长牡蛎早期胚胎发育中生化成分和能量变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用生物化学方法研究了长牡蛎(Crassostrea gigas)早期胚胎发育过程中干重、主要生化物质(糖类、脂类及脂肪酸、蛋白质及氨基酸的组成)以及能量的变化情况,分别获取受精后0h,6h,12h,24h的胚胎或幼虫进行检测和分析,结果如下:(1)在长牡蛎早期胚胎发育中,受精后0h(受精卵),6h(囊胚),12h(担轮幼虫),24h(D形幼虫)干重分别为25.14±0.44ng,25.35±0.83ng,25.26±1.00ng,51.01±4.22ng,碳水化合物含量(%干重)经历先增高后降低的过程,由受精卵的5.25±0.50%升至6h时期最高的7.39±0.49%,到12h降为6.09±0.30%,后逐渐降至24h的3.17±0.20%。(2)脂类含量(%干重)逐渐降低,前三个时期脂类含量变化幅度较小,到24h时,脂类占干重含量明显降低(p<0.05)。在受精卵中共检测到27种脂肪酸,豆蔻酸(14:0)、软脂酸(16:0)、硬脂酸(18:0),EPA(20:5ω3)和DHA(22:6ω3)占总脂肪酸比例在各时期均较高。随着发育进行,饱和脂肪酸和单不饱和脂肪酸占总脂肪酸的比例不断地增大,而多不饱和脂肪酸比例逐渐下降,ω3系列和ω6系列脂肪酸比例有不同程度的下降。(3)四个时期蛋白质含量占干重分别为55.94±0.82%,55.12±0.47%,54.86±0.37%,26.02+3.68%,总体上呈降低趋势。共检测到16种氨基酸,包括7种必需氨基酸,7种非必需氨基酸和2种半必需氨基酸,总氨基酸含量随着发育进行不断降低。(4)单个受精卵发育到24h时消耗的能量为63.50μj,脂类和蛋白质分别供应了79%和21%,脂类是长牡蛎早期胚胎发育中的主要供能物质。
The composition and content of carbohydrate, lipid and fatty acids, protein and amino acids, energy changes during the early embryonic development of the Pacific oyster (Crassostrea gigas) were measured and analyzed by biochemical methods. Embryos or larvae sampled at 0h, 6h, 12h, 24h post-fertilization (PF) were taken and measured. The results were as follows: (1) during the early embryonic development of the Pacific oyster (C. gigas), the dry weights were 25.14±0.44ng, 25.35±0.83ng, 25.26±1.00ng, 51.01±4.22ng at the four different times post-fertilization; the contents of carbohydrate(% dry weight)firstly increased from 5.25±0.50% at 0h post-fertilization to the highest 7.39±0.49% at 6h post-fertilization, and then decreased to 6.09±0.30% and 3.17±0.20% at 12h and 24h post-fertilization respectively. (2) the contents of lipid (% dry weight) decreased gradually with the embryonic development, yet the decrease was obvious only at 24h post-fertilization (p<0.05); there were 27 kinds of fatty acids detected in the zygotes (0h post-fertilization) and the contents of myristic acid (14:0), palmitic acid (16:0), stearic acid (18:0), EPA (20:5ω3)and DHA(22:6ω3)were relatively high during 0-24 h PF; the proportion of the saturated fatty acids and also the monounsaturated fatty acids to the total fatty acids increased with the embryonic development while the poly-unsaturated fatty acids decreased gradually. (3) the contents of protein (% dry weight) which were 55.94±0.82%, 55.12±0.47%, 54.86±0.37%, 26.02±3.68% during the four developmental periods respectively, had a downtrend; 16 kinds of amino acids were detected, including 7 kinds of the essential amino acids, 7 kinds of the non-essential amino acids and 2 kinds of the semi-essential amino acids; the total amino acids decreased with development. (4) energy consumed in each embryo from 0h PF to 24h PF was 63.50μj, derived 79% and 21% from lipid and protein respectively; the lipid was the main energy source in the early embryonic development.
引文
1.蔡难儿, 1963.贻贝(Mytilus edulis Linnaeus)生活史的研究《.海洋科学集刊》4, 81-102.
    2.陈来钊,王子臣, 1994.温度对海湾扇贝与虾夷扇贝及其杂交受精,胚胎和早期幼体发育的影响.大连水产学院学报9, 1-9.
    3.陈石林,吴旭干,成永旭,王春琳,朱冬发,周波,王金峰,龚良军, 2007.三疣梭子蟹胚胎发育过程中主要生化组成的变化及其能量来源.中国水产科学14, 229-235.
