SnO_2低辐射薄膜的制备与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机日益加重,具有节能减排应用的低辐射玻璃研究成为热点。其可以在保证建筑玻璃采光性能的前提下,反射掉大部分太阳光及室内热源发射出的红外线,阻止热量散失,降低建筑物能源消耗。目前应用的低辐射薄膜以金属银膜为主,其普遍存在薄膜机械性能较差、反射可见光、制备成本高等缺点。近年来,采用超声喷雾热解制备SnO_2薄膜克服了传统银膜的缺点,具有优异的光学性能和机械物理性能,但也存在反射率偏低和反射起始波长过大的问题,而且薄膜中结构缺陷对反射率的影响机制也尚不清楚。探索合理的SnO_2薄膜的喷雾热解制备工艺及进行SnO_2薄膜改性研究工作及是解决这些问题的关键。本文采用超声喷雾热解方法在玻璃基体上制备了SnO_2薄膜及氟、锑、硼和锂掺杂SnO_2薄膜,利用X射线衍射、红外光谱、分光光度计和霍尔效应等测试手段,系统研究了制备工艺和掺杂元素种类和浓度对薄膜的结构和光电性能的影响规律,揭示了掺杂离子在SnO_2晶格中的占位机制。
     超声喷雾热解方法制备SnO_2薄膜的沉积过程的研究表明,对于水性溶液,液滴的挥发速率和先析出固体壳层的渗透性决定了液滴的形成过程:液滴挥发速率大易形成空心球粒子,液滴挥发速率小易形成泡状结构;壳层渗透性好时,形成破碎空心球粒子,而壳层渗透性差时形成球形微粒。
     超声喷雾热解方法制备SnO_2薄膜的工艺研究表明,基体温度在350℃时,SnO_2薄膜均匀致密,表面光滑。基体温度过低和过高分别造成薄膜表面形成颗粒堆积和龟裂;薄膜厚度增加,电阻率下降,薄膜厚度大于1.1μm时,薄膜厚度对电学性能影响减小;当载气流量和雾化速率的比值为4:1时,薄膜均匀致密,光学性能优异;
     氟掺杂SnO_2薄膜的研究表明,当溶液中氟锡原子比小于0.75时,氟离子进入晶格中优先占据O-Sn-O基团中氧位造成O-Sn-O基团振动劈裂,形成FO′缺陷并释放出自由电子,导致薄膜中载流子浓度增大;当溶液中氟锡原子比大于0.75时,氟离子填充晶格间隙位置形成间隙氟,造成薄膜中载流子浓度降低。
     以SnCl_2和SnCl_4为锡前驱物制备的SnO_2:F薄膜的研究表明,氟掺杂的SnO_2薄膜中依然存在氧空位,掺杂浓度增加,氧空位浓度降低,氟离子置换氧离子造成的FO·缺陷逐渐成为载流子的施主;以氢氟酸和氟化铵为氟前驱体制备SnO_2:F薄膜时,氟掺杂浓度对氟离子在SnO_2晶格中固溶行为和光电性能的影响规律类似。氟等量掺杂时,以氢氟酸为氟前驱物制备的薄膜的反射率较低,说明氢氟酸活性较差。
     锑掺杂的SnO_2薄膜的研究表明,当溶液中锑锡原子比小于2.0%时,进入到SnO_2晶格中的锑离子取代锡离子并表现为+5价态,形成施主缺陷,从而造成薄膜的自由载流子浓度增大;当锑锡原子比大于2.0%时,锑离子以+3价态形式置换锡离子,造成O-Sn-O基团振动的劈裂并形成受主缺陷,导致薄膜的自由载流子浓度降低;硼掺杂的SnO_2薄膜的研究表明,当溶液中硼锡原子比较低时,硼离子易填充SnO_2晶格间隙处形成间隙硼(Bi′′′),薄膜中载流子浓度上升,但当硼锡原子比为4.0%时,在晶格中造成大量缺陷,使薄膜的光电性能下降;锂掺杂的SnO_2薄膜的研究表明,锂离子取代晶格中锡位置造成薄膜中载流子浓度降低,薄膜的光反射特性消失。
With the increased situation of Energy Crisis, the low-emssion glass, which can save energy and reduce pollution, becomes one of hot topics in research. The low-emission glass can reflect infrared ray emmitted from sunshine and body indoor, without the losing the transittance in visible. It can prevent the heat exchange between both sides of glass and decrease the buliding energy comsumption. However, the current low-emission glass is composed by Ag films, which has high cost, high reflectance in visible. The SnO_2 films prepared by ultrasonic spray pyrolysis can overcome the disadvantages of the Ag films. There are also some problems in low emission film of SnO_2, such as weak reflectivity in near infrared, high cutoff wavelength of infrared reflectivity etc. Moreove, the mechanism of refectivity in SnO_2 films and the releation betweent the film structure and optical-electrical properties needs more research work. The probe into the preparation parameters and the modified SnO_2 films may be the key point of the research work. In the paper, we investigated the proper preparation parametes in ultrasonic spray pyrolysis and the releation betweent the structure and optical-electrical properties in SnO_2 films. The fluorine doped SnO_2 film, boron doped SnO_2 films and lithium doped SnO_2 films also have been studied.
     The preparation parameters showed that droplet flux and carrier gas flux decided the deposition process; drying rate and permeabitiy affected the transformaiton of particles; the effect of thickness on the electrical properties was not obvious when the thickness was more than1.1μm; the temperature of 350℃was suitable for deposition.
     The results of fluorine doped SnO_2 films showed that, at low fluorine doping levels, the fluorine ions substituted the oxide ions in SnO_2 lattice to form the defect of FO·and release the electrons, that in turn, leading to the splitting of O-Sn-O vibration and increasing of carrier concentration in films; at high fluorine doping levels, fluorine ions became to fill the intersitital site, forming the defect of Fi′, which could decrease the carrier concentration in films and move the vibration frequency of Sn-O. The optical reflectivity showed the similar rule with carrier concentration at different doping levels, which could be explained by Drude theory. The main scattering mechanism in SnO_2:F films is the impurity ions scattering.
