基于光声光谱煤矿瓦斯检测系统的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿瓦斯事故是我国煤矿安全生产的头号大敌。我国能源结构呈现富煤少油的特点,且煤矿地质构造复杂,高瓦斯矿井所占比重大,造成了我国煤炭瓦斯事故呈现长期、不可避免、易发而严峻的形势。煤矿瓦斯防治工作是我国安全生产的重中之重。煤矿瓦斯监测及瓦斯事故预测预警是保障我国煤矿安全生产的重要有效手段,也一直是能源领域专家学者研究的重要课题。本文通过对光声光谱气体检测原理的系统研究,深入分析并建立了基于光声光谱的煤矿瓦斯检测系统,提出一种瓦斯爆炸预报警的新思路,并对其进行了实验验证。主要研究内容如下:
     通过对光声光谱气体检测原理深入系统的研究,分析光声光谱检测煤矿瓦斯浓度的可行性。针对煤矿瓦斯成分的特点,利用HITRAN和HITEMP数据库,通过对甲烷以及矿井环境气体中水蒸气、二氧化碳、一氧化碳、一氧化氮、硫化氢、二氧化硫、二氧化氮等吸收谱线的比较分析,选择1653.79nm吸收谱线进行甲烷的光声信号探测。
     通过对光声信号产生机理和光声腔内声场分布深入的研究,论证了光声信号与光声腔结构及其工作模式的内在联系,指出光声信号与一阶纵向圆柱形谐振式光声腔结构尺寸间的关系,为设计新型光声腔提供了理论依据。在充分考虑了实际工作过程中光声腔内部存在损耗的基础上,结合降噪措施设计了新型长度可调一阶纵向反馈谐振式光声腔。
     结合自主设计的光声腔,设计实现了基于光声光谱的煤矿瓦斯检测系统,并对光声腔的特性参数进行测量,得谐振频率为1003Hz、品质因数为35.05、腔常数为4194.59Pa cm W-1,同时测得系统检测灵敏度为2.78×10-6,信噪比为39.5。通过对多种缓冲气体及待测气体的实验,分析了缓冲气体种类、测量温度、激光器输出功率等因素对光声腔特性参数、光声信号以及系统检测灵敏度的影响。
     在对瓦斯爆炸条件分析的基础上,提出了瓦斯爆炸预报警的新思路,即同时满足瓦斯爆炸三个条件中任意两个时报警。建立了基于神经网络模式识别算法的煤矿瓦斯爆炸预报警网络模型,利用冀中能源峰峰煤矿的监测数据对瓦斯爆炸预报警网络进行训练,运用混淆矩阵、ROC曲线、MSE曲线、误差直方图等分析手段对网络性能逐一分析,得预报警准确率为93.8%。通过对煤矿井下实际报警前后环境数据变化情况的模拟,运用光声光谱瓦斯监测系统对瓦斯浓度进行实时监测,瓦斯爆炸预报警网络进行预报警判断,所得报警时间比矿井实际报警时间提前
Coal mine safety accidents is the first enemy of coal mine safety production atpresent. The characteristics of energy structure in our country is rich in coal but poor in oil.The fact that geological structure of coal mine is complex and gas mine accounts for morethan major is the main reason of coal gas accident in our country being in a long-term,inevitabe, and serious situation. Coal mine gas prevention and control work is the toppriority of safety in China. Methane concentration detection and fault forecasting are theimportant and effective safeguards of the production safety of coal mines in our country,and has always been an important subject of the experts and scholars in the field of energyresearch. In this article, we studied the photoacoustic spectroscopy technology principle ofgas detection system, deeply analysied and finally established a gas detection systembased on photoacoustic spectroscopy technology, and proposed a new method in gasexplosion pre-alarm. Through the experiments, the gas detection and gas explosionpre-alarm system were demonstrated respectively. The main research content is as follows.
     Through depth study of the photoacoustic spectroscopy gas detection principle,analyzes the feasibility of coal mine gas concentration of photoacoustic spectra. Accordingto the characteristics of the mine gas composition, based on HITRAN and HITEMPdatabase, analysis the methane absorption spectrum characteristic. Gases which are inmine air and methane gas such as water vapor, carbon dioxide, carbon monoxide,hydrogen sulfide, sulfur dioxide, nitrogen dioxide, nitric oxide and some other absorptionlines are analyzed and compared, finally selected1653.79nm methane absorption lines forphotoacoustic signal detection.
