中国南方典型酸雨区酸沉降特性及其环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪世界范围内能源结构发生了重大转变。但中国以煤为主导的能源结构在若干年内不会有本质的改变。煤使用量的增长和汽车保有量的增加,带来了酸沉降的本体气体(SO2, NOx)排放量逐步增加;酸性物质(气体或气溶胶)通过干湿沉降的方式降落到地面,不仅导致巨大的经济损失,还对生态系统造成毁灭性的侵害。酸沉降已成为21世纪最大的环境问题之一。本文选择中国南方的三个典型酸雨区重庆市、湖南省、贵州省的铁山坪、蔡家塘、雷公山建立了3个国际高标准的小流域酸雨观测站,利用EMEP监测网络推荐的标准采样和化学分析方法,对酸沉降进行系统的研究,其创新性结果如下:
     研究区域(湖南蔡家塘、贵州雷公山、重庆铁山坪)内典型森林小流域(2001-2004年)大气干沉降主要酸性物质均为SO2、SO42-、N02;主要碱性物质均为NH4+、Ca2+、K+、NH3,并具有季节性变化的特征(春、冬季污染严重);区域内大气降水均出现严重的酸化现象,年平均pH值顺序为铁山坪(4.12)<蔡家塘(4.62)<雷公山(4.96)。蔡家塘与铁山坪大气降水和森林穿透水中的阴离子均以8042-为主,阳离子以NH4+为主;雷公山大气降水阴离子以CI-为主,阳离子以NH4+为主,森林穿透水阴离子以SO42-为主,阳离子以K+为主。并且森林穿透水中的各种离子组分都发生了不同程度的富集,蔡家塘、雷公山、铁山坪离子总量分别增加2.75倍、1.79倍、4.63倍。
     大气降水经树冠和地表植被,发生了强烈的离子交换反应,降水pH值明显升高。常年酸沉降条件下,树冠层对SO42-、NO3-、Mg2+、NH4+和Na+具有吸收作用,以S042-、N03-最为明显。SO42-、Ca2+和Mg2+冠层淋溶百分率随降雨量的增加明显减少;Ca2+、K+(?)CI-随着pH的增加,其冠层淋溶百分率呈增加趋势;森林冠层离子的淋溶序列为:K+>Ca2+>Cl->Mg2+>SO42->NO3->NH4+>Na+。
     小流域降水中氮和硫的浓度与降水量呈负相关,输出浓度与地表径流量呈正相关。总氮输入以NH4+为主;森林氮沉降接近欧洲最大氮沉降穿透值25kg·/(hm2·a),输出通量主要受降水量和地表径流的影响,未出现大量的N03-的输出,大部分被生态系统截留。S042-的输入通量均明显高于输出通量,保持较高的净截留量。
     SMART和(?) MAGIC模型机理类似,考虑到二者的互补性,采用MAGIC和SMART结合模型进行硫沉降临界负荷计算,计算得出韶山硫沉降临界负荷为1.76keq/(hm2.a);与用单一MAGIC模型计算结果相比较,MAGIC和SMART结合模型计算出的硫沉降临界负荷更接近实测值。
     研究区域土壤酸化较为严重,酸化程度为铁山坪>蔡家塘>雷公山;主要与各地区酸沉降的缓冲容量有直接关系。氮、硫沉降在很大程度上加快了土壤酸化进程,其中氮沉降产生的H+通量高于硫沉降。但由于土壤中存在大量的活性钙,能够保持较高的Ca/Al比值,酸沉降未出现明显的铝毒效应。
Within the20th century the energy structure produced significant changes worldwide. But in China the dominant energy structure as coal in the near future will not be substantially changed. The growth of coal usage and the increase of auto ownership brought gradual increase of main gases emissions of acid subsidence (SO2, NOx). Acidic substances (gases or aerosols) by the way of dry and wet deposition fell upon the ground, which not only brings huge economic losses, but also devastatingly attacks the ecosystems. Acid subsidence has become one of the biggest environmental problems in the21st century. This article established three acid rain observation sites with high international standards in the typical acid rain area in China. The observation sites are Tieshanping in Chongqing Province, Caijiatang in Hunan Province and Leigongshan in Guizhou Province. We used the taking sample and chemical analysis method recommended by EMEP monitoring network to study acid subsidence systematically, the results are as follows:
     The study areas mentioned above are the typical forest watershed (2001-2004). Acidity materials in dry deposition mainly were SO2, SO42-and NO2. Alkaline substances with seasonal changing characteristics (pollution in spring and winter were much serious) mainly are Ca2+, NH4+K+and NH3. Atmospheric precipitation all appeared serious acidification, the order of average pH were:TieShanPing (4.12)     Atmospheric precipitation had taken deeply ion exchange reaction when it penetrated through vegetation canopy which caused a significantly increase of pH value. In the condition of perennial acid subsidence in Shaoshan region, the layers of canopy can absorb SO42-, NO3-, Mg2+, NH4+and Na+. Absorption to SO42-and NO3-was the most pronounced. The canopy eluviations percentages of SO42-, Ca2+and Mg2+obviously reduced with the increase of precipitation. The canopy eluviations percentages of Ca2+, K+and Cl-showed the tendency to increase with pH. The sequence of ion leaching through forest canopy in Shaoshan was K+> Ca2+> Cl-> Mg2+> SO42-> NO3-> NH4+> Na+
     The nitrogen and sulphur concentrations in precipitation in Shaoshan CaiJiatang watershed from2001to2003were negatively correlated with rainfall while the output concentrations were positively correlated with surface runoff. The inputs of total nitrogen gave priority to NH4+. The forest nitrogen deposition is close to the Europe's biggest penetrate value of25kg/(hm2.a) for nitrogen deposition, The output flux was mainly affected by rainfall and surface runoff, and the substantial output of NO3-had not appeared, which was due to that most of the output were intercepted by ecosystem. The input flux of SO42-was significantly higher than its output flux which maintained a higher amount of the net interception.