    4.柯才焕,李少菁,李复雪,郑重, 1996.两种东风螺幼虫附着和变态的化学诱导研究.海洋学报(中文版) 4.
    5.黄晓春,刘慧慧,苏秀榕,刘保忠,李太武, 2005. 7种经济贝类生殖腺脂肪酸含量的研究.水产科学24, 20-22
    6.兰国宝,聂振平,赖彬, 1999.温度对泥蚶胚胎发育,幼体生长发育及变态的影响.广西科学6, 307-310.
    7.梁玉波,张福绥, 2008.温度,盐度对栉孔扇贝(Chlamys farreri)胚胎和幼虫的影响.海洋与湖沼39, 334-340.
    8.李世英,鲁男,蒋双,毕远溥,王乘东, 1999.温度,盐度对滑顶薄壳鸟蛤面盘幼虫存活和生长的影响.大连水产学院学报14, 66-69.
    9.刘海涛,董占武, 1992.盐度对大连湾牡蛎胚胎发育及幼虫生长的影响.水产学报16, 32-39.
    10.卢素芳,赵娜,刘华斌,何瑞国, 2008.黄颡鱼早期发育阶段受精卵和鱼体脂肪酸组成变化.水产学报32, 711-716.
    11.罗文,赵云龙,曾错,崔丽丽,李嘉尧,杨受保, 2007.红螯螯虾胚胎发育过程中的生化成分变化.水产学报31, 303-310.
    12.马爱军,孙飚, 2000.真鲷胚胎及胚后发育各阶段氨基酸组成的研究.中国水产科学7, 113-115.
    13.孙虎山, 1997.温度对紫彩血蛤胚胎及幼虫发育的影响.海洋湖沼通报, 54-58.
    14.吴进锋,陈素文,陈利雄,张汉华,郭奕惠, 2005.温度与盐度对方斑东风螺胚胎发育及幼虫生长的影响.中国水产科学12, 652-656.
    15.王春琳,尹飞,宋微微, 2007.黑斑口虾姑胚胎和幼体不同发育时期脂类及脂肪酸组成分析. journal of Zhejiang University 34.
    16.王丹丽,徐善良,尤仲杰,林少珍, 2005.温度和盐度对青蛤孵化及幼虫,稚贝存活与生长变态的影响.水生生物学报29, 495-501.
    17.王桂忠,汤鸿, 1995.锯缘青蟹胚胎发育过程主要生化组成.台湾海峡14, 280-283.
    18.杨章武,郑雅友,李正良,郑养福, 2000.紫海胆浮游幼虫人工诱导变态试验.海洋科学24, 15-16.
    19.尤仲杰,边平江, 2001.海水温度和盐度对泥蚶幼虫和稚贝生长及存活的影响.海洋学报23, 108-113.
    20.于瑞海,李琪,王照萍,孔令锋, 2008.我国北方太平洋牡蛎育苗及养殖现状.科学养鱼, 3-5.
    21.张涛, 2000.海洋无脊椎动物幼虫附着变态研究进展I.影响因子.海洋科学24, 25-28.
    22. Arkett, S., 1987. Ciliary arrest controlled by identified central neurons in a urochordate (Ascidiacea). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 161, 837-847.
    23. Bandel, K., 1982. Morphologie und Bildung der frühontogenetischen Geh?use bei conchiferen Mollusken. Facies 7, 1-197.
    24. Barlow, L., Truman, J., 1992. Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abolone. Haliotis rufescens, 829-844.
    25. Barnes, H., 2009. Studies in the biochemistry of cirripede eggs. I. Changes in the general biochemical composition during development of Balanus balanoides and B. balanus. Journal of the Marine Biological Association of the UK 45, 321-339.
    26. Baxter, G., Morse, D., 1987. G protein and diacylglycerol regulate metamorphosis of planktonic molluscan larvae. Proceedings of the National Academy of Sciences of the United States of America 84, 1867.
    27. Beninger, P., Dwiono, S., Pennec, M., 1994. Early development of the gill and implications for feeding in Pecten maximus (Bivalvia: Pectinidae). Marine Biology 119, 405-412.
    28. Beukema, J., Bruin, W., 1979. Calorific values of the soft parts of the tellinid bivalve Macoma balthica (L.) as determined by two methods. Journal of Experimental Marine Biology and Ecology 37, 19-30.