     Based on the depth study of the photoacoustic signal generation mechanism and theacoustic field distribution inside the photoacoustic cell, demonstrated the internal relationsabout photoacoustic signal, photoacoustic cell structure and its working mode. Futherpresents the relationship between photoacoustic signals and first-order vertical cylindricalresonant photoacoustic cell structure and size. All above provides a theoretical basis forthe design of novel photoacoustic cell. Based on fully consideration the internal loss of thephotoacoustic cell in actual working process, combined with the measure of noisereduction, designed the new length-tunable first-order longitudinal feedback resonantphotoacoustic cell.
     Combined with self-designed photoacoustic cell, designed and implemented the minegas concentration measurement system which based on photoacoustic spectroscopy, andthe characteristics of photoacoustic cell parameters were measured. Following results wereobtained: resonant frequency was1003Hz, quality factor was35.05, cell constant was4194.59Pa cm W-1, and the detection sensitivity was2.78×10-6, SNR was39.5. Formany kinds of buffer gas and measuring gas experiments, analyzes the factors such astypes of buffer gas, measuring temperature, laser output power effect the photoacousticcell performance parameters, the value of photoacoustic signal, and then the detectionsensitivity of the system.
     Based on the analysis of conditions in the gas explosion, presented a new idea whichis satisfied two of the three basic gas explosion conditions, and based on neural networkpattern recognition algorithms established mine gas explosion pre-alarm network model.the datas by Jizhong Energy Fengfeng mine monitored was used in network training.Using the confusion matrix, ROC curve, MSE curves, the error histogram and some otheranalysis methods analyze the network performance, and achieved the accuracy rate was93.8%. Through simulated the actual changes of the coal mine environmental data beforeand after the alarm, monitored gas concentration real-time using photoacousticspectroscopy gas monitoring system, judged pre-alarm condition by gas explosionpre-alarm network. Point out that alarm time was shorter than the actual alarm time inmine, pre-alarm effect further improved.
引文
[1]李豪峰.中国煤炭工业发展战略研究[J].中国煤炭,2004(3):22-47.
    [2]林柏泉.煤层瓦斯赋存规律及防治技术[M].徐州:中国矿业大学出版社,2006:15-17.
    [3]原煤炭工业部发布的煤安字(1995)第50号文《煤炭工业企业职工伤亡事故报告和统计规定》(试行)
    [4]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001:12-15.
    [5]谢雄刚,黄存捍,余照阳.我国煤矿“十一五”期间安全生产状况及对策研究[J].矿业安全与环保,2012,39(3):90-92.
    [6]国家安全生产监督管理总局统计司.2008年全国安全生产事故统计分析报告[M].2008,4.
    [7]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001:28-32.
    [8]申富宏,张志平.矿井瓦斯爆炸事故预防措施的探讨[J].矿业安全与环保,2000,27(6):35-36.
    [9]冯志江.掘进工作面瓦斯爆炸原因及预防对策[J].中州煤炭,2001,4:63-64.
    [10]何鲁鄂.煤矿瓦斯爆炸概述[J].西部探矿工程,2010,22(4):123-124.
    [11]陈晓军,侯海苗.瓦斯爆炸及其预防[J].煤,2008,17(2):53-55.
    [12]崔克请.安全工程大辞典[M].北京:化学工业出版社,1995:37.
    [13]刘君华.智能传感器系统[M].西安:西安电子科技大学出版社,1999:151-158.
    [14]柴化鹏,冯锋,白云峰,等.瓦斯传感器的研究进展[J].山西大同大学学报(自然科学版),2009,25(3):27-31.
    [15]丁黎明,赵景波.催化燃烧型甲烷传感器的研究[J].传感器与仪器仪表,2007,23(1-1):177-178.
    [16]陈俊英,林辉.甲烷检测技术的研究现状[J].现代技术,2007,(5):1-3.
    [17]王鸿雷.光干涉型与催化型瓦斯检定器应用对比分析[J].煤炭技术,2008,27(2):30-31.
    [18]王书涛,车仁生.光谱吸收式光纤甲烷气体传感器及其信号处理方法[J].光电工程,2006,1:112-115.
    [19]张宇,王一丁,李黎,等.甲烷红外吸收光谱原理与处理技术分析[J].光谱学与光谱分析,2008,28(11):2515-2516.