     The mechanism of SMART model is similar to the MAGIC model. In light of complement to the two models, the combination model of MAGIC and SMART was used. Acid deposition critical load calculated by the combination model was much closer to the measured value in comparison with SMART, result showed a critical load of sulfur subsidence in Shaoshan was1.76keq/(hm2.a).
     Soil acidification in the study area was relatively serious. The acidification degree was Tieshanping> Caijiatang>Leigongshan. The soil systems in Caijiatang and Leigongshan area had relatively larger buffer capacity to acid subsidence, while the buffer capacity in Tieshanping region had close to its saturation. The deposition of Nitrogen and sulfur largely accelerated the process of soil acidification, and in which the H+flux generated by nitrogen deposition was more than that of sulfur. Because of the plentiful existence of activity calcium in soil, the higher Ca/Al ratio could be maintained and the acid deposition did not showed aluminum poison effect obviously.
引文
[1]赵殿五.我国酸雨的化学特点[J].环境化学,1985,(专辑):137-146
    [2]Cappellato R, Peters N E. Dry deposition and canopy leaching rates in deciuous and coniferous forests f Georgia Piedomont:An assessment of regression model[J]. Journal of Hydrology,1995,169:131-150
    [3]陶福禄,冯宗伟.中国南方生态系统的酸沉降临界负荷[J].中国环境科学,1999,19(1):14-17
    [4]曹磊.全球十大环境问题[J].环境科学,1995,16(4):86-88
    [5]单运峰.酸雨、大气污染与植物第一版[M].北京:中国环境科学出版社,1993:1-2
    [6]谭洁艳,吴天龙.关于酸雨的新理解[J].环境科学动态,2003,3:13-14
    [7]Charlson R T. Factors Controlling the Acidity of Natural[J]. Nature,1982,295: 683-685
    [8]Christ M, Zhang Y, Likens G E, et al. Natrogen retention capacity of a norther hardwood forest soil under ammonium sulfate additons[J]. Ecology Applied,1995,5: 802-812
    [9]D·宾克利-CT德里斯科尔,H·埃伦·P·舍南伯格,D·麦卡沃伊.酸性沉降与森林土壤—美国东南部的沉降环境及研究实例[M].北京:科学出版社,1993:33-36
    [10]瑞典农业部环境委员会.环境酸化的现状与展望[M].北京:科学出版社,1993:15-20
    [11]伊兹拉埃尔.酸雨[M].北京:化学化工出版社,1983:55-59
    [12]袁志文,陈楚莹.模拟酸雨—土壤酸化—杉木、木荷根系生长关系的研究[J].生态学杂志,1992,11(1):23-28
    [14]W·波斯哈特.瑞士森林面临衰亡的危害[J].生态学杂志,1985,(5):42-45
    [15]潘根兴编译.西德对土壤酸化问题的研究进展[J].土壤学进展,1987,15(2):32-36
    [16]于天仁.中国土壤的酸度特点和酸化问题[J].土壤通报,1988,19(2):49-51
    [17]潘根兴.大气环境恶化下的全球土壤变化[J].土壤通报,1988,19(2):58-59
    [18]张效朴.我国南方的酸雨状况[J].土壤,1986,18(4):220-221
    []9]杨金宽,姬兰柱.酸雨地区马尾松害虫发生量的初步调查[J].生态学杂志,1988,8(1):54-55
    [20]周崇莲,齐玉臣.酸雨对土壤微生物活性的影响[J].生态学杂志,1988,7(2):21-22
    [21]李庆康.茶园土壤酸化研究的现状及展望[J].土壤通报,1987,18(2):69-71
    [22]潘根兴,Fallavier P,卢玉文,等.近35年来庐山土壤酸化及物理化学性质变化[J].土壤通报,1993,4(4):145-147
    [23]王敬华,张效年,于天仁.华南红壤对酸雨敏感性的研究[J].土壤学报,1994,31(4):348-354
    [24]赵忠.森林土壤酸化及其林木生长的影响[J].土壤学进展,1988,16(2):1-5
    [25]徐仁和,季国亮.预测土壤和地表水酸化趋势的MAGIC模型[J].土壤学进展,1994,22(5):36-39
    [26]张听,孙腊梅,周淑梅.从酸雨到酸沉降—关于对酸雨的认识[J].生物学通报,2006,41(8):22-23
    [27]樊后保.世界酸雨控制技术与策略[J].南昌工程学院学报,2005,24(1):26-31
    [28]樊后保.世界酸雨研究概况[J].福建林学院学报,2002,22(4):371-375
    [29]Cogbill C V, Likens G E. Acid precipitation in the northeastern United States[J]. Water Resources,1974,10(6):1131-1137
    [30]Beamish R J, Harvey H H. Acidification of the La Cloche Mountain Lakes, Ontario, and resulting fish mortalities [J]. Fish Resl Board Canl,1972,29:1131-1143
    [31]牛建刚,牛荻涛,周浩爽.酸雨的危害及其防治综述[J].灾害学,2008,123(14):26-32
