press,1978.
    [88]俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社,2003.
    [89]CAVALERI L, ALVES J H G M, ARDHUIN F, et al. Wave modelling-The state of the art[J]. Progress In Oceanography,2007,75(4):603-674.
    [90]MORI N, YASUDA T. Effects of high-order nonlinear interactions on unidirectional wave trains[J]. Ocean Engineering,2002,29(10):1233-1245.
    [91]DUCROZET G, BONOEFOY F, LE TOUZE D, et al.3-D HOS simulation of extreme waves in open seas[J]. Natural Hazards and Earth System Sciences,2007,7(01):109-122.
    [92]KHARIF C, GIOVANANGELI J P, TOUBOUL J, et al. Influence of wind on extreme wave events experimental and numerical approaches[J]. Journal of Fluid Mechanics, 2008,594:209-247.
    [93]WU C H, YAO A. Laboratory measurements of limiting freak waves on currents[J]. J. Geophys. Res.-Oceans,2004,109:1-18.
    [94]GODA Y. A comparative review on the functional forms of directional wave spectrum[J]. Coastal Engineering Journal,1999,41(1):1-20.
    [95]JTJ/T 234-2001波浪模型试验规程[S].行业标准-交通,2001.
    [96]LIU P C, MORI N. Wavelet spectrum of freak waves in the ocean:Coastal Engineering 2000-Proceedings of the 27th International Conference on Coastal Engineering, ICCE 2000, Sydney, NSW, Australia,2000[C].
    [97]LIU P C. A discrete wavelet analysis of freak waves in the ocean[J]. Journal of applied mathematics,2004,5:379-394.
    [98]李炎保,郄禄文,祝振宇.小波变换在随机海浪及相关课题中的应用与前景[J].力学进展,2003(4):541-547.
    [99]TRULSEN K. Simulating the spatial evolution of a measured time series of a freak wave:Rogue waves 2000, Brest, France,2000[C]. Ifremer.
    [100]SCHLURMANN T, LENGRICHT J, GRAW K U. Spatial evolution of laboratory generated freak waves in deep water depth:Proceedings of the International Offshore and Polar Engineering Conference, Seattle, WA, USA,2000[C].
    [101]OSBORNE A R, SERIO M, ONORATO M. The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains[J].2000,275(5/6):386-393.
    [102]CLAUSS G F, KLEIN M. The new year wave:Spatial evolution of an extreme sea state[J]. Journal of Offshore Mechanics and Arctic Engineering,2009,131(4):1-9.
    [103]MORI N. Effects of wave breaking on wave statistics for deep-water random wave train[J]. Ocean Engineering,2003,30(2):205-220.
    [104]FONSECA N, GUEDES SOARES C, PASCOAL R. Prediction of ship dynamic loads in heavy weather:Proceedings of the conference on design and operation for abnormal conditions II, RINA, London, UK,2001 [C].
    [105]PASTOOR W, HELMERS J B, BITNER-GREGERSEN E. Time simulation of ocean-going structures in extreme waves:Proceedings of the 22nd international conference on offshore mechanics and arctic engineering (OMAE'03)., New York, USA,2003 [C]. ASME.
    [106]GUEDES SOARES C, FONSECA N, PASCOAL R, et al. Analysis of design wave loads on a FPSO accounting for abnormal waves:Proceedings of the OMAE specialty conference on integrity of floating production, storage & offloading (FPSO) systems, New York,2004[C]. ASME.
    [107]BUCHNER B, BUNNIK T. Extreme Wave Effects on Deepwater Floating Structures:Offshore Technology Conference, Houston, Texas,2007 [C].
    [108]刘克修,范文静,储英杰,等.辽宁红沿河核电厂海域工程海洋水文分析报告[R].天津市海岸带工程有限公司,2005.
    [109]姜晓晖,王华峦.辽宁红沿河核电厂岸滩稳定性分析报告[R].天津市海岸带工程有限公司,2006.
    [110]齐文明.红沿河核电厂二期工程进水口波浪物理模型试验任务书[R].深圳中广核工程设计有限公司,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700