    [20]刘思伟,李一男,王汝琳.新型矿用红外瓦斯检测仪的研究[J].河北理工大学学报(自然科学学报),2007,29(4):20-25.
    [21] Besson J P, Schilt S, Thevenaz L. Multi-gas sensing based on photoacoustic spectroscopy usingtunable laser diodes[J]. Spectrochimica Acta Part A,2004,60(14):3449-3456.
    [22] Kania P, Civis S. Application of InAsSb/InAsSbP and lead chalcogenide infrared diode lasersfor photoacoustic detection in the3.2and5μm region[J]. Spectrochimica Acta PartA,2003,59(13):3063-3074.
    [23] Kauppiner R J, Wilchen K, Kaupponen I, et al. High sensitivity in gas analysis withphotoacoustic detection[J]. Microchemical Journal,2004,76(1-2):151-159.
    [24]吴祯,虞启琏,张帆,等.长光程差分吸收光谱法[J].环境科学与技术,2003,26(l):48-66.
    [25]罗森威格A.光声学和光声谱学[M].王耀俊,张淑仪,卢宗挂,译.北京:科学出版社,1985:4-5.
    [26]齐文宇,李纯财.国外煤矿安全管理的先进经验与启示[J].中州煤炭,2010,(5):118-119.
    [27]崔沪.国外煤矿安全管理对国内矿难的启示[J].煤矿现代化,2005,2:32-33.
    [28]刘西青.论国内煤矿瓦斯监控系统现状与发展[J].山西煤炭科技,2006,(3):37-40.
    [29]卢振龙,卢国斌.矿井监测监控概述[J].煤炭技术,2008,27(11):85-86.
    [30]田志轩.煤矿井下掘进工作面瓦斯监测和控制技术[J].科技传播,2011,(11):158-159.
    [31]张勇.煤矿安全监测监控系统升级改造初探[J].煤炭工程,2006,(3):85-87.
    [32]孙斌,陈勇刚,田水承.基于事故树分析法安全评价指标的确定[J].陕西煤炭.2003,03:20-22.
    [33]王金国,江洪清,高永奎.基于MATLABR的矿井涌水量神经网络预测方法及应用[J].煤炭技术,2004,23(7):67-68.
    [34]李华,田水承,陈勇刚.基于神经网络的掘进面瓦斯爆炸危险源安全评价[J].煤田地质与勘探,2005,3:19-21.
    [35]牛强,周勇,王志晓,等.基于自组织神经网络的煤矿安全预警系统[J].计算机工程与设计,2006,27(10):1752-1756.
    [36]刘祖德,赵云胜.煤矿瓦斯监控系统趋势预测技术[J].煤矿安全,2007,3:57-59.
    [37]王莉.基于RS-ANN的煤矿瓦斯危险源评价及预警研究[D].西安:西安科技大学硕士学位论文,2007:25-38.
    [38]张剑英,程健,侯玉华,等.煤矿瓦斯浓度预测的ANFIS方法研究[J].中国矿业大学学报,2007,36(4):494-498.
    [39]田水承,魏权.基于CBR在煤矿瓦斯爆炸预警应用探讨[J].陕西煤炭,2008,27(4):19-21.
    [40]王其军,程久龙.基于免疫神经网络模型的瓦斯浓度智能预测[J].煤炭学报,2008,33(6):665-669.
    [41] Karacan C, Ozgen. Forecasting gob gas venthole production performances using intelligentcomputing methods for optimum methane control in longwall coal mines[J]. Elsevier,Amsterdam, Netherlands,2009,79(4):131-144.
    [42]杨敏,汪云甲,程远平.煤与瓦斯突出预测的改进差分进化神经网络模型研究[J].中国矿业大学学报,2009,38(8):439-444.
    [43] Lin Jipeng. Prealarm system of coal mine based on ICA and kalman filter[C].2010SixthInternational Conference on Natural Computation.2010:495-497.
    [44]刘香兰,赵旭生,董桂刚.基于物联网的煤矿瓦斯爆炸动态安全预警系统的设计研究[J].煤炭工程,2012,9:17-19.
    [45] Bell A G. On the Production and reproduction of sound by light[J]. Am. J. Sci.1880,20:305-324.
    [46] Tyndall J. Action of an intermittent beam of radiant heat upon gaseous matter[J]. Proc. R. Soc.Lond.,1881,31:307-317.