    [32]黄美元.中国和日本降水化学特性的比较分析[J].大气科学,1993,17(1):14-18
    [33]沈建国.加拿大的酸雨China Academic Journal Electronic Publishing House AC
    [34]Carroll J. Acid rain diplomacy:The need for a bilateral resolution [J]. Alternatives, 1983,11 (2):9-12
    [35]Beamish R J. Acidification of lakes in Canada by acid precipitation and the resulting effects on fishes[A]. Dochinger L S and Seliga T A.1st. Internat. Symp. Acid Precipitation and the Forest Ecosystem. Rep NE223, Pennsylvania,1976:479-498
    [36]Catherine M E, James M Buttle, Shaun A. Watmough. The contribution orain-on-snow events to annual NO3-N export from a forested catchment in south-central Ontario, Canada[J]. Applied Geochemistry,2007,22:1105-1110
    [37]Oden S. The acidity problem-an outline of concepts [A]. Dochinger L S and Seliga T A.1st. Internat. Symp. Acid Precipitation and the Forest Ecosystem. Rep. NE-23, Pennsylvania,1976:1-36
    [38]Christian Lange, Jorg Matschullat, Frank Zimmermann, et al. Fog frequency and chemical composition of fog water-are Levant contribution to atmospheric deposition in the eastern Erzgebirge, Germany [J]. Atmospheric Environment,2003, 37:31-37
    [39]茄德教.酸雨的成因和影响[J].贵州环保科技,1985,13(2):12-16
    [40]黄美元.中国和日本降水化学特性的比较分析[J].大气科学,1993,17(1):14-18
    [41]Hana Svobodova', Helena Lipavska', Jana Albrechtova. on-structural carbohydrate status in Norway spruce budsin the context of annual bud structural development asaffected by acidic pollution[J]. Environmental and Experimental Botany 2000,43: 253-265
    [42]Bernard J Cosbya, Richard F Wrightb, Egil Gjessingb. An acidification model (MAGIC) with organic acidsevaluated using whole-catchment manipulations in Norway[J]. Journal of Hydrology,1995,170:101-122
    [43]Rgar. Acid deposition in the UK 1981-1985. Report to DOE. Warren Spring Laboratory, Herts,1987:95-101
    [44]Beverland I J, Crowther J M. Heal the influence of meteorology and atmospheric transport patterns on the chemical composition of rainfall in South-East England. Atmospheric Environment[J].1998,32(6):1039-1048
    [45]EEA.CSI 003-Emissions of primary particles and secondary particulate matter precursors (version 2)-Assessment published,2008
    [46]史秀华,刘予宇,浮田正夫.日本酸雨及其对环境生态系统的影响[J].内蒙古农业大学学报,2000,21(4):18-22
    [47]Tomoaki Okudaa, Tamami Iwasea, Hideko Ueda, et al. Long-term trend of chemical constituents in precipitation in Tokyo metropolitan area, Japan, from 1990 to 2002[J]. Science of the Total Environment,2005,339:127-141
    [48]Hideaki Sakihama, Maki Ishiki, Akira Tokuyama. Chemical characteristics of precipitation in Okinawa Island[J]. Japan Atmospheric Environment,2008,42: 2320-2335
    [49]Herut B, Starinsky A, Katz A. Relationship between the acidity and chemical composition of rainwater and climatological conditions along a transition zone between large deserts and Mediterranean climate, Israel[J]. Atmospheric Environment,2000,1999,34:1281-1292
    [50]牛建刚,牛荻涛,周浩爽.酸雨的危害及其防治综述[J].灾害学,2008,123(14):28-31
    [51]王文兴,许鹏举.中国大气降水化学研究进展[J].化学进展,2009,21(2/3):12-14
    [52]金蕾,徐谦,林安国,等.北京市近二十年(1987-2004)湿沉降特征变化趋势分析[J].环境科学学报,2006,26(7):1195-1202
    [53]丁卫东,王建英,张兰真,等.河南省城市酸雨状况及其成因分析[J].中国环境 监测,2004,20(5):11-14
    [54]王赞红,李纪标.石家庄市冬季降雪化学成分及其不溶物颗粒形态特征[J].河北师范大学学报(自然科学版),2006,30(2):240-244
