高酸原油直接催化裂化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着原油价格的不断上涨,原油加工成本越来越高,炼油企业的经济效益受到严重影响。高酸原油储量丰富,价格相对较低,可以使炼油企业获得更高的利润。然而,高酸原油是典型的劣质原油,具有高酸值、高密度、高粘度、高残炭、高金属含量等特点,在常规加工过程中不但会造成设备的严重腐蚀,而且由于轻馏分含量太少,蜡油、渣油馏分品质太差,给其有效加工带来挑战。采用催化裂化直接加工高酸原油,不仅可以有效避免设备的腐蚀,还可以优化产物分布,提高产品质量,缩短加工流程,节省加工成本。本论文对高酸原油直接催化裂化过程中的基础问题进行了研究。
     首先以工业提纯的环烷酸为反应物,在固定床微反装置上进行了热转化和催化转化实验。结果表明,环烷酸的热分解脱酸速率较慢,脱酸率较低,反应温度对脱酸率的影响显著。环烷酸的催化脱酸效果显著,催化剂类型对环烷酸脱酸率影响较小,但是脱酸产物明显不同。环烷酸在CORH、LTB-2两种分子筛催化剂上的脱酸率接近100%,且基本不受反应条件的影响,脱酸产物以CO为主;环烷酸在弱酸性γ-Al2O3、碱性MgO和CaO上的脱酸率略低,脱酸产物以CO2为主。虽然同为碱性氧化物,环烷酸在MgO上以催化脱酸为主,但是在CaO上还包括中和脱酸,反应过程中生成环烷酸钙。此外,烃类不会影响环烷酸的催化脱酸反应。
     分子模拟的结果表明,不同类型的环烷酸在B酸位的脱酸过程不同。羧基与环直接相连的环烷酸在B酸位的催化脱酸过程存在两种路径,以先开环后脱酸为主,产物主要是CO。羧基通过烷基链与环相连的环烷酸在分子筛B酸位的脱酸过程类似于正碳离子反应机理,羰基氧与质子接触后引起键级的变化,在β位发生断裂生成甲酸,然后分解为CO和H2O。环烷酸与碱性氮化物在分子筛孔道内的吸附能力不同,碱性氮化物与分子筛的结合能力更强。由于空间位阻效应,小分子化合物的吸附量更大。
     苏丹达尔高酸原油虽然品质很差,但是由于其重组分的强石蜡性质,催化裂化性能优良。在反应温度460℃、停留时间1.15s、剂油比6左右的缓和条件下,重油转化率达到90%以上,液收达到80%以上。液化气中丙烯和丁烯的含量超过80%,汽油中烯烃含量小于40%。由于原料的残炭大于8%,导致苏丹达尔原油直接催化裂化的焦炭产率较高。苏丹达尔原油直接催化裂化的工业试验验证了实验室的研究结果,并且得到了更好的产物分布。单程转化率非常高,不需要进行回炼油(浆)的回炼;高残炭导致了高的焦炭产率,从而使再生器的烧焦负荷大大增加;原料中直馏柴油的存在使高酸原油直接催化裂化的柴油品质高于普通的催化裂化柴油,而且酸度也合格。
     通过苏丹达尔高酸原油不同加工方案的经济性分析可知,直接催化裂化具有最好的产物分布,其产品总值比常减压—催化裂化—延迟焦化的常规加工方案和直接延迟焦化方案分别高355元/吨和513元/吨。虽然催化裂化的能耗要高于延迟焦化和常规加工方案,但直接催化裂化总毛利仍比常规加工方案和直接延迟焦化分别高317元/吨和315元/吨。如果考虑在常规加工方案和延迟焦化方案中需要添加的各种破乳剂、消泡剂、缓蚀剂等的成本以及人工成本在内,利润差将进一步增大。
Along with increasing of crude oil’s price, cost of crude oil is getting higher and higher and refinery’s profit drops unceasingly. In the world, resources of high total acid number (TAN) crude oil are rich, and the price is lower than high quality crude oil. Refineries can obtain high profits if they processing high TAN crude oil. However, high TAN crude oil is the typical inferior crude oil with high TAN, high density, high viscosity, high carbon residue and high metal content. Processing high TAN crude oil can cause apparatus’serious corrosion. Moreover, content of light fraction is low and quality of VGO and VR is inferior in high TAN crude oil. These limit the processing of high TAN crude oil widely. Uses of FCC to process high TAN crude oil can not only avoid apparatus’corrosion, but also optimize product distribution, improve product quality, reduce processing line and save processing cost. So direct catalytic cracking of high TAN crude oil were studied in this paper.