    [47] Rontgen W C, Ueber Tone, welche durch intermittirende bestrahlung eines gases entstehen[J].Annalen der Physik. und Chem.,1881,248(l):155-159.
    [48] Preece W H. On the conversion of radiant energy into sonorous vibrations[J]. Proc. Roy. Soc.,Proc. R. Soe,1881,31:506-520.
    [49] Viegerov M L. Eine methode der gasanalyse, beruhend auf der optisch-akustischentyndall-rontegenerscheinung[J]. Dokl. Akad. Nauk SSSR,1938,19:687-688.
    [50] Luft K F. Ubereine neue methode der registrierenden gasanalyse mithilfe der absorptionultraroter strahlen ohne spektrale zerlegung[J]. Zeitsehrift fur Technische Physik,1943,24:97-104.
    [51] Kerr E, Atwood J G. The laser illuminated absorptivity spectrophone: a method for measurementof weak absorptivity in gases at laser wavelengths[J]. Applied Optics,1968,7(5):915-921.
    [52] Kreuzer L B, Kenyon N, Patel C. Air pollution: sensitive detection of ten pollutant gases bycarbon monoxide and carbon dioxide lasers[J]. Seience,1972,177:347-349.
    [53] Harshbarger W R, Robin M B. Optoacoustic effect. Revival of an old technique for molecularspectroscopy[J]. Accounts of Chemical Research,1973,6(10):329-334.
    [54] Gerlaeh R, Amer N M. Brewster window and windowless resonant spectrophones for intracavityoperation[J]. Applied Physics A: Materials Science&Processing.1980,23(3):319-326.
    [55] Dakin J P, Wade C A, Pinchbeck D. A novel optical fiber methane sensor[J]. Proc. SPIE,1987,734(5):187-190.
    [56] Tai H. Long distance simultaneous detection of methane and acetylene by using diode laserscoupled with optical fibers[J]. IEEE Photonics Technology Letters,1992,4(7):804-807.
    [57]于清旭, Fischer C, Sigrist M,基于差频激光源的微量气体光声光谱检测系统[J].光电子·激光,2001,12(9):923-926.
    [58]于清旭,李少成,宋昌烈,等.微机控制的高灵敏度激光光声光谱仪研究[J].中国激光,2001,28(5):451-454.
    [59] Fischer C, Yu Qingxu, Sigrist M, et al. Photoacoustic monitoring of trace gases using a diode-based difference frequency laser source[J]. Optical Leters.2001,26:1609-1611.
    [60] Barry H R, Gorner L, Haneock G, etal. Cavity-enhanced absorption spectroscopy of methane at1.73μm[J]. Chem. Phys. Lett.2001,333:285-289.
    [61] Kapitanov V A, Zeninari V, Parvitte B, et al. Optimisation of photoacoustic resonant cells withcommercial microphones for diode laser gas detection[J]. Spectrochmica Acta Part A,2002,58(11):2397-2404.
    [62] Zeninari V, Parvitte B, Courtois D, et a1. Methane detection on the sub-ppm level with anear-infrared diode laser photoacoustic sensor[J]. Infrared Physics&Technology2003,44(4):253-261.
    [63] Jean Philippe Besson, Stephane Schilt, Luc Thevenaz. Multi-gas sensing based on photoacousticspectroscopy using tunable laser diodes[J]. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2004,60(14):3449-3456.
    [64]董风忠,阚瑞峰,刘文清,等.可调谐二极管激光吸收光谱技术及其在大气质量监测中的应用[J].量子电子学报,2005,22(3):15-18.
    [65] Besson J P, Schilt S, Thevenaz L. Sub-ppm multi-gas photoacoustic sensor[J]. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy,2006,63:899-904.
    [66]徐春梅,刘先勇,袁长迎,等.激光光声光谱法测量煤矿瓦斯气体的研究[J].压电与声光,2006,28(6):643-644.
    [67] Hanyecz V, Mohacsi A, Pogany A, et a1. Multi-component photoacoustic gas analyzer forindustrial applications[J]. Vibrational Spectroscopy,2010,52(1):63-68.
    [68]李俊,纪新明,周嘉,等.高灵敏度小型化红外光声气体传感系统[J].传感器与微系统.2011,30(2):84-87.
    [69]彭勇.基于可调谐光纤激光器的痕量气体光声光谱检测技术研究[D].大连:大连理工大学光学工程学科博士学位论文,2011:13-15.