    [55]Huang K, Zhuang G S, Xu C, et al. Nitric acid photolysis on surfaces in low-NOx environments:Significant atmospheric implications[J]. Atmospheric Research,2008, 89:149-160
    f56]高一,卫滇萍.贵州省2002年酸雨污染情况分析[J].地球与环境,2005,33(1):59-62
    [57]马丽雅,王斌,杨俊国.四川省酸雨时空分布特征[J].环境科学与管理,2008,133(14):26-29
    [58]Aas W, Shao M, Lei J, et al. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001-2003[J]. Atmospheric Environment,2007,41:1706-1716
    [59]徐刚,李心清,黄荣生,等.贵阳市区大气降水中有机酸的研究[J].地球与环境,2007,35(1):46-50
    [60]胡敏,张静,吴志军.北京降水化学组成特征及其对大气颗粒物的去除作用[J].中国科学B辑:化学,2005,35(2):169-176
    [61]GuoY N, Feng X B, Li Z G, et al.中国大气降水化学研究进展[J]Atmospheric Environment,2008,27942 (30):7096-7103
    [62]王艳,刘晓环,金玲仁,等.泰山地区湿沉降中重金属的空间分布[J].环境科学,2007,28(11):2562-2568
    [63]胡幼梅,华民.大气酸沉降及其环境生态效应浅析[J].北京广播电视大学学报,2004,12(2):38-42
    [64]陈明艳,姜显政,黄汝红.浅析酸雨的形成、危害及防治措施[J].广东微量元素科学,2009,16(1):23-26
    [65]杨宗慧.我国酸雨状况和对策[J].云南环境科学,2002,8(1):26-27
    [66]詹秀环.酸雨的危害及防治对策研究[J].周口师范高等专科学校学报,2001,12(5):49-51
    [67]郭永林.我国的酸雨问题和防治[J].山西财经大学学报,2002,38(2):108-112
    [68]刘香兰.酸雨的形成、危害及防治[J].CHINA FRUIT&VEGETABLE,2008,6(2): 14-18
    [69]郝吉明,谢绍东,段雷,等.酸沉降临界负荷及其应用[M].北京:清华大学出版社,2001,18-20
    [70]Bull K R. The Critical Loads/Levels Approach to Gaseous Pollutant Emission Control[J]. Environmental Pollution,1991,69:105-123
    [71]Bull K R. An Introduction to critical loads[J]. Environmental Pollution,1992,77: 173-176
    [72]Juha kamari, Markus Amann, et al. The Use of Critical Loads for the Assessment of Future Alternative to Acidification[J]. AMBIO,1992,21(5):377-386
    [73]Chadwick M J, Kuylenstierna J C I. Critical Loads and Critical Levels for the Effects of Sulphur and Nitrogen Compounds.In:James W S, et al. Acid Deposition:Origins, Impacts and Abatement Strategies. Springer-Verlag,1991,279-315
    [74]Nilsson Jed. Critical Loads for Nitrogen and Suphur. Report 1986:11 (Copenhagen: Nordic Council of Ministers).1986
    [75]Nilsson J, Grennfelt P. Critical Loads for Sulphur and Nilsson. Report 1988: 15(Copenhagen:Nordic Council of Ministers).1988
    [76]仇荣亮,尧文元,潘蓉.南方酸雨区土壤硫酸根吸附解吸特性及其数值拟合[J].中山大学学报,2001,40(6):86-90
    [77]叶雪梅,郝吉明,段雷.应用动态模型确定酸沉降临界负荷的探讨[J].环境科学,2002,23(4):18-23
    [78]杨良,杨晓红,张春辉.昆明红壤环境下酸沉降对二种树木生长的影响[J].云南环境科学,2000,19(2):8-10
    [79]韩沙沙.我国南方主要酸雨区临界负荷研究[J].新疆环境保护,2009,31(1):39-42
    [80]Lage Jonsson, Edvard Karlssona, Par Jonsson. Aspects of particulate dry deposition in the urban environment [J]. Journal of Hazardous Materials,2008,153:229-293
    [81]Wesely M L, Hicks B B. A review of the current status of knowledge on dry deposition[J]. Atmospheric Environment,2000,34:2261-2282
    [82]韩沙沙,梁金培.韶关生态系统酸沉降临界负荷动态模型研究[J].环境科学与技术,2001,1003-6504(S):10-13
    [83]罗定贵,张巍,郑一,等.基于WARMF模型的杭埠-丰乐河流域水文模拟研究[J].环境科学学报,2007,27(8):1391-1401
    [84]谢绍东,郝吉明,周中平.柳州地区各种红壤土种的酸沉降临界负荷研究[J].环境科学学报,1999,19(6):658-661
    [85]刘丽,廖柏寒,曾清如,等.MAGIC模型及其应用进展[J].环境科学与技术,2006,29(2):112-114
    [86]于锡军,仇荣亮.酸沉降临界负荷模型及特点分析[J].重庆环境科学,1998,20(30):11-16
    [87]夏星辉,陈静生,蔡绪贻.应用MAGIC模型分析长江支流沱江主要离子含量的变化趋势[J].环境科学学报,1999,19(30):246-251
    [88]吴箐,王诗忠,张景书,等.模拟酸雨对鹤山赤红壤风化过程的影响[J].中山大学学报,2006,45(5):113-117
    [89]辛焰,赵瑜,段雷.中国南方森林黄壤的铝活化模式[J].环境科学,2009,30(7):2041.2046
    [90]陶福禄,冯宗炜.中国南方生态系统的酸沉降临界负荷[J].中国环境科学,1999,19(1):14-17