     Firstly, thermal and catalytic conversion experiments of naphthenic acids were carried out in the fixed bed microreactor apparatus. The experimental results indicated that thermal decarboxylation rate was slow, and the decarboxylation ratio was low. Reaction temperature was the dominant influential factor of the thermal decarboxylation. Catalytic decarboxylation effect of naphthenic acids was remarkable. Influences of catalysts to catalytic decarboxylation ratio were indistinct. But catalytic decarboxylation products were different over various catalysts. Catalytic decarboxylation ratios of naphthenic acids over CORH and LTB-2 were 100% approximately. This ratio were not be affected by the reaction conditions, and CO was dominant catalytic decarboxylation product. Catalytic decarboxylation ratios of naphthenic acids overγ-Al2O3、MgO and CaO were lower slightly than that over CORH and LTB-2, and CO2 was dominant catalytic decarboxylation product. Although CaO and MgO are the basic oxides, decarboxylation mechanisms over these basic oxides are different. Catalytic decarboxylation was primary over MgO. Over CaO, there was not only catalytic decarboxylation, but also neutralization decarboxylation. The product of neutralization decarboxylation over CaO was calcium naphthenate. In addition, the straight running hydrocarbons can not affect the catalytic decarboxylation of naphthenic acids.
     Molecular simulation’s results showed the catalytic decarboxylation mechanisms of different type naphthenic acids were different over Bronsted acid site. If the carboxyl group connected to the naphthene directly, there are two reaction pathways. Opening ring firstly and then decarboxylation is the domaint reaction pathway. If the carboxyl group connected to the naphthene through alkyl chain, catalytic decarboxylation mechanism was similar to the carbonium ion reaction mechanism. The bond orders changed after ketonic oxygen contacted to the Bronsted acid site. Bond ofβposition broke to produce methanoic acid, and then the methanoic acid decomposed to CO and H2O. Adsorptive capacities of naphthenic acids and basic nitrogen-containing compounds in porous channels of zeolites were different. Combining capacities of basic nitrogen-containing compounds and zeolites were higher than that of naphthenic acids. As a result of the steric effect, adsorptive capacities of small molecular compounds in porous channels of zeolites were even more.
     Although the quality of Sudanese Dar high TAN crude oil was inferior, it was very easy to catalytic crack because of the paraffin performance. Conversion was above 90% and liquid yield was above 80% at the condition of reaction temperature of 460℃, residence time of 1.15s and ratio of catalyst to oil of 6. Content of propylene and butylenes in LPG surpassed 80%. Olefins content in gasoline was under 40%. Because carbon residue was more than 8%, coke yield of Sudanese Dar high TAN crude oil was high in catalytic cracking process. Commercial test for catalytic cracking of Sudanese Dar high TAN crude oil verified the research results in laboratory, and more superior product distribution was obtained. Single-through conversion of the crude oil was very high, so recycle oil and slurry oil didn’t need to reprocess. However, high coke yield made the carbon burning load of regenerator to increase greatly. This changed the heat distribution of reaction reproduction system. Heat to warm up the air that needed to burning coke was the main heat consumption. As a result of the existence of distillation diesel in crude oil, quality of the catalytic cracking diesel from Sudanese Dar high TAN crude oil was better than traditional catalytic cracking diesel, and the acidity was also qualified.
     Economic analyses for various processing schemes of Sudanese Dar high TAN crude oil indicated that direct catalytic cracking had the best economic efficiency. Total cost of the products was more 350 yuan/t than that of tranditional processing scheme, and was more 428 yuan/t than that of delayed coking scheme. Although energy consumption of catalytic cracking process was higher than that of delayed coking process and tranditional processing scheme, gross profit was more than 317 yuan/t and 315 yuan/t. If including the costs of various demulsifier, defoamer, corrosion inhibitor and labour, the profit difference would further increase.