    [70] Rosencwaig A. Photoacoustics and Photoacoustic Spectroscopy[M]. New York: John Wiley andSons,1980:135-148.
    [71]郝绿原.研究分子高振动态的高灵敏激光光声光谱方法[D].北京:中国科学技术大学物理化学学科博士学位论文,2003:2-12.
    [72] Mikls A, Hess P, Bozki Z. Application of acoustic resonators in photoacoustic trace gas analysisand metrology[J]. Review of Scientific Instruments,2001,72(4):1937-1955.
    [73]殷庆瑞,王通,钱梦碌.光声光热技术及其应用[M].北京:科学出版社,1991:13-18.
    [74]莫尔斯P M,英格特K U.理论声学(上册)[M].吕如榆,杨训仁,译.北京:科学出版社,1984,320-376.
    [75] Schilt S, Thevenaz L. Wavelength modulation photoacoustic spectroscopy: Theoreticaldescription and experimental results[J]. Infrared Physics&Technology,2006,48:154-162.
    [76]褚衍平,张景超,管立君.光纤甲烷气体传感器的研究[J].激光与红外,2008,07:684-687.
    [77]王玉田,刘瑾,张景超,等.基于谐波检测技术的光纤甲烷气体传感器的研究[J].测控技术,2003,11:19-27.
    [78]王书涛,刘瑾,车仁生,等.一种基于谐波检测技术的光纤甲烷气体传感器[J].应用光学,2004,02:44-47.
    [79] Webber M E, Pushkarsky M B, Patel C K N. Ultra-sensitive gas detection using diode lasersand resonant photoacoustic spectroscopy[J]. Proc. SPIE,2002:11.
    [80]王汝琳,王咏涛.红外检测技术[M].北京:化学工业出版社,2006,09:52-53
    [81]马维光,尹王保,黄涛,等.气体峰值吸收系数随压强变化关系的理论分析[J].光谱学与光谱分析,2004,24(2):135-137.
    [82]陈伟根,云玉新,潘翀,等.变压器油中溶解气体的红外吸收特性理论分析[J].中国电机工程学报,2008,28(16):148-153.
    [83] Webber M E, Pushkarsky M, Patel C K N. Fiber-amplifier-enhanced photoacoustic spectroscopywith near-infrared tunable diode lasers[J]. Applied Optics,2003,42(12):2119-2126.
    [84]袁长迎,刘先勇,蒙瑰,等.光声池径向共振模式耦合系数理论分析[J].光谱学与光谱分析,2010,4(30):879-882.
    [85]贾锐,江德生,陈京好,等.玻璃球形微腔中量子点发光行为研究[J].红外与毫米波学报,2001,20(6):421-425.
    [86] Wolff M, Harde H. Photoacoustic spectrometer based on a DFB-diode laser[J]. Infrared Physies&Technology,2000,41(5):283-286.
    [87] Sehrarnm D U, Sthel M S, Silva MG da, et al. Application of laser photoacoustic spectroscopyfor the analysis of gas samples emitted by diesel engines[J]. Infrared physies&Technology,2003,44(4):263-269.
    [88] E.Nodov. Optimization of resonant cell design for optoacoustic gas spectroscopy (H-type)[J].Appl.Opt,1978,17(7),1110-1119.
    [89] Morse P M. Vibration and Sound[M]. the second edition. New York: Mc Graw-Hill,1948:358-388.
    [90] Kapitanov V A, Zeninari V, Parvitte B, et al. Optimisation of photoacoustic resonant cells withcommercial microphones for diode laser gas detection[J]. Spectrochim Acta A Mol BiomolSpectrosc,2002,58(11):2397-2404.
    [91] Andras M, Peter H, Zoltan B. Application of acoustic resonators in photoacoustic trace gasanalysis and metrology[J]. Review of Scientific Instruments.2001,72(4):1937-1956.
    [92] Kinster L E, Frey A R, Coppens A B. Fundamentals of acoustics[M]. John Wiley&Sons,2001.
    [93]陈伟根,周恒逸,黄会贤,等.基于半导体激光器的乙炔气体光声光谱检测及其定量分析[J].仪器仪表学报,2010,31(3):665-670.
    [94] Rey J M, Marinov D, Vogler D E, et al. Investigation and optimization of a multipass resonantphotoaeoustic cell at high absorption levels[J]. Applied Physics B: Lasers and Optics.2005,80(2):261-266.