    [91]向峰,周修萍,江敬蓉,等ILWAS模型:老虎岭流域酸化模拟[J].中国环境科学,1993,13(6):445-450
    [92]向锋,周修萍,江静蓉,等.南宁市老虎岭水库酸化预测模型[J].农村生态环境,1992.1:42-45
    [93]国家统计局.2008年中国统计年鉴[M].北京:中国统计出版社,2008
    [94]中国环境年鉴编委委员会.中国环境年鉴[M].北京:中国环境年鉴出版社,1998
    [95]Garland J A. Dry and wet removal of sulfur from the atmosphere[J]. Atmospheric Environment,1978,12:349-362
    [96]Lindberg S E, Lovett G M, Richter D D, et al. Atmospheric deposition and canopy interactions of major ions in a forest[J]. Science,1986,231:141-145
    [97]Torseth K, Semb A. Deposition of nitrogen and other major inorganic compounds in Norway,1992-1996[J]. Environmental Pollution,1998,102(S1):299-304
    [98]Ta W Q, Wei C, Chen F H. Long-term measurements of SO2 dry deposition over Gansu Province, China [J]. Science Direct,2005,39:7095-7105
    [99]Streets D G, Bond T C, Carmichael G R, et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000[J]. Journal of Geophysical Research, 2003,108(D21):88-91
    [100]Shen J L, Tang A H, Liu X J, et al. High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain[J]. Environmental Pollution,2009,157:3106-3113
    [101]Ammann M, Siegwolf R, Pichlmayer F, et al. Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles[J]. Oecologia, 1999,118:124-131
    [102]Bell S, Ashenden T W. Spatial and temporal variation in nitrogen dioxide pollution adjacent to rural roads[J]. Water, Air and Soil Pollution,1997,95:87-98
    [103]Viskari E L. Epicuticular wax of Norway spruce needles as indicator of traffic pollutant deposition[J]. Water, Air and Soil Pollution,121:327-337
    [104]Chen Xi Yun, Mulder Jan. Atmospheric deposition of nitrogen at five subtropical forested sites in South China[J]. Science of the Total Environment,2007,378(3): 317-330
    [105]Cape J N, Tang Y S, Dijk N, et al. Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition[J]. Environmental Pollution,2004,32(3):469-478
    [106]Wenche Aas, Min Shao, Lei Jin, et al. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001-2003[J]. Atmospheric Environment,2007,41(8):1706-1716
    [107]Momani I F, Ataman O Y, Anwari M A, et al. Chemical composition of precipitation near an industrial area at Izmir, Turkey [J]. Atmospheric Environment, 1995,29(10):1131-1143
    [108]汤洁,薛虎圣,于晓岚,等.瓦里关山降水化学特征的初步分析[J].环境科学学报,2000,20(4):420-425
    [109]Galloway J N. Acid deposition:perspective in time and space [J]. Water Air and Soil Pollution,1995,85:15-24
    [110]程新金,黄美元.降水化学特性的一种分类分析方法[J].气候与环境研究,1998,3(1):82-88
    [111]张龚,曾光明,蒋益民,等.湖南蔡家塘大气降水及森林降水离子分布特征[J].环境科学研究,2003,16(3):14-17
    [112]吕旭晨,赵大为,张冬保,等.重庆市铁山坪针叶林和观音桥阔叶林的降水化学特征[J].西南师范大学学报(自然科学版),2004,29(6):1019-1022
    [113]李法云,孙周平,王国宝,等.酸雨地区大气与林内降水特征研究[J].辽宁大学学报(自然科学版),2000,27(1):85-90
    [114]Aikawa M, Hiraki T, Tamaki M. Difference between filtering-type bulk and wet-only data sets based on site classification[J]. Atmospheric Environment,2003, 37(19):689-695
    [115]王艳,葛福玲,刘晓环,等.泰山降水化学及大气传输的研究[J].环境科学学报,2006,26(7):1187-1194
    [116]Moreno G, Gallardo J F, Bussotti F. Canopy modification of atmospheric deposition in oligotrophic Quercus pyrenaica forests of an unpolluted region (central-western Spain)[J]. Forest Ecology and Management,2001,149(1):47-60