引文
[1]凤凰网.中国石化攻克加工高酸原油世界级难题[EB/OL]. http://finance.ifeng.com/roll/20100622/2333239.shtml,2010-06-22
    [2]张建华.进口高酸原油加工赢利空间收窄[EB/OL]. http://monthly.sinopecnews.com.cn/shzz/content/2009-10/09/content_678251.htm, 2009-10-09
    [3]徐涛,王鹏.高油价下加工高酸原油可行性探讨[J].石油化工管理干部学院学报, 2006, 6(2): 27-31
    [4] Jan S. Corrosion mitigation program improved economics for processing naphthenic crudes [J]. Oil & Gas Journal, 2000, 98(37): 64-65
    [5]刘泽龙,田松柏,樊雪志,等.蓬莱原油初馏点~350℃馏分中石油羧酸的结构组成[J].石油学报(石油化工), 2003, 19(6): 40-45
    [6]吕振波,陈刚,瞿玉春. FAB-MS法分析辽河原油200~430℃馏分中的石油酸组成[J].质谱学报, 2003, 24(z1): 114-114
    [7]任晓光,宋永吉,任绍梅,等.高酸值原油环烷酸的结构组成[J].过程工程学报, 2003, 3(3): 218~221
    [8] Chang S. H., Dechert G.J., Robins W.K., et al. Naphthenic acid in crude oils characterized by mass spectrometry [J]. Energy & Fuels, 2000, 14(1): 217-223
    [9] Fan T. P. Characterization of naphthenic acids in petroleum by fast atom bombardment mass spectrometry [J]. Energy & Fuels, 1991, 5(3): 371-375
    [10] Rudzinski W. E., Oehlers L., Zhang Y., et al. Tandem mass spectrometric characterization of Commercial Naphthenic Acids and a Maya Crude Oil [J]. Energy & Fuels, 2002, 16(5): 1178-1185
    [11] Laredo G. C., López C. R.,álvarez R. E., et al. Identification of Naphthenic Acids and Other Corrosivity-Related Characteristics in Crude Oil and Vacuum Gas Oils from a Mexican Refinery [J]. Energy & Fuels, 2004, 18(6): 1687-1694
    [12] Yepez O. Influence of different sulfur compounds on corrosion due to naphthenic acid [J]. Fuel, 2005, 84: 97-104
    [13]崔新安,宁朝辉.石油加工中的硫腐蚀与防护[J].炼油设计, 1999, 29(8): 61-67
    [14] Turnbull A., Slavcheva E., Shone B. Factors Controlling Naphthenic Acid Corrosion [J]. Corrosion, 1998, 54(11): 922-930
    [15] Yepez O. On the chemical reaction between carboxylic acids and iron, including thespecial case of naphthenic acid [J]. Fuel, 2007, 86: 1162-1168
    [16]侯祥麟.中国炼油技术[M].第2版.北京:中国石化出版社, 2001: 15-16
    [17] Groysman A, Brodsky N, Penner J. Low Temperature Naphthenic acid Corrosion Study[C]. Corrosion 2007,Houston, NACE International,2007 : 569
    [18] Slavcheva E., Shone B., Turbull A. Review of Naphthenic Acid Corrosion in Oil Refining [J]. British Corrosion Journal, 1999, 34(2): 125-131
    [19]陈碧凤,杨启明.常减压设备环烷酸腐蚀分析[J].腐蚀科学与防护技术, 2007, 27(1): 74-76
    [20]陈碧凤,杨启明.六种材料环烷酸腐蚀的动力学研究[J].石油炼制与化工, 2006, 37(5): 49-52
    [21] White R.A. Material Selection for Petroleum Refineries and Gathering Facilities [C]. Houston, NACE International 1998, 17
    [22]闫铁伦,王罡.辽河油田石化总厂西常减压环烷酸腐蚀规律及防护[J].石油化工腐蚀与防护, 1996, 13(3): 8-13