    [95] Keller A, Ruegg M, Forster M, et al. Open photoacoustic sensor as smoke detector[J]. Sensorsand Actuators B: Chemical,2005,104(1): l-7.
    [96] Hao L Y, H J X, Qiang S, et al. A highly sensitive photoacoustic spectrometer for near infraredovertone[J]. Review of Scientific Instruments,2000,71(5):1975-1980.
    [97] Jean-Philippe Besson, Stephane Schilt, Luc Thevenaz. Multi-gas sensing based on photoacousticspectroscopy using tunable laser diodes [J]. Spectrochimica Acta Part A,2004,60:3449-3456.
    [98]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001:246-248.
    [99] Jia Luo, Xinming Ji, Jianye Wang, Jia Zhou, Guoping Ru, Yiping Huang. Design and simulationof ID longitudinal acoustic resonator for Photoacoustic spectroscopy [J].8th InternationalConference on Solid-State and Integrated Circuit Technology,2006,6:593-595.
    [100] Kinsler L E, Frey A R, Coppens A. B. et al. Fundamentals of Acoustics[M]. New York, JohnWiley&Sons,2001:33-56.
    [101] Tashkun S A, Perevalov V I, Teffo J L, et al. CDSD1000, the high-temperature carbon dioxidespectroscopic databank[J]. J.Quantit. Spectrosc,&Radiative Transfer,2003,82(1-4):165-196.
    [102] Jacquinet-Husson N, Scott N A, Chedin A, et al. The GEISA spectroscopic database: current andfuture archive for earth and planetary atmosphere studies[J]. J. Quantit. Spectrosc,&RadiativeTransfer,2008,109(6):1043-1059.
    [103] Rothman L S, Jacquemart D, Barbe A, et al. The HITRAN2004molecular spectroscopicdatabase [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2005,96(1):139-204.
    [104]裴世鑫,崔芬萍,詹煜,李传起.基于半导体激光的腔增强吸收光谱技术研究[J].光学学报,2009,03:831-837.
    [105] Peter J W. Modulation and detection techniques for optical communication systems[J].ReserchHights,2009:4-10.
    [106] Li J, Gao X, Li W, et al. Near-infrared diode laser wavelengh modulation-based photoacousticspectrometer[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2009,64:338-342.
    [107] Schilt S, Thevenaz L. Wavelength modulation photoacoustic spectroscopy: theoreticaldescription and experimental results[J]. Infrared Physics&Technology,2009,48:154-162.
    [108] Saarela J, Toivonen J, Manninen A, et al. Wavelength modulation waveforms in laserphotoacoustic spectroscopy[J]. Applied Optics,2009,48:743-747.
    [109]张望.光声光谱微量气体检测技术及其应用研究[D].大连:大连理工大学光学工程学科博士学位论文,2010:26-29.
    [110]蒋亚龙,蔡霆力,祝玉泉,等.可调谐半导体激光吸收光谱甲烷浓度监测系统[J].电子测量与仪器学报,2011,25(3):265-271
    [111]阚瑞峰,刘文清,张玉均,等.基于可调谐激光吸收光谱的大气甲烷监测仪[J].光学学报,2006,26(1):67-70.
    [112] Andras M, Peter H, Zoltan B. Application of acoustic resonators in photoacoustic trace gasanalysis and metrology[J]. Review of Scientific Instruments.2001,72(4):1937-1956.
    [113]宋绍楼,范永锋,丁永峰,等.煤矿瓦斯气体的光声光谱检测研究[J].传感器与微系统,2013,32(5):64-67,73.
    [114] Luis A J, Lucas J J, Frans J M, at al. Nitric oxide interacts with salicylate to regulate biphasicethylene production during the hypersensitive response[J]. Plant Physiol,2008,148(3):1537-1546.
    [115] Jean-Philippe Besson, Stephane Schilt, Luc Thevenaz. Multi-gas sensing based on photoacousticspectroscopy using tunable laser diodes[J]. Spectrochimica Acta Part A,2004,60:3449-3456.
    [116]陈伟根,刘冰洁,胡金星.微弱气体光声光谱监测光声信号影响因素分析[J].重庆大学学报,2011,34(2):7-13.
    [117] Zeninari V, Parvitte B, Courtois D, et al. Measurements of air and noble-gas broadening and shiftcoefficients of the methane R3triplet of the2ν3band[J]. Appl. Phys. B,2001,72(8):953-959.