     The results of SnO_2 films prepared from SnCl_2 and SnCl_4 showed the oxygen vacancy existed in fluorine doped SnO_2 films. With the increased fluorine concentrations, the contribution of oxygen vacancy became weak; the results of SnO_2 films prepared from NH4F and HF showed the activity of HF was not as good as NH4F at the same fluorine doping level.
     The results of SnO_2:Sb films showed that when antimony doping concentration was less than 2.0%, the antimony ions in SnO_2 lattice behaved +5 valence state and substituted tin ions forming the donor defect and increase of carrier concentration; when antimony concentration was more than 2.0%, the antimony showed +3 valence state and substituted tin ions forming acceptor defect and decrease of carrier concentration, which had a negetive effect on the reflectivity of SnO_2:Sb films. The results of SnO_2:B films showed that a small quantitiy of bonor ions in SnO_2 lattice would fill the intersitital site to form Bi′′′and increase the carrier concentration and reflectivity; too much bonor ions in SnO_2 lattice could make bonor ions to substitute tin ions and decrease the reflectivity and carrier concentration. The results of SnO_2:Li films showed lithium ions in SnO_2 lattice would substitute the tin ions, that in turn to the disappear of optical reflectivity and electrical properties.
引文
[1] L.S. Roman, R. Valaski, C.D. Canestraro, E.C.S. Magalhaes, C. Persson, R. Ahuja, E.F. Silva, I. Pepe, A. Ferreira. Optical band-edge absorption of oxide compound SnO_2. Applied Surface Science 2006, 252:5361-5364.
    [2] M. Vergohla, N. Malkomesa, T. Mattheea, G. Brauer, U. Richter, F.W. Nickolc, J. Bruchd. In situ monitoring of optical coatings on architectural glass and comparison of the accuracy of the layer thickness attainable with ellipsometry and photometry. Thin Solid Films 2001, 392:258-264.
    [3]刘起英,汪建勋.低辐射镀膜玻璃的现状及展望[J].玻璃. 2002, 29(6):9-13.
    [4]董镛.低辐射(Low-E)镀膜玻璃的市场前景(上篇).真空. 1999, (3): 49-51.
    [5] R.J. Martin-Palma, L. Vazquez, J.M. Martinez-Duart, R. Malats. Silver-based low-emissivity coatings for architectural windows: Optical and structural Properties, Solar Energy Materials & Solar Cells 1998, 53:55-61.
    [6] K. Kato, H. Omoto, A. Takamatsu. Low-emissivity coatings for architectural windows: optical and structural properties. Optimum structure of metal oxide under-layer used in Ag-based multilayer. Vacuum 2008, 1-4.
    [7] Pilkington Lab. Manufacture of flat glass[P]. US Patent, 3083551. 1963.
    [8] R. A. Gaiser. Method of forming surface films by vapor coating and the article resulting thereform[P]. US Patent, 2478817. 1949.
    [9] L. Holland. Vacuum deposition of thin films[M]. Chapman and Hall Limited. 1966.
    [10] A.D. Gurbb. The LOF semi-continuous thermal evaporation Plant[C]. Thompson Publications. 1969, 6:42-46.
    [11] J.S. ChaPin. Sputtering source and apparatus[P]. US Patent, 4166018, 1979.
    [12] P. Young, R. Bemardi. Auto solar paper[C]. SAE Technical Paper Series, 1998, 880050.
    [13] H.E. Mckelvey. Magnetron cathode sputtering apparatus[P]. US Patent, 4356073. 1982; 4422916, 1983.
    [14] C. Schaefer, G. Bsuer, J. Szczyrbowski. Low emissivity coatings on architectural glass. Surface and Coatings Technology. 1997, 93:37-45.
    [15] C.R. Sekhar, K.K. Malay, D.G. Dhruba. Tin dioxide based transparent semiconducting films deposited by the dip-coating technique. Surface and Coatings Technology 1998, 102:73-80.
    [16]姚寿山,孔令辉.低辐射镀膜玻璃及其应用[J].材料开发与应用. 2002, 17(6):38-42.
    [17]刘志海,李超.低辐射玻璃及其应用.化学工业出版社. 2006, 69-75.
    [18]李成存.玻璃在线热喷涂镀膜工艺及预留热喷涂区的设计[J].山东建材. 1997, 5(1):17-20.
    [19] G. Alvarez, J.J. Flores, J.O. Aguilar, O. Gomez-Daza, C.A. Estrada, M.T.S. Nair, P.K. Nair. Spectrally selective laminated glazing consisting of solar control and heat mirror coated glass: preparation, characterization and modelling of heat transfer. Solar Energy 2005, 78:113-124.
    [20] A.M.B. van Mol, Y. Chae, A. H. McDaniel, et al. Chemical vapor deposition of tin oxide. Fundamentals and applications[J]. Thin Solid Films. 2006, 502(1-2):72-78.
    [21] Y. Li, G.Y. Zhao, W.H. Zhang, Y.Q. Chen. Fine pattern fabrication on SnO_2:Sb thin films formed by the sol–gel process. Surface and interface analysis. 2006, 38: 1291-1295.
    [22] J. L. Solis, J. Rodriguez, W. Estrada. Highly porous thin films obtained by spray-gel technique. phys. stat. sol. 2004, 201(10):2370-2374.
    [23] K. Murakami, I. Yagi, S. Kaneko. Oriented growth of tin oxide thin films on glass substrates by spray pyrolysis of organotion compounds. Journal of American Ceramic Society. 2006, 79:2557-62.
    [24] D.J. Yoo, J. Tamaki, S.J. Park, N. Miura, N. Yamazoe. Suppression of grain growth in sol-gel-derived tin dioxide ultrathin films. Journal of American Ceramic Society. 2006, 79:2201-04.