    [23]高延敏,陈家坚,杨怀玉,等.环烷酸腐蚀研究现状和防护对策[J].石油化工腐蚀与防护, 2000, 17(2): 6-12
    [24]胡洋,薛光亭.加工高酸值原油设备腐蚀与防护技术进展[J].石油化工腐蚀与防护, 2004, 21(4): 5-8
    [25]李海良.炼制高酸原油工艺设备的腐蚀与防护[J].石油化工设备技术, 2008, 29(2): 44-49
    [26]敬和民,郑玉贵,姚治铭,等.环烷酸腐蚀及其控制[J].石油化工腐蚀与防护, 1999, 16(1): 1-7
    [27]于渊慧.加工高酸值原油常减压装置的腐蚀与防护[J].安全技术, 2008, 8(9): 17-19
    [28]康强利,郭兴建,赵敏,等.缓蚀剂在我国炼油厂中的应用及发展[J].腐蚀科学与防护技术, 2008, 20(6): 445-447
    [29] Elizabeth B.K. Phosphate ester inhibitors solve naphthenic acid corrosion problems[J]. Oil & Gas Journal. 1994, (2): 31-35
    [30] Edmonson J.G. High temperature corrosion inhibitor[P]. US5611911, 1997
    [31] Elizabeth B.K. Use of sulfiding agents for enhancing the efficacy of phosphorus in controlling high temperature corrosion attack[P]. US5630964, 1997
    [32]杨莹,潘延民,田淑梅,等.环烷酸腐蚀及其缓蚀剂的研制[J].炼油技术与工程, 2004, 34(11): 56-57
    [33]高延敏,陈家坚,雷良才,等.抑制环烷酸腐蚀的几种高温缓蚀剂[J].应用化学, 2000, 17(1): 63-65
    [34] Elizabeth B.K. Phosphorus thioacid ester inhibitor for naphthenic acid corrosion[P]. US5552085, 1996
    [35]张玉芳,路民旭,白真权,等.硫醇基硫代磷酸辛酯的合成及其缓蚀性能研究[J].石油炼制与化工, 2002, 33(7): 40-43
    [36]高广波,彭松梓,于凤昌,等.高温环烷酸缓蚀剂的合成[J].石油化工腐蚀与防护, 2008, 25(6): 14-16
    [37]张玉芳,路民旭,朱雅红,等.硫代磷酸酯缓蚀剂在金属表面成膜行为研究[J].中国腐蚀与防护学报, 2002, 22(5): 282-285
    [38]万真,陈辉,李豫晨,等.环烷酸缓蚀剂的合成及其缓蚀评价[J].石化技术与应用, 2007, 25(1): 17-21
    [39] Edmondson G., Pruett S. B. High temperature corrosion inhibitor [P]. US5314643, 1996
    [40] Zetlmeisl M. J. Control of naphthenic acid corrosion with thiophosporus compounds [P]. US5863415, 1999
    [41] Edmondson G. High temperature corrosion inhibitors[P]. US5500107, 1996
    [42] Petersen P. R, Slater J. E. Naphthenic acid corrosion inhibitors [P]. US5182013
    [43] Elizabeth B.K. Naphthenic acid corrosion literature survey[C]. NACE conference corrosion, 1999, 378
    [44] Edmondson G. High temperature corrosion inhibitor[P]. US5464525, 1995
    [45]郭睿,张春生,包亮,等.新型咪唑啉缓蚀剂的合成与应用[J].应用化学, 2008, 25(4): 494-498
    [46]刘忠运,李莉娜,张大椿,等.新型咪唑啉缓蚀剂的合成及其缓蚀性能研究[J].精细化工中间体, 2009, 39(4): 39-43
    [47]黄占凯,郭春燕,刘春生,等.新型环烷酸腐蚀缓蚀剂的合成及缓蚀性能研究[J].石油炼制与化工, 2005, 36(11): 63-65
    [48]桑东恒,黄本生,刘清友,等.咪唑啉与亚磷酸二乙酯复配对环烷酸腐蚀的缓蚀机理[J].材料保护, 2010, 43(5): 17-19
    [49]刘香兰,王颖,王世颖,等.常减压装置的腐蚀分析及防护措施[J].腐蚀与防护, 2009, 30(2): 142-144
    [50]李海良.炼制高酸原油工艺设备的腐蚀与防护[J].石油化工设备技术, 2008, 29(2): 44-49
    [51]董晓焕,姜毅,赵国仙.四种常用钢材耐环烷酸腐蚀性能研究[J].石油化工腐蚀与防护, 2004, 21(2): 1-4
    [52]陈碧凤,杨启明.六种材料环烷酸腐蚀的动力学分析[J].石油炼制与化工, 2006, 37(5): 49-52
    [53]敬和民,吴欣强,郑玉贵,等. Mo含量对不锈钢在环烷酸介质中腐蚀和冲蚀的影响[J].金属学报, 2002, 38(10): 1067-1073
    [54]曹玉亭,申海平.石油加工中的环烷酸腐蚀及其控制[J].腐蚀科学与防护技术, 2007, 19(1): 45-48