    [117]Xu X N, Wang Q, Eiji H. Precipitation partitioning and related nutrient fluxes in a subtropical forest in Okinawa, Japan[J]. Annals of Forest Science,2005,62: 245-252
    [118]李法云,孙周平,王国宝,等.酸雨地区大气与林内降水特征研究[J].辽宁大学学报(自然科学版),2000,27(1):85-90
    [119]蒋益民,曾光明,张龚,等.酸雨作用下的森林冠层盐基离子(Ca2+,Mg2+,K+)淋洗[J].热带亚热带植物学报,2004,12(5):425-430
    [120]Obaidya A H, Joshi H. Chemical composition of rainwater in a tropical urban area of northern India[J]. Atmospheric Environment,2006,40(35):6886-6891
    [121]Li Chaoliu, Kang Shichang, Zhang Qiangong, et al. Major ioniccomposition of precipitation in the Nam Co region, Central Tibetan Plateau [J]. Atmospheric Research,2007,85(3):351-360
    [122]Zhang Miaoyun, Wang Shijie, Wu Fengchang, et al. Chemical compositions of wet precipitation and anthropogenic influences at adeveloping urban site in southeastern China[J]. Atmospheric Research,2007,84(4):311-322
    [123]周修萍,秦文娟.华南三省(区)土壤对酸雨的反应[J].环境科学学报,1987,7(2):16-20
    [124]Draaijers G P J, Vanek R, Bleuten W. Atmospheric deposition in complex forest landscapes [J]. Boundary-Layer Meteorology,1994,69:343-366
    [125]冯宗炜.酸沉降对生态系统的影响及其生态恢复[M].北京:中国科学技术出版社,1999,25-27
    [126]Hamburg S P, Lin T C. Throughfall chemistry of an econonal forest on the edge of the Great Plains[J]. Canadian Journal of Forest Research,1998,28:1456-1463
    [127]Draaijers G P J, Erisman J W. A canopy budget model to assess atmospheric deposition from throughfall measurement [J]. Water Air and Soil Pollution,1995, 8(5):2253-2258
    [128]高绪平,曹洪法.105种植物对模拟酸雨的反应[J].中国环境科学,1987,7(2):16-20
    [129]Kohno Y. Effect of simulated acid rain on the growth of Japanese cypress and Sawara cypress[J]. Journal of Japan society for Atmospheric Environment,1995, 30(3):191-207
    [130]Hanson P J, Lindberg S E. Dry deposition and plant assimilation of gases and particles[J]. Atmospheric Environment,1991,16:889-910
    [131]Fan H B, Hong W. Estimation of dry deposition and canopy exchange in Chinese fir plantations[J]. Forest Ecology and Management,2001,30:99-107
    [132]陈旦华,孙瑞庆,王美蓉.湖南省酸性降水研究[J].环境科学研究,1997,11(2):8-14
    [133]Galloway J N, Likens G E. Calibration of collection procedures for the determination of precipitation chemistry[J]. Water Air and Soil Pollution,1976,6: 241-258
    [134]Gay D W, Murph C E. The deposition of SO2 on forest[M]. Canifonia:Electric power Research Institute,1985,33-64
    [135]Mahendrappa M K.森林对雨水化学性质的影响[J].林业科技通讯,1991,12:28-31
    [136]Agree G I. Model analysis of some consequences of acid precipitation on forest growth[J]. National Swedish Environment Protection Board, Stockholm,1983, 233-244
    [137]Aber J D, McDowell W, Nadelhoffer K J, et al. Nitrogen saturation in Northern forest eco systems [J]. Hypotheses revisited. Bioscience,1998,48:921-934
    [138]Boxman A W, Van D. Ecosystem responses to reduced nitrogen and sulphur into two coniferous forest stands in the Netherlands [J]. Forest Ecology Management, 1995,71:7-29
    [139]曹洪法,王玮,高映新,等.森林冠层对酸雨的反应及其影响[J].中国环境科学,1989,9(2):81-85
    [140]石盛莉,潘根兴,张乐华,等.酸沉降影响下庐山森林生态系统水相的分布于动态研究[J].生态学报,2001,21(9):1463-1468
    [141]李德军,莫江明,方运霆,等.氮沉降对森林植物的影响[J].生态学报,2003,23(9):1891-1900
    [142]Tamm C O. Nitrogen in terrestrial ecosystems:Questions of productivity, vegetation changes, and ecosystem stability[J]. Springer Verlag, Berlin,1991, 212-217