    [25] S. Chacko, N.S. Philip, V.K. Vaidyan. Effect of substrate temperature on structural, optical and electrical properties of spray pyrolytically grown nanocrystalline SnO_2 thin films. phys. stat. sol. 2007, 204(10):3305-3315.
    [26] H.Liang, E. Ruckenstein. Coating metal oxide particles via the combustion of deposited polymer precursors. Journal of Applied Polymer Science. 2008, 67:1891-1903.
    [27] A.A. Ramadan, A.A. Elmongy, A.M. Elshabiny, A.T. Mater, S.H. Mostafa, E.A. Elsheheedy, H.M. Hashem. Addressing difficulties in using XRD intensity for structural study of thin films. Crystal Research and Technology. 2009, 44(1):111-116.
    [28] X. Zhi, G.Y. Zhao, T. Zhua, Y. Lic. Themorphological, optical and electrical properties of SnO_2:F thin films prepared by spray pyrolysis. Surface and Interface Analysis. 2008, 40:67-70.
    [29] J. Joseph, V. Mathew, K.E. Abraham. Physical properties of Dy and La doped SnO_2 thin films prepared by a cost effective vapour deposition technique. Crystal Research and Technology. 2006, 41(10):1020-1026.
    [30] M. Farooqa, M.G. Hutchins. Optical properties of higher and lower refractive index composites in solar selective coatings. Solar Energy Materials a Solar Cells 2002, 71:73-83.
    [31] D. Russo, C. McKown, C. Roger. The influence of film composition on the optical and thermal properties of solar control coating[J]. Thin Solid Films. 2001, 398-399:65-70.
    [32]赵高扬,张生国,郅晓等.玻璃基板上低辐射涂层的制备及性能研究[J].中国建材科技. 2006, 25(3):103-106.
    [33]周家斌,任毅,付志强.低辐射镀膜玻璃开发进展.建筑结构学报. 2007, 28(4):105-108.
    [34] H.J. Jeona, M.K. Jeona, M. Kanga, S.G. Leeb, Y.L. Leeb, Y.K. Hongb, B.H. Choic. Synthesis and characterization of antimony-doped tin oxide (ATO) with nanometer-sized particles and their conductivities. Materials Letters 2005, 59:1801- 1810.
    [35] L. Holland. Vacuum deposition of thin films [M]. Chapman and Hall Ltd, London, 1996.
    [36] E. Ando, M. Miyazaki. Moisture resistance of the low-emissivity coatings with a layer structure of Al-doped ZnO/Ag/Al-doped ZnO [J]. Thin Solid Films. 2001, 392(2):289-293.
    [37]郭明,陈功.最简配置生产低辐射镀膜玻璃[J].玻璃. 2004, 175(4):51-55.
    [38]金炯,王德苗,董树荣.射频反应磁控溅射制备低辐射薄膜[J].真空科学与技术学报. 2006, 26(1):28-31.
    [39] H. Schilling, J. Szczyrbowski, M. Ruske. New layer system family for architectural glass based on dual twin-magnetron sputtered TiO_2[C]. Society of Vacuum Coaters, 1998:165-173.
    [40] M. Miyazaki, E. Ando. Durability improvement of Ag-based low-emissivity coatings[J]. Journal of Non-Crystalline Solids. 1994, 178:245-249.
    [41] J. Szczyrbowski, G. Braeuer, M. Ruske. New low emissivity coating based on TwinMag Puttered TiO_2 and Si3N4 layer[J]. Thin Solid Films. 1999, 351(1-2): 254-257.
    [42] J.H. Lee, S.H. Lee, K.L. Yoo. Deposition of multi-period low-emissivity filter for display application by RF magnetron sputtering[J]. Surface and Coatings Technology. 2002, 158-159:477-481.
    [43] G. Leftheriotis, S. Papaefthimiou, P. Yianoulis. Development of multilayer transparent conductive coatings[J]. Solid State Ionics. 2000, 655:136-137.
    [44]扬南如,余桂郁.溶胶-凝胶法简介.硅酸盐通报. 1992, (2):56-60.
    [45]周经培.影响溶胶凝胶镀膜玻璃产品质量的几种因素[J].玻璃. 1995, 22(3):35-39.
    [46] R. J. McCurdy. Successful implementation methods of atmospheric CVD on a glass manufacturing line. Thin Solid Films 1999, 351:66-72.
    [47] S.G. Leybold, R.Wilhelm. Large area glass coating. Surface and Coatings Technology. 1999, 112:359-361.
    [48] Z.M. Jarzebski. Physical properties of SnO_2 materials: Preparation and defect structure. Journal of Electrochemical Society. 1976, 123(7):199-202.
    [49] M. Madeleine, O. Giovanni, P. Maurizia, R. Lucia. Ab initio pseudopotential calculation of the equilibrium structure of tin monoxide. Physics Review B. 2001, 64:045119-045121.
    [50] W. Spence. The uv absorption edge of tin oxide thin films. Journal of Applied Physics. 1967, 38:3767.
    [51] K.B. Sundaram, G.K. Bhagavat. Optical absorption studies on tin oxide films. Journal of Physics D. 1981, 14:921-926.
    [52] E. Burstein. Anomalous optical absorption limit in InSb. Physics Review B. 1954, 93:632-633.
    [53] J. Robertson. Defect levels of SnO_2. Physics Review B. 1984, 30:3520-3522.
    [54] C.G. Fonstad, R.H. Reduker. Electrical Properties of High-Quality Stannic Oxide Crystals. Journal of Applied Physics. 1971, 42:2911.
    [55] S. Samson, C.G. Fonstad. Defect structure and electronic donor levels in stannic oxide crystals. Journal of Applied Physics. 1973, 44:4618.
    [56] J.M. Themlin, M. Chtaib. Characterization of tin oxides by x-ray-photoemission spectroscopy. Physics Review B. 1992, 46:2460-2466.