    [55] Strickland B.R., Roselle N.J. Refining mineral oils[P].US2375596, 1945
    [56] Gaikar V.G., Debashish M. Adsorptive recovery of naphthenic acids using ion-exchange resins[J]. Reactive & Functional Polymers, 1996, 31(2): 155-164
    [57] Honeycutt E.M., West C. P. Remove acides from petroleum[P]. US2966456, 1960
    [58]于曙艳,马忠庭,白生军,等.从原油中脱除石油酸技术现状与研究进展[J].现代化工, 2006, 26(6): 25-29
    [59]田原宇,姜少华,谭军,等.络合萃取法精制直馏柴油的研究[J].现代化工, 2000, 20(10): 41-43
    [60]齐亮,任晓光,宋永吉,等.高酸值原油中石油酸的分离和回收的研究[J].北京化工大学学报, 2004, 31(1): 11-14
    [61]王贵宾,王国良,崔新安,等.萃取法脱除南海原油中环烷酸的工艺研究[J].石油化工腐蚀与防护, 2006, 23(2): 6-8
    [62]段永锋,彭松梓,申明周,等.高酸原油溶剂脱酸工艺研究[J]. 2009, 26(6): 28-30
    [63]娄世松,左禹,楚喜丽,等.高酸值原油脱酸工艺的研究[J].石油炼制与化工, 2004, 35(7): 36-40
    [64] Slavcheva E., Shone B., Turnbull A. Review of naphthenic acid corrosion in oil refining[J]. Corrosion Journal, 1999, 34(2): 125-131
    [65]陆婉珍,吴明清.石油馏分中的环烷酸分离[J].化工时刊, 1997, 11(5): 7-11
    [66]滕天灿.高酸原油脱酸工艺研究进展[J].淮阴工学院学报, 2009, 18(3): 77-80
    [67] Ramesh V., Flemington N. J, et al. Removal of naphthenic acids in crude oil sand distillates [P]. US6096196, 2000
    [68] Annandale G. S., David W, et al. Metal compounds as accelerators for petroleum acid esterification [P]. US5948238, 1999
    [69]舒运贵,沈喜洲,翟润和,等.加剂抑制直馏油品碱洗过程中的乳化[P]. CN1047882, 1990
    [70]任晓光,齐亮,宋永吉,等.苏丹高酸值重质原油脱酸新工艺探索[J].过程工程学报, 2004, 4(5): 401-405
    [71] Mitchell D. Process for removing naphthenic acids from petroleum distillates[P]. US4634519, 1987
    [72]王会东,贾春耀.直馏柴油中石油酸的分离与回收工艺的研究[J].石油炼制与化工, 1995, 26(2): 25-28
    [73]唐晓东,徐荣,段启彬,等.醇胺法精制直馏柴油的防乳化研究[J].石油炼制与化工, 1997, 28(4): 17-20
    [74]吴进会.减三线馏分油醇胺法脱酸工艺研究[J].润滑油, 1999, 14(3): 8-10
    [75] Fuqua M. C. Process of refining a petroleum oil containing naphthenic acids[P]. US2424158, 1947
    [76] Ferguson S., Darell D, et al. Upgrading petroleum and petroleum fraction[P]. US4752381, 1988
    [77] R.瓦瑞德瑞杰, T.M皮格尔, D.W萨瓦格.从原油和馏出物中除去环烷酸[P]. CN1295608, 2001
    [78]刘公召,于三三,金巍,等.环烷酸正十八酯的合成[J].精细石油化工, 1997, (3): 23-25
    [79]胡国强,许胜先.环烷酸二甘醇酯的合成[J].石化技术, 1999, 6(1): 18-20
    [80]杨忠娥,俞善信.对甲苯磺酸催化合成己二酸二丁酯[J].四川化工与腐蚀控制, 2003, 6(2): 14-16
    [81]孙明珠,亓玉台,袁兴东,等.含磺酸基的介孔分子筛d-SBA-15-SO3H催化合成乙酸乙酯的研究[J].精细石油化工, 2003, (1): 4-7
    [82]凌云,林进.磷钨酸催化合成乙酸环己酯的研究[J].河北化工, 1999, (4): 26-28
    [83]刘公召,王庆国.磷钨酸催化合成环烷酸高级酯的研究[J].沈阳化工学院学报, 2000, 14(11): 23-25
    [84]余新武,赖国松,王建,等. TiSiW12O40/TiO2催化合成丙酸异戊酯[J].化学研究与应用, 2002, 14(4): 423-425
    [85]丁健桦,康文,陈金凤.杂多酸催化合成对羟基苯甲酸正丁酯[J].精细石油化工, 2003, (1): 35-37
    [86]张黎,王琳,陈建民. S2O82-/ZrO2固体超强酸的研究[J].高等学校化学学报, 2000,21(1): 116-118