    [143]蒋益民,曾光明,张龚,等.酸雨作用下的森林冠层盐基离子(Ca2+,Mg2+,K+)淋洗[J].热带亚热带植物学报,2004,12(5):425-430
    [144]Dise N B, Wright R F. Nitrogen leaching from European forest in relation to nitrogen deposition Forest[J]. Ecology Management,1995,71:153-161
    [145]Drury C E, Voroney R P, Beauchamp E G. Availability of NH4+-N to microorganisms and the soil internal N cycle[J]. Soil Biology and Biochemistry, 1991,23:165-169
    [146]Nakaji T, Fukami M, Dokiya Y, et al. Effects of high nitrogen load on growth photosynthesis and nutrition status of Cryptomeria japonica and pinups snifte[J]. Trees,2001,15:453-461
    [147]Nakaji T, Takenaga S, Kuroha M, et al. Photosynthetic response of Pines dens flora seedlings to high nitrogen load[J]. Environmental Science,2002,9 (4):269-282
    [148]Binkley D, Hogberg P. Does atmospheric deposition of nitrogen threaten Swesish forests[J]. Forest Ecology Management,1997,92:119-152
    [149]Schoettle A W. Effects of two years of nitrogen deposition on shoot growth and phonology of Engelmann Spruce seedlings[J]. Journal of Sustainable Forest,2000, 10:181-189
    [150]Francis J, Kathryn A. Do ungulates accelerate nitrogen cycling[J]. Forest Ecology Management,2003,181:189-204
    [151]Zeng G M, Zhang G, Huang G H, et al. Exchange of Ca2+, Mg2+and K+ and the uptake of H+, NH4+ for the canopies in the subtropical forest influenced by the acid rain in Shaoshan forest located in central south China[J]. Plant Science,2005, 168(1):259-266
    [152]Zhang G, Zeng G M, Jiang Y M, et al. The Distributional Characteristics of ions in the Bulk Precipitation and the Forested Throughfall in Shaoshan, Hunan Province[J]. Research Environment Sciences,2003,16 (3):14-17
    [153]张龚,曾光明,蒋益民,等.湖南韶山大气降水及森林降水离子分布特征[J].环境科学研究,2003,16(3):14-17
    [154]Calanni J, Berg E, Wood M, et al. Atmospheric nitrogen deposition at a conifer forest:response of free amino acids in Engelmann spruce needles[J]. Environmental Pollution,1999,105:79-89
    [155]方运霆,莫江明,江远清,等.鼎湖山森林土壤渗透水酸度和无机氮含量对模拟氮沉降增加的早期响应[J].热带亚热带植物学报,2005,13(2):123-129
    [156]Tomaszewski T, Boyce R L, Sievering H. Canopy uptake of atmospheric nitrogen and new growth nitrogen requirement at a Colorado subalpine forest[J]. Canandia Journal of Forest Research,2003,11:2221-2227
    [157]Boring L R, Swank W T. The role of black locust (Robinia pseudoacacia) in forest succession[J]. Journal of Ecology,1984,72:749-766
    [158]Zhang G, Zeng G M, Jiang Y M, et al. Effects of weak acids on canopy leaching and uptake processes in a coniferous-deciduous mixed evergreen forest in central-south China[J]. Water Air and Soil Pollution,2006,8:222-227
    [159]廖柏寒,蒋青.模拟酸沉降下南方两种森林土壤对S042-及N03-的吸附[J].湖南农业大学学报,2000,26(3):200-204
    [160]谢绍东,郝吉明,周中平.柳州地区酸沉降临界负荷的确定[J].环境科学,1996,17(5):1-4
    [161]陶福禄,冯宗伟.生态系统的酸沉降临界负荷及其研究进展[J].中国环境科学,1999,19(2):123-126
    [162]徐仁扣,季国亮.预测土壤和地表水酸化趋势的MAGIC模型[J].土壤学进展,1994,22(5):36-39
    [163]Cosby B J. Modeling the effects of acid deposition-Estimation of long-term water quality response in a small forested catchment[J]. Water Resources Research,1985, 21(11):1591-1601
    [164]李金惠,汤鸿霄.酸化模型及其发展趋势评述[J].环境科学,1998,6(4):32-43