    [57] S. Munnix, M. Schmeits. Electronic structure of tin dioxide surfaces. Physics Review B. 1983, 27:7624-7635.
    [58] M.S. Hetternbach, M. Gothelid, T. Weib, N. Barsan, U. Weimar, H. von Schenck, L. Giovanelli, G. Le Lay. Electronic structure of SnO_2(110)-4×1 and sputtered SnO_2(110) revealed by resonant photoemission. Surface Science. 2002, 499:85-93.
    [59] J.M. Themlin, R. Sporken, J. Darville. Resonant-photoemission study of SnO_2: Cationic origin of the defect band-gap states. Physics Review B. 1990, 42(18):11914-11925.
    [60] C. Kilic, A. Zunger. n-type doping and passivation of CuInSe2 and CuGaSe2 by hydrogen. Physics Review B. 2003, 68(9):075201-075211.
    [61] A. Matti, J. Maki, T. Tapio. Theoretical study of oxygen-deficient SnO_2(110) surfaces. Physics Review B. 2002, 65:245428-245436.
    [62] D.F. Cox, B.T.B. Fryberger, S. Semancik. Oxygen vacancies and defect electronic states on the SnO_2(110)-1×1 surface. Physics Review B. 1988, 38:2072-2083.
    [63] M.S. Moreno, R.F. Egerton, J.J. Rehr, P.A. Midgley. Electronic structure of tin oxides by electron energy loss spectroscopy and real-space multiple scattering calculations. Physics Review B. 2005, 71:035103-035109.
    [64] A. Walsh, G.W. Watson. Electronic structures of rocksalt, litharge, and herzenbergite SnO by density functional theory. Physics Review B. 2004, 70:235114-235121.
    [65] E. Shanthi, V. Dutta, A. Banerjee. Electrical and optical properties of undoped and antimony-doped tin oxide films. Journal of Applied Physics. 1980, 51:6243.
    [66] A. Rohatgi, T.R. Viverito, L.H. Slack. Electrical and optical properties of tin oxide films. Journal of the America Ceramic Society. 1974, 57(6):278-279.
    [67] K.L. Chopra, S. Major, D.K. Pandya. Transparent conductors-A status review. Thin Solid Films. 1983, 102(1):1-46.
    [68] E. Shanthi, A. Banerjee, V. Dutta, K.L. Chopra. Electrical and optical properties of tin oxide films doped with F and (Sb+F). Journal of Applied Physics. 1982, 53: 1615.
    [69] J.P. Espinos, A. Caballero, L. Contreras. SnO_2 thin films prepared by ion beam induced CVD: preparation and characterization by X-ray absorption spectroscopy. Thin Solid Films 1999, 353:113-123.
    [70] G. Müller, P.P. Deimel, W. Hellmich, C. Wagner. Sensor fabrication using thin film-on-silicon approaches. Thin Solid Films. 1997, 296(1-2):157-163.
    [71] V.A. Johnson, K. Lark-Horovitz. Chapter VII Semiconductors at low temperatures. Progress in Low Temperature Physics. 1957, 2:187-225.
    [72] E. Shanthi, A. Banerjee, K. L. Chopra. Dopant effects in sprayed tin oxide films. Thin Solid Films. 1982, 88(2):93-100.
    [73] G.L. Hall. Ionized impurity scattering in semiconductors. Journal of Physics and Chemistry of Solids. 1962, 23(8):1147-1151.
    [74] D.W. Sproson, G.L. Messing, T.J. Gardner. Powder synthesis for electronic ceramics by evaporative decomposition of solutions. Ceramics International. 1986, 12(1):3-7.
    [75] M.I. Ruthner, Vincenzini, P. (ed). [J].Ceramic Powders, Elsevier, Amsterdam 1983,16:515.
    [76] G.L. Messing, S.C. Zhang, G.V. Jayanthi. Ceramic Powder Synthesis by Spray Pyrolysis[J]. Journal of the American Ceramic Society, 1993,76(11):2707-2726.
    [77]戴遐明,喷雾热解-一种重要的微粉制备工艺[J].粉体技术, 1995,1(2):28-33.
    [78]赵新宇,张煜,古宏晨,高玮.喷雾热解制备稀土超细粉末-氧化钇粒子形态与形成机理[J].高等学校化学学报. 1998, 19(4):507-510.
    [79] A.V. Shevelkov, E.V. Dikarev, E.V. Shpsnchenko, etal. Crystal structures of bismuth Tel1uroha1ides BiTeX (X=Cl,Br,I) from X-ray Power Diffraction Data. Journal of Solid State Chemistry. 1995, 114(2):379-384.
    [80] D. Wang, S.L. Chong, A. Malik, Sol-gel column technology for single-step deactivation, coating, and stationary-phase immobilization in high-resolution capillary gas chromatography. Analytical Chemistry. 1997, 69:4566-4576.
    [81] L.Y. Zhu, Y. Xie, X.W. Zheng, X. Yin, X.B. Tian. Growth of compound BiIII-VIA-VIIA crystals with special morphologies under mild conditions. Inorganic Chemistry. 2002, 41(17):4560-4566.
    [82] S.Y. Wang, W. Wang, Y.T. Qian, Preparation of La2O3 thin films by pulse ultrasonic spray pyrolysis mthod. Thin Solid Films, 2000, 372(1-2):50-53.
    [83] S.Y. Wang, Y.W. Du, Preparation of nanocrystalline bismuth sulfide thin films by asynchronous-pulse ultrasonic spray pyrolysis technique. Journal of Crystal Growth. 2002, 236:627-634.
    [84] C.L. Fábregas, L. Reyes, J.L. Solís, J. Rodríguez, W. Estrada, R.J. Candal. SnO_2 thin-films prepared by a spray-gel pyrolysis: Influence of sol properties on film morphologies. Thin Solid Films. 2007, 516(1):25-33.