    [87]崔秀兰,郭海福,郭俊文,等.稀土国体超强酸SO42-/TiO2/La3+催化合成苯乙酸乙酯[J].化学研究与应用, 2002, 14(6): 734-736
    [88]董壮龙,郭俊胜.固体超强酸SO42-/TiO2/-Fe2O3催化合成癸二酸二乙酯的研究[J].精细石油化工, 2003, (1):23-25
    [89]金华峰.复合固体超强酸SO42-/TiO2/-Fe2O3催化合成丁酸异丁酯[J].化学研究与应用, 2003, 15(1): 69-71
    [90]赵银,李俊梅.磺酸型阳离子交换树脂催化合成肉桂酸甲酯[J].离子交换与吸附, 1995, 11(5): 445-448
    [91]马德桴,李骏,顾树珍.载锡离子交换树脂催化性能的研究[J].燃料化学学报, 1996, 24(1): 43-47
    [92]梁金强,王延臻,王家哲,等.酯化法降低高酸原油酸值技术的实验研究[J].石油炼制与化工, 2009, 40(12): 13-16
    [93]梁金强,王延臻,谢运旺,等.高酸原油酯化脱酸催化剂的研究[J].广州化工, 2009, 37(6): 115-117
    [94]李子锋,田松柏,王子军. Mg/Al氧化物催化高酸原油酯化降酸的研究[J].石油炼制与化工, 2009, 40(8): 50-53
    [95]黄延召,朱建华,武本成,等. ZnMgAl-HTlc催化酯化高酸原油脱酸[J].石油学报(石油加工), 2009, 25(5): 731-735
    [96] Guido S., David W. S., David C. D. Esterification of acidic crudes[P].US6251305,1998
    [97]李子锋,田松柏,王子军.高酸原油自催化酯化反应的原因探讨[J].石油炼制与化工, 2009, 40(10): 54-58
    [98] Lazar A., John M. Process of treating hydrocarbon oils[P]. US1953353, 1934
    [99] Marty G., John G. Thermal process for reducing total acid number of crude oil[P]. US5820750, 2000
    [100] Saul C.B., William N. O. Thermal decomposition of naphthenic acids[P]. US6086751, 1998
    [101]代保才,丁冉峰,冉国朋,等.高酸原油热脱酸实验研究[J].炼油与化工, 2008, 18(4): 14-17
    [102]申海平,王玉章,李锐.高酸原油热处理脱酸的研究[J].石油炼制与化工, 2004, 35(2): 32-35
    [103]申海平,王玉章,陈清怡,等.一种降低石油酸值的方法[P]. CN1212373, 2005
    [104] Roby B., Saul C. B. Process for reducing total acid number of crude oil[P]. US5928502, 1998
    [105] Raiph D., Blaise J. Naphthenic acid remove as anadjuce to liquid hydrocarbon sweetening[P]. US5389240, 1993
    [106] Ernest O., Thomas E. Process to upgrade crude oils by destruction of naphthenic acids, removal of sulfur and removal of salts [P]. US5985137, 1998
    [107] Ding L. H., Rahimi P., Hawkins R., et al. Naphthenic acid removal from heavy oil on alkaline earth-metal oxides and ZnO catalysts [J]. Applied Catalysis A: General, 2009, 371: 121-130
    [108]张同旺,侯拴弟.石油酸催化转化过程的研究[J].化学工业与工程,2009,26(4): 316-320
    [109]张书红,王子军,崔德春. MgO固体碱催化脱酸工艺研究[J].石油炼制与化工, 2009, 40(5): 21-24
    [110] Zhang A. H., Ma Q. S., Wang K. S., et al. Naphthenic acid removal from crude oil through catalytic decarboxylation on magnesium oxide[J]. Applied Catalysis A: General, 2006, 303: 103-109
    [111] Leung A., David G. B., Boocock, et al. Pathway for the Catalytic Convention of Carboxylic Acids to Hydrocarbons over Activated Alumina[J]. Energy&Fuels, 1995, 9: 913-920
    [112] Billaud F., Tran Minh A.K., Lozano P, et al. Catalytic cracking of octanoic acid [J]. Joural of Analytical and Applied Pyrolysis, 2001, 58: 605-616