    [118] Vandaele A C, Hermans C, Fally S, et al. Absorption cross-sections ofNO2: simulation oftemperature and pressure effects[J]. Journal of Quan titative Spectroscopy&Radiative Transfer,2003,76(3):373-391.
    [119] Kosterev A A, Bakhirkin Y A, Tittel F K,et al. Photoacoustic phase shift as a chemically selectivespectroscopic parameter[J]. Appl Phys B,2004,78(6):673-676.
    [120] Liu Shanzheng, Zhang Wang, Yu Qingxu. Photoacoustic spectrosmeter based on the combinationof tunable erbium doped fiber laser and erbium doped fiber amplifier[J]. Chinese Journal ofLasers.2009,36(4):964-967.
    [121] Schilt S, Besson J-P, Thévenaz L. Near-infrared laser photoacoustic detection of methane: theimpact of molecular relaxation[J]. Appl Phys B,2006,82(2):319-328.
    [122] Zeninari V, Parvittea B, Courtoisa D, et al. Methane detection on the sub-ppm level with anearinfrared diode laser photoacoustic sensor[J]. Infrared Physics&Technology,2003,44:253-261.
    [123]李润求,施式亮,罗文柯.煤矿瓦斯爆炸事故特征与耦合规律研究[J].中国安全科学学报,2010,2:69-74+178.
    [124]王东武,张延松.瓦斯爆炸界限的影响因素研究[J].矿业安全与环保,2009,6:17-19.
    [125]丁广友,陈舸,陈孟伯.煤自然发火对瓦斯爆炸的影响[J].煤矿安全,2012,09:183-186.
    [126]于不凡.煤矿瓦斯灾害防治及利用手册(修订版)[M].北京:煤炭工业出版社,2005:137-138.
    [127]尉存娟,谭迎新,袁宏甦,等.水平管道内障碍物数量对瓦斯爆炸过程的影响研究[J].中国安全科学学报,2012,22(6):60-64.
    [128]邓飞,刘后明,伍中建,等.障碍物对巷道瓦斯爆炸传播影响数值模拟研究[J].中国矿山工程,2012,41(4):35-36,41.
    [129]李树刚,李孝斌,成连华,等.瓦斯浓度对瓦斯爆炸感应期内可见光特征影响的实验研究[J].煤炭学报,2010,2:241-245.
    [130]王华,葛岭梅,邓军.惰性气体抑制矿井瓦斯爆炸的实验研究[J].矿业安全与环保,2008,1:4-7,91.
    [131]潘尚昆,李增华,林柏泉,等.氢气及重烃组分对瓦斯爆炸下限影响的实验研究[J].湖南科技大学学报(自然科学版),2008,23(3):23-27.
    [132]李增华,林柏泉,张兰君,等.氢气的生成及对瓦斯爆炸的影响[J].中国矿业大学学报,2008,27(2):147-151
    [133] Huszar H, Pogany A, Bozoki Z, et al. Ammonia monitoring at ppb level using photoacousticspectroscopy for environmental application[J]. Sensors and Actuators B,2008,134:1027-1033.
    [134] Nebiber P W, Pleisch R E. Photoacoustic gas detection for fire warning[J]. Fire Safety Journal,2001,36:173-180.
    [135]杨淑莹.模式识别与智能计算——MATLAB技术实现[M].北京:电子工业出版社,2008:144-145.
    [136]李蓉,王安国,吕英.基于神经网络的新型缺陷接地结构优化设计[J].微波学报,2007,23(9):152-155.
    [137] Zhong L, Yuan J L, Zou C M. Parameter whiten method for neural network modelingfor grayproblem[J]. SPIE, Or1ando,2002, Vo1.4739
    [138] Craig Garlin Carmichael. A study of the accuracy, completeness and efficiency of artificialneural networks and related inductive learning techniques[D]. lowa State University,2001:11-13.
    [139]孔英会,景美丽.基于混淆矩阵和集成学习的分类方法研究[J].计算机工程与科学,2012,06:111-117.
    [140]王旭辉,舒平,曹立.基于ROC曲线寻优的支持向量机性能研究[J].计算机科学.2010,37(8):240-242.
    [141]韦修喜,周永权.基于ROC曲线的两类分类问题性能评估方法[J].计算机技术与发展.2010,20(11):47-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700