    [85] N. Yamaguchi, T. Hattori, K. Terashima, T. Yoshida. High-rate deposition of LiNbO3 films by thermal plasma spray CVD. Thin Solid Films 1998, 316:185-188.
    [86] S. Nagata, N. Wakiya, Y. Masuda, S. Adachi, K. Tanabe, O. Sakurai, H. Funakubo, K. Shinozaki, N. Mizutani. Preparation of NdBa2Cu3Oy thin films by mist ICP evaporation. Thin Solid Films 1998, 334:87-91.
    [87] N. Takahashi, A. Koukitu, H. Seki. Crystallinity and superconducting properties of YBa2Cu3O7?x thin films on NdGaO3 substrate prepared by Mist microwave-plasma CVD. Journal of Material Science Letter, 1988, 17(10):877-879.
    [88] H.B. Wang, G.Y. Meng, D.K. Peng. Aerosol and plasma assisted chemical vapor deposition process for multi-component oxide La0.8Sr0.2MnO3 thin film. Thin Solid Films 2000, 368(2):275-278.
    [89] E. Kuantama, D.W. Han, Y.M. Sung, J.E. Song, C.H. Han. Structure and thermal properties of transparent conductive nanoporous F:SnO_2 films. Thin Solid Films 2009, 517:4211-4214.
    [90] T. Fukano, T. Motohiro, Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition. Solar Energy Materials & Solar Cells 2004, 82:567-575.
    [91] J.R. Brown, P.W. Haycock, L.M. Smith, A.C. Jones, E.W. Williams. Response behaviour of tin oxide thin film gas sensors grown by MOCVD , Sensor Actuators B 2000, 63:109-114.
    [92] P.Y. Liu, J.F. Chen, W.D. Sun. Characterizations of SnO_2 and SnO_2:Sb thin films prepared by PECVD. Vacuum. 2004, 76(1):7-11.
    [93]王庆亚,马力,赵方海等.用准分子激光CVD制作SnO_2微透镜及其阵列的技术研究.激光技术. 1996, 20(3):164-167.
    [94]张锦文,武光明,宋世庚等.喷雾热分解法制备SnO_2透明导电薄膜.功能材料. 1999, 30(3):312-316.
    [95]王德苗,朱月秀.喷镀法制备SnO_2膜导电玻璃的研究.真空. 2002, 3:33-36.
    [96]荆忠国,樊刚,张德丰等.纳米SnO_2材料制备技术研究进展.南方金属. 2007, 158(5):5-13.
    [97] Y. Sawada, C. Kobayashi, S. Seki, H.Funakubo, Thin Solid Films 2002, 409:46-50,
    [98] S. Seki, T. Aoyama, Y. Sawada, M. Ogawa, M. Sano, Evolution of water vapor from indium-tin-oxide thin films fabricated by various deposition processes. Jounal of Thermal Analysis and Calorimetry. 2002, 69:1021-1029.
    [99] M. Okuya, S. Kaneko, K. Hirshima. Low temperature depositon of SnO_2 thin films as transparent electrodes by pyrolysis of tetra-n-butyltin(IV). Journal of the European Ceramic Society. 2001, 21:2099-2102.
    [100]L. Cattin, B.A. Reguig, A. Khelil, M. Morsli, K. Benchouk, J.C. Bernede, Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions. Applied Surface Science. 2008, 254:5814-5821.
    [101]B.A. Reguig, A. Khelil, L. Cattin, M. Morsli, J.C. Bernede, Properties of NiO thin films deposited by intermittent spray pyrolysis process. Applied Surface Science. 2007, 253:4330-4334.
    [102]M. Ichimura, K. Shibayama, K. Masui, Fabrication of SnO_2 thin films by a photochemical depositon method. Thin Solid Films 2004, 466:34-36.
    [103]K. Ravichandran, P. Philominathan. Investigations on microstructural and iptical properties of CdS films fabricated by a low-cost, simplified spray technique using perfume atomizer for solar cell applications. Solar Energy 2008, 82:1062-1066.
    [104]A. Smith, J.M. Laurent, D. Smith, J.P. Bonnet, R. R. Clemente, Relation between solution chemistry and morphology of SnO_2-based thin fimls deposited by a pyrosol process. Thin Solid Films 1995, 266:20-30.
    [105]M. Adnane, H. Cachet, G. Folcher, S. Hamzaoui. Beneficial effects of hydrogen peroxide on growth, structural and electrical properties of sprayed fluorine-doped SnO_2 films. Thin Solid Films. 2005, 492(1-2):240-247.
    [106]Y. Sawada, S. Seki, M. Sano, N. Miyabayshi, K. Ninomiya, A. Iwasawa, T. Tsugoshi, Evolution of water vapor from indium-tin-oxide transparent conducting films fabricated by dip coating process. Journal of Thermal Analysis and Calorimetry 2004, 77:751-757.
    [107]A. Gamard, B. Jousseaume, T. Toupance, G. Campet. New fluorinted stannic compounds as Precursors of F-doped SnO_2 materials prepared by the sol-gel route. Inorg. Chem. 1999, 38:4671-4679.
    [108]C.R. Sekhar, K.K. Malay, D.G. Dhruba, Tin dioxide based transparent semiconducting films deposited by the dip-coating technique. Surface and Coatings Technology 1998, 102:73-80.
    [109]L.K. Dua, A. De, S. Chakraborty, P.K. Biswas. Study of spin coated high antimony content Sn-Sb oxide films on silica glass. Materials Characterization 2008, 59:578-586.
    [110]D.U. Ju, J.H. Chung, D.J. You, S.G. Kim. Preparation of Sb/SnO_2 particles and their films utilizing the dip-coating method. Ind. Eng. Chem. Res. 1998, 37:1827-1835.