    [165]Cook R B, Rose K A. Brenkert A L, et al. Systematic comparison of ILWAS, MAGIC, and ETD Watershed acidification models:3.Mass Balance budgets for acid neutralizing capacity[J]. Environmental Pollution,1992,77:235-242
    [166]Vries W De, Posch M. Simulation of the long term soil response to acid depositon in various buffer ranges[J]. Water, Air and Soil Pollution,1989(48):349-390
    [167]叶雪梅,郝吉明.应用动态模型确定酸沉降临界负荷的探讨[J].环境科学,2002,23(4):18-23
    [168]Xue H B, Schnoor J L. Acid deposition and Lake Chemistry in Southwest China[J]. Water, Air and Soil Pollution,1994,75:61-78
    [169]Sverdrup H, De V W. Calculating critical loads for acidity with the simple mass balance method[J]. Water, Air and Soil Pollution,1994,72:143-162
    [170]Sverdrup H, Warfvinge P, Rosen K. Critical loads for acidity and nitrogen based on multiple criteria for different Swedish ecosystem[J]. Water, Air and Soil Pollution, 1995,85:2375-2380
    [171]Henriksen A, Kamari J, Posch M, et al. Critical loads of acidity:Nordic surface waters [J]. AMBIO,1992,21(5):356-363
    [172]安峻岭,黄美元.温州红壤的酸沉降临界负荷研究[J].环境化学,1998,17(2):136-142
    [173]Hettelingh P, Posch M, Slootweg J, et al. Critical Loads and Dynamic Modelling to Assess European Areas at Risk of Acidification and Eutrophication[A]. Published by Springer, Netherlands,2007,379-384.
    [174]谢绍东,郝吉明,周中平.应用稳态酸化模型计算酸沉降临界负荷[J].环境科 学,1997,18(5):6-9
    [175]刘菊秀.酸沉降对森林生态系统影响的研究现状及展望[J].生态学杂志,2003,22(5):113-117
    [176]曹良超,汤鸣皋.酸雨的生态环境效应与土壤母质[J].农业环境保护,1994,13(4):179-181
    [177]Alcamo J, Amann M, Hetteling J P, et al. Acidification in Europe:A simulation model for evaluationg control strategies[J]. AMBIO,1987,16(5):232
    [178]王代长,蒋新,卞永荣,等.酸沉降下加速土壤酸化的影响因素[J].土壤与环境,2002,11(2):152-157
    [179]肖辉林.大气氮沉降对森林土壤酸化的影响[J].林业科学,2001,37(4):111-116
    [180]Nye P H. Changes of pH across the rhizosphere induced by roots[J]. Plant Soil, 1981,61:7-26
    [181]Van Breemen N, Mulder J, Driscoll C T. Acidification and alkalinization of soil [J]. Plant Soil,1983,75:283-308
    [182]Van Breemen N. Acidic deposition and internal proton in acidification of soils and water[J]. Natrue,1984(2):367-599
    [183]李霁,刘征涛,舒俭民,等.中国中南部典型酸雨区森林土壤酸化现状分析[J].中国环境科学,2005,25(Suppl.):77-80
    [184]Vries D E, Breuwsha W A. The Realtion between soil acidification and element cycling[J]. Water, Air and Soil pollut,1987,35:293-310
    [185]Galloway J N. Acid deposition:perspectives in time and space[J]. Water, Air and Soil Pollut,1995,85:15-24
    [186]Mulder J. Depletion of soil aluminium by acid deposition and implication for acid neutrali-zation[J]. Nature,1989,3:37-47
    [187]郭景恒,张晓山,汤鸿霄.酸沉降对地表生态系统的影响-土壤中铝的活化与迁移[J].土壤,2003,(2):89-125
    [188]Sullivan T J. Progress in the quantifying the role of aluminum in acidification of surface and soil water[J]. Journal of Ecological Chemistry,1994,3(3):157-168
    [189]邵宗臣,何群,王维君.红壤中铝的形态[J].土壤学报,1998,235(1):39-48
    [190]仇荣亮,吴箐,吕越娜.我国南方主要酸雨区土壤中铝的释放与缓冲作用[J].环境化学,1997,17(1):143-147
    [191]徐仁扣,季国亮.pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J].土壤学报,1998,35(2):162-171
    [192]田仁生,刘厚田.酸化土壤中铝及其植物毒性[J].环境科学,1990,11(6):41-46
    [193]张健,李贤伟,胡庭兴.铝毒害与森林衰退研究评述[J].世界林业研究,1999,12(2):28-30
    [194]王敏华,张效年,于天仁.华南红壤对酸雨敏感性的研究[J].土壤学报,1994,31(4):348-350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700