    [113] Fu X. Q., Dai Z. Y., Tian S. B., et al. Catalytic Decarboxylation of Petroleum Acids from High Acid Crude Oils over Solid Acid Catalysts[J]. Energy & Fuels, 2008, 22: 1923-1929
    [114] Knut G., Carsten S. Process for removing essentially naphthenic acids from a hydrocarbon oil[P]. US6063266, 1997
    [115] Kenneth L T., Winston K.R. Process for selectively removing lower molecular weight naphthenic acids from acidic crudes[P]. US5897769, 1999
    [116] Thomas R H., Kenneth L.R., Kenneth L.T. Process for reduction of total acid number crude oil[P]. US5910242, 1999
    [117] Roby B., Saul C., Willianm N.O. Process for reducing total acid number of crude oil[P]. US5914030, 1999
    [118]刘涛,戴立顺,牛传峰,等.高酸原油加氢改质技术研究[J].石油炼制与化工, 2009,40(2): 1-4
    [119]徐春明,杨朝合.石油炼制工程(第四版).北京:石油工业出版社, 2009
    [120]王玉章,申海平,刘自宾.一种高酸值烃油的延迟焦化方法[P]. CN1580193, 2005
    [121]申海平,龙军,祖德光,等.一种深度脱除含酸原油中石油酸的方法[P]. CN1814704A, 2006
    [122]张学萍,蒋立敬,胡长禄,等.利用延迟焦化工艺处理高酸原油的方法[P]. CN101280212A, 2008
    [123]张学萍,勾连忠,蒋立敬,等.一种加工高酸原油的焦化方法[P]. CN101280213A, 2008
    [124]谢崇亮,李胜山,毕治国.高酸高钙重质原油延迟焦化装置的设计与运行[J].炼油技术与工程, 2008, 38(12): 15-18
    [125]田松柏,傅晓钦,汪夑卿,等.一种加工高酸值原油的方法[P]. CN1827744A, 2006
    [126]张学萍,蒋立敬,胡长禄,等.一种加工高酸原油的方法[P]. CN101580732A, 2009
    [127]张学萍,矫德卫,蒋立敬,等.一种加工高酸原油的催化裂化方法[P]. CN101580734A, 2009
    [128]刘其武.重油催化裂解多产低碳烯烃反应器结构的热模研究[D].青岛:在中国石油大学(华东),2009
    [129]林伟昌.环烷酸催化转化研究[D].青岛:在中国石油大学(华东),20010
    [130]李淑贞,杨俊杰.环烷酸与石油磺酸镁[M].北京:石油工业出版社, 1995
    [131] Gayubo A.G., Aguayo A.T., Atutxa A., et al. Transformation of oxygenate compounds of biomass pytolusis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids [J]. Industrial & Engineering Chemistry Research, 2004, 43(11): 2619-2626
    [132] Idem R. O., Katikaneni S. P. R., Bakhshi N. N. Catalytic conversion of canola oil to fuels and chemicals: Roles of catalyst acidity, basicity and shape selectivity on product distribution [J]. Fuel Processing Technology, 1997, 51(1-2): 101-125
    [133]田华.脂肪酸酯的催化裂化研究[D].东营:中国石油大学(华东), 2008
    [134]陈正国,朱申敏,程时远.分子模拟方法及在高聚物中的应用[J].材料导报. 1997, 11(6): 49-51.
    [135]张伟涛.吸附于扩散过程的分子模拟[D].青岛:中国海洋大学. 2009
    [136]陈玉林.高酸原油两段提升管催化转化的初步研究[D].东营:中国石油大学(华东), 2009
    [137]高永灿,张久顺.催化裂化过程中氢转移反应的研究[J].炼油设计, 2001, 30(11) : 34-38
    [138]王刚,高金森,徐春明,等.催化裂化过程中热裂化反应与二次反应的研究[J].燃料化学学报, 2005, 33(4) : 440-444
    [139]龙军,魏晓莉.催化裂化生成干气的反应机理研究[J].石油学报(石油加工), 2007, 23(1): 1-7
    [140] Shan Honghong., Dong Huijie., Zhang Jianfang, et al. Experimental study of two-stage riser FCC reactions [J]. Fuel, 2001, 80(8): 1169-1175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700