    [111]K. Chatterjee, S. Chatterjee, A. Banerjee, M. Raut, N.C. Pal, A.Sen, H.S. Maiti. The effect of palladium incorporation on methane sensitivity of antimony doped tin dioxide. Materials Chemistry and Physics. 2003, 81(1):33-38
    [112]冯先进.高质量SnO_2薄膜的制备及特性研究.山东大学博士论文. 2008:14-15.
    [113]周朕.硫化物纳米薄膜的超声喷雾热解制备和物性研究.东南大学硕士学位论文. 2006, 21-22, 12-14.
    [114]李春喜,王子镐.超声技术在纳米材料中的应用[J].化学通报. 2001, 5:268-270.
    [115]邵美苓,陈彩凤,陈志刚.超声雾化技术在无机盐合成中的应用.无机盐工业. 2008, 40(7):1-3.
    [116]X.Y. Zhao, Y. Zhang, H.C. Gu, W. Gao. Synthesis of rare earth ultrafine powders by spray pyrolysis(I)[J]. Chem. J. Chinese Universities. 1998, 19(4):507-510.
    [117]M. Farid. A new approach to modeling of single droplet drying. Chemical Engineering Science 2003, 58:2985-2993.
    [118]S. Nesic, The evaporation of single droplets-experimental and modeling. Drying 1989, 89:386-393.
    [119]A.E. Wijlhuizen, P.J. Kerkhof, S. Bruin, Theoretical study of the inactivation of phosphate during spray drying of skim milk. Chemical Engineering Science 1979, 34:651-660.
    [120]M.J. Stevenson, X.D. Chen, A. Fletcher, Modeling the drying of milk. Chemca 1998, 98, Queensland, Australia.
    [121]M.M. Farid, A. Kanawa, Thermal performance of a heat storage module using PCM’s with different melting temperatures-mathematical modeling. Transaction of the ASME, Journal of Solar Energy Engineering, 1989, 111:152-157.
    [122]M.M. Frarid, A.K. Mohammad, Effect of matural convection on the process of melting and solid cation of para4n wax. Chemical Engineering Communications, 1987, 57:297-316.
    [123]A. Nakaruk, D. Ragazzon, C.C. Sorrell. Anatase thin films by ultrasonic spray pyrolysis. Journal of Analytical and Applied Pyrolysis. 2010, 88(1):98-101.
    [124]刘鸿涛,陈红,刘润茹. SnO_2:F镀膜玻璃的光电特性仁[J].北华大学学报(自然科学版). 2005, 6(1):18-20.
    [125]G. Korotcenkov, B.K. Cho. Thin film SnO_2-based gas sensors: Film thickness influence. Sensors and Actuators B: Chemical. 2009, 142(1):321-330.
    [126]Leung Tsang, Jin Au Kong. Scattering of electromagnetic: Waves: Advanced Topics. John Wiley & Sons, Inc. 2002, 266-268.
    [127]M.W. Urban, Meyers, R.A. (Ed.). Infrared and raman spectroscopy and imaging in coatings analysis in Encyclopedia of Analytical Chemistry. Chichester, John Wiley & Sons Ltd. 2000, 2:1756-1773.
    [128]孔庆升.薄膜电子学.电子工业出版社,北京:1994, 35-40.
    [129]D. Jousse. Hall effect analysis in highly doped SnO_2 films. Journal of Non-Crystalline Solids. 1983, 59-60:637-640.
    [130]C.M. Lampkin. Aerodynamics of Nozzles Used in Spray Pyrolysis. Progress in Crystal Growth and Characterization of Materials. 1979, 406-416.
    [131]S. Nesic, J. Vodnik. Kinetics of droplet evaporation. Chemical Engineering Science, 1991, 46(2):527-537.
    [132]E. Elangovan, K. Ramamurthi. A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Applied Surface Science. 2005, 249:183-196.
    [133]E. Elangovan, M.P.Singh, K. Ramamurthi. Studies on structural and electrical properties of spray deposited SnO_2:F thin films as a function of film thickness, Materials Science and Engineering B 2004, 113:143-148.
    [134]L.N. Ignatieva, N.V. Surovtsev, V.G. Plotnichenko, V.V. Koltachev. The peculiarities of fluoride glass structure (Spectroscopic study). Journal of Non-Crystalline Solids. 2007, 353:1238-1242.
    [135]范志新,陈玖琳,孙以才.二氧化锡薄膜的最佳掺杂含量理论表达式.电子器件. 2001, 24:132-135.
    [136]T.J. Ghuang, C.R. Brundle, D.W.Rice. Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surface Science 1979, 59:413-429.
    [137]F.M. Amanullah, K.J. Pratap, V.H. Babu. Compositional analysis and depth profile studies on undoped and doped tin oxide films prepared by spray technique. Materials Science and Engineering B 1998, 52:93-98.
    [138]J.C. Timothy, L.Y. David, X.N. Li. Characterization of transparent conducting oxides. MRS Bulletin 2000:58-65.
    [139]张聚宝,翁文剑,杜丕一等.喷雾热分解法玻璃镀膜.玻璃与搪瓷.2002, 30(2):46-50.
    [140]E. Elangovan, K. Ramamurthi. Studies on micro-structural and electrical properties of spray-deposited fluorine-doped tin oxide thin films from low-cost precursor. Thin Solid Films 2005, 476:231-236.
    [141]彭文世,刘高魁.矿物红外光谱图集.科学出版社,1982:115.
    [142]翁瑞裕,曹君曼.外线光谱分析法(George:Analytical Chemistry of Learing).高立出版社,2001:220.
    [143]R.R. Kasar, N.G. Deshpande, Y.G. Gudage, J.C. Vyas, Ramphal Sharma. Studies and correlation among the structural, optical and electrical parametersof spray-deposited tin oxide (SnO_2) thin films with different substrate temperatures. Physica B: Condensed Matter. 2008, 403:3724-3729.
    [144]J.J.Ph Elich, E.C. Boslooper, H. Haitjema. Electrical properties of sprayed tin oxide layers. Thin Solid Films (ELECTRONICS AND OPTICS) 1989, 177:17-33.
    [145]B.Thangaraju. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO_2 thin films from SnCl2 precursor, Thin Solid Films 2002, 402:71-78.
    [146]周元俊,谢自力,张荣,刘斌,李弋,张曾,傅德颐,修向前,韩平,顾书林,郑有.薄膜材料研究中的XRD技术.显微、测量、微细加工技术与设备. 2009, 46(2):108-113.
    [147]P.K. Chakraborty, G.C. Datta, K.P. Ghatak. The simple analysis of the Burstein-Moss shift in degenerate n-type semiconductors. Physica B: Condensed Matter. 2003, 339(4):198-203.
    [148]A.A.Yadav, E.U.Masumdar, A.V.Moholkar, K.Y.Rajpure, C.H.Bhosale. Effect of quantity of spraying solution on the properties of spray deposited fluorine doped tin oxide thin films. Physica B: Condensed Matter. 2009, 404:1874-1877.
    [149]I. Hamberg, A. Hjorberg, C.G. Granqvist. High quality transparent heat reflectors of reactively evaporated indium tin oxide. Applied Physics Letters. 1982, 40:362-364.
    [150]E. Elangovan, K. Ramamurthi. Studies on optical properties of polycrystalline SnO_2:Sb thin filmsprepared using SnCl2 precursor. Crystal Research Technology 2003, 38(9):779-784.
    [151]王颖. SnO_2:F薄膜第一性原理计算及Low-E玻璃的性能研究.燕山大学工学硕士论文. 2007:25-30.
    [152]C. Schaefer, G. Brauer, J. Szczyrbowski, Low emissivity coatings on architectural glass, Surface and Coatings Technology. 1997, 93:37-45
    [153]Y. Nakanishi, H. Ohshima, Y. Suzuki, Y. Fukuda, G. Shimaoka. The structural changes in the oxide films of tin caused by oxidation. Vacuum 1990, 41:1157-1159.
    [154]A. Smith, J.M. Laurent, D.S. Smith, J.P. Bonnet, R.R. Clemente. Relation between solution chemistry and morphology of SnO_2-based thin films deposited by a pyrosol process. Thin Solid Films 1995, 266:20-27.
    [155]李岗,王楠林.红外反射光谱的原理和方法.实验技术. 2006, 5(10):873-877.
    [156]G. Gorodillo, L.C. Moreno, W. de la Cruz. P. Teheran. Preparation and characterization of SnO_2 thin films deposited by spray pyrolysis from SnCl2 and SnCl4 precursors. Thin Solid Films 1994, 252:61-66.
    [156]S.K. Ghandhi, R. Siviy, J.M. Borrego. The growth of tin oxide films at room temperature. Applied Physics Letters 1979, 34:833-835.
    [157]K.Omura, P.Velucham, M.Tsuji, T.Nihio, M.Murozono. A Pyrosol Technique to Deposit Highly Transparent, Low-Resistance SnO_2:F Thin Films from Dimethyltin Dichloride, Journal of Electrochemistry Society. 1999, 146: 2113-2116.
    [158]E. Elangovan, S.A. Shivashankar, K. Ramamurthi. Studies on structural and electrical properties of sprayed SnO_2:Sb films. Journal of Crystal Growth. 2005, 276(1-2):215-221.
    [159]K. Ravichandran, P. Philominathan. Fabrication of antimony doped tin oxide (ATO) films by an inexpensive, simplified spray technique using perfume atomizer. Materials Letters. 2008, 62(17-18):2980-2983.
    [160]史金涛.溶胶凝胶法锑掺杂SnO_2薄膜的制备、性能与新型节能镀膜玻璃的研究.浙江大学硕士学位论文. 2000:55.
    [161]李青山,张金朝,宋鹂.热处理温度对Sb:SnO_2导电粉末结构和性能的影响.玻璃与搪瓷. 2001, 29:11-15.
    [162]薄占满.掺Sb二氧化锡半导体导电机理的实验探讨.无机材料学报. 1990, 5: 324-330.
    [163]范志新,陈玖琳,孙以才.二氧化锡薄膜的最佳掺杂含量理论表达式.电子器件. 2004, 24:132-135.
    [164]M.M. Douglas. Sol-gel derived, air-baked indium and tin oxide films. Thin Solid Films. 1991, 204:25-32.
    [164]张聚宝,翁文剑,村丕一,朝高荣,沈鸽.喷雾热解法玻璃镀膜.玻璃与搪瓷. 2002, 30:46-51.
    [165]K.马斯托思.喷雾干燥手册.中国建筑工业出版社. 1983:219-230.
    [166]C.Terrier, J.P.Chatelon, J.A.Roger. Electrical and optical properties of Sn:SnO_2-based thin films obtained by the sol-gel method. Thin Solid Films. 2001, 263:37-41.
    [167]A.Smith. Pyrosol deposition of ZnO and SnO_2 based thin films: the interplay between solution chemistry, growth rate and film morphology. Thin Solid Films 2000, 376:47-55.
    [168]A. Smith, J.M. Laurent. Relation between solution chemistry and morphology of SnO_2-based thin films depositied by pyrosol process. Thin Solid Films 1995, 266: 20-30.
    [169]J. Ma, X.T. Hao, S.Huang, J. Huang, Y.G. Yang, H.L. Ma. Comparison of the electrical and optical properties for SnO_2:Sb films deposited on polyimide and glass substrates. Applied Surface Science. 2003, 214(1-4):208-213.
    [170]周经培.影响溶胶凝胶镀膜玻璃产品质量的几种因素[J].玻璃. 1995, 22(3): 35-39.
    [171]P.Y. Liu, J.F. Chen, W.D. Sun. Characterizations of SnO_2 and SnO_2:Sb thin films prepared by PECVD. Vacuum. 2004, 76(1):7-11.
    [172]B. Zhang, Y. Tian, J.X. Zhang, W. Cai. The FTIR studies of SnO_2:Sb(ATO) films deposited by spray pyrolysis. Materials Letters. 2011, 65(8):1204-1206.
    [173]S.Y. Lee, B.O. Park. Structural, electrical and optical characteristics of SnO_2:Sb thin films by ultrasonic spray pyrolysis. Thin Solid Films. 2006, 510(1-2):154-158
    [174]X.T. Hao, J. Ma, D.H. Zhang, Y.G. Yang, X.G. Xu, F. Chen, H.L. Ma. Electrical and optical properties of SnO_2:Sb films prepared on polyimide substrate by r.f. bias sputtering. Applied Surface Science. 2002, 189(1-2):157-161.
    [175]J. Lee. Effects of oxygen concentration on the properties of sputtered SnO_2:Sb films deposited at low temperature. Thin Solid Films. 516(7):1386-1390.
    [176]S. Kulaszewicz, W. Jarmoc, I. Lasocka, Z. Lasocki, K. Turowska. Studies of the hall effect in thin SnO_2:Sb and In2O3:Sn films obtained by the hydrolysis method. Thin Solid Films. 1984, 117(3):157-162.
    [177]E. Elangovan, K. Ramamurthi. A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Applied Surface Science. 2005, 249 (1-4):183-196.
    [178]B. Houng. Tin doped indium oxide transparent conducting thin films containing silver nanoparticles by sol-gel technique. Applied Physics Letters. 2005, 87:251922.
    [179]林光明,冯卫国,纳米SnO_2的氧缺陷研究—Mossbauer谱与PAT寿命谱.汕头大学学报(自然科学版). 1997, 12(1):44-48.
    [180]赵岚. Sb掺杂SnO_2薄膜的溶胶凝胶法制备及性能研究.华中科技大学硕士学位论文. 2004:34.
    [181]E. Elangovan, K. Ramamurthi. A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Applied Surface Science. 2005, 249(1-4):183-196.
    [182]A. Pradeep, G. Chandrasekaran. FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4. Materials Letters. 2006, 60(3):371-374.
    [183]R.J. Martin-Palma, L. Vázquez, J.M. Martinez-Duart, Malats-Riera. Silver-based low-emissivity coatings for architectural windows: optical and structural properties. Solar Energy Materials and Solar Cells. 1998, 53(1-2):55-66.
    [184]A. Avila G., E. Barrera C., L. Huerta A., S. Muhl. Cobalt oxide films for solar selective surfaces, obtained by spray pyrolisis. Solar Energy Materials and Solar Cells. 2004, 82(1-2):269-278.
    [185]N.Y. Mostafa, E.A. Kishar, S.A. Abo-El-Enein. FTIR study and cation exchange capacity of Fe3+ and Mg2+ substituted calcium silicate hydrates. Journal of Alloys and Compounds. 2009, 473(1-2):538-542.
    [186]Z. Mitic, G.S. Nikolic, M. Cakic, P. Premovic, L.J.. Ilic. FTIR spectroscopic characterization of Cu(II) coordination compounds with exopolysaccharide pullulan and its derivatives. Journal of Molecular Structure. 2009, 924-926:264-273.
    [187]T. Van Tran, S. Turrell, M. Eddafi, B. Capoen, M. Bouazaoui, P. Roussel, S. Berneschi, G. Righini, M. Ferrari, S.N.B. Bhaktha, O. Cristini, C. Kinowski. Investigations of the effects of the growth of SnO_2 nanoparticles on the structural properties of glass–ceramic planar waveguides using Raman and FTIR spectroscopies. Journal of Molecular Structure. 2010, 976(1-3):314-319.
    [188]G. Korotcenkov, V. Macsanov, V. Brinzari, V. Tolstoy, J. Schwank, A. Cornet, J. Morante. Influence of Cu-, Fe-, Co-, and Mn-oxide nanoclusters on sensing behavior of SnO_2 films. Thin Solid Films. 2004, 467(1-2):209-214.
    [189]M.M. Bagheri-Mohagheghi, M. Shokooh-Saremi. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO_2 transparent semiconducting films prepared by spray pyrolysis technique. Physica B: Condensed Matter. 2010, 405(19):4205-4210.
    [190]B. Zhang, Y. Tian, J.X. Zhang, W. Cai. The structural and electrical studies on the Boron-doped SnO_2 films deposited by spray pyrolysis. Vacuum. 2011, In Press.
    [191]D.P. Joseph, M. Saravanan, B. Muthuraaman, P. Renugambal, S. Sambasivam, S. P. Raja, P. Maruthamuthu, C. Venkateswaran. Spray deposition andcharacterization of nanostructured Li doped NiO thin films for application in dye-sensitized solar cells. Nanotechnology. 2008, 19:485707.
    [192]D. Paul Joseph, P. Renugambal, M. Saravanan, S. Philip Raja, C. Venkateswaran. Effect of Li doping on the structural, optical and electrical properties of spray deposited SnO_2 thin films. Thin Solid Films 2009, 517:6129-6136.
    [193]G. Sberveglieri, G. Faglia, S. Groppelli, P. Nelli, C. Perego. Oxygen gas sensing properties of undoped and Li-doped SnO_2 thin films. Sensors and Actuators B: Chemical. 1993, 13(1-3):117-120.
    [194]R.R. Kasar, N.G. Deshpande, Y.G. Gudage, J.C. Vyas, Ramphal Sharma, Studies and correlation among the structural, optical and electrical parameters of spray-deposited tin oxide (SnO_2) thin films with different substrate temperatures, Physica B: Condensed Matter, 2008, 403:3724-3729.
    [195] A.A.Yadav, E.U.Masumdar, A.V.Moholkar, K.Y.Rajpure, C.H.Bhosale, Effect of quantity of spraying solution on the properties of spray deposited fluorine doped tin oxide thin films, Physica B: Condensed Matter, 2009, 404:1874-1877.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700