    29. Bonar, D., 1978. Ultrastructure of a cephalic sensory organ in larvae of the gastropod Phestilla sibogae (Aeolidacea, Nudibranchia). Tissue and Cell 10, 153-165.
    30. Bonar, D., Coon, S., Walch, M., Weiner, R., Fitt, W., 1990. Control of oyster settlement and metamorphosis by endogenous and exogenous chemical cues. Bulletin of Marine Science 46, 484-498.
    31. Caers, M., Coutteau, P., Cure, K., Morales, V., Gajardo, G., Sorgeloos, P., 1999. The Chilean scallop Argopecten purpuratus (Lamarck, 1819): II. Manipulation of the fatty acid composition and lipid content of the eggs via lipid supplementation of the broodstock diet. Comparative Biochemistry and Physiology-B-Biochemistry and Molecular Biology 123, 97-104.
    32. Caers, M., Utting, S., Coutteau, P., Millican, P., Sorgeloos, P., 2002. Impact of the supplementation of a docosahexaenoic acid-rich emulsion on the reproductive output of oyster broodstock, Crassostrea gigas. Marine Biology 140, 1157-1166.
    33. Coon, S., Fitt, W., Bonar, D., 1990. Competence and delay of metamorphosis in the Pacific oysterCrassostrea gigas. Marine Biology 106, 379-387.
    34. Crofts, D., 1937. The development of Haliotis tuberculata, with special reference to organogenesis during torsion. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 228, 219-268.
    35. Croll, R., Dickinson, A., 2004. Form and function of the larval nervous system in molluscs. Invertebr Reprod Dev 46, 173-187.
    36. Croll, R., Jackson, D., Voronezhskaya, E., 1997. Catecholamine-containing cells in larval and postlarval bivalve molluscs. The Biological Bulletin 193, 116.
    37. Davenport, J., Gruffydd, D., Beaumont, A., 2009. An apparatus to supply water of fluctuating salinity and its use in a study of the salinity tolerances of larvae of the scallop Pecten maximus L. Journal of the Marine Biological Association of the UK 55, 391-409.
    38. De la Roche, J., Mar¨an, B., Freites, L., V¨|lez, A., 2002. Embryonic development and larval and post-larval growth of the tropical scallop Nodipecten (= Lyropecten) nodosus (L. 1758)(Mollusca: Pectinidae). Aquaculture Research 33, 819-827.
    39. Degnan, B., Degnan, S., Morse, D., 1997. Muscle-specific regulation of tropomyosin gene expression and myofibrillogenesis differs among muscle systems examined at metamorphosis of the gastropod Haliotis rufescens. Development Genes and Evolution 206, 464-471.
    40. Dickinson, A., Croll, R., 2003. Development of the larval nervous system of the gastropod Ilyanassa obsoleta. Journal of Comparative Neurology 466, 197-218.
    41. Dickinson, A., Nason, J., Croll, R., 1999. Histochemical localization of FMRFamide, serotonin and catecholamines in embryonic Crepidula fornicata (Gastropoda, Prosobranchia). Zoomorphology 119, 49-62.
    42. Farias, A., Uriarte, I., Castilla, J., 1998. A biochemical study of the larval and postlarval stages of the Chilean scallop Argopecten purpuratus. Aquaculture 166, 37-47.
    43. Flyachinskaya, L., 2000. Localization of serotonin and FMRFamide in the bivalve mollusc Mytilis edulis at early stages of its development. Journal of Evolutionary Biochemistry and Physiology 36, 66-70.
    44. Friedrich, S., Wanninger, A., Br¨1ckner, M., Haszprunar, G., 2002. Neurogenesis in the mossy chiton, Mopalia muscosa (Gould) (Polyplacophora): evidence against molluscan metamerism. Journal of Morphology 253, 109-117.
    45. GABBOTT, P., 1988. Developmental and seasonal metabolic activities in marine molluscs. The mollusca: Form and function, 165.
    46. Gallager, S., Mann, R., 1986. Growth and survival of larvae of Mercenaria mercenaria (L.) and Crassostrea virginica (Gmelin) relative to broodstock conditioning and lipid content of eggs. Aquaculture 56, 105-121.
    47. Giusti, A., Hinman, V., Degnan, S., Degnan, B., Morse, D., 2000. Expression of a Scr/Hox5 gene in the larval central nervous system of the gastropod Haliotis, a non-segmented spiralian lophotrochozoan. Evolution &Development 2, 294-302.
    48. Gouda, R., Kenchington, E., Hatcher, B., Vercaemer, B., 2006. Effects of locally-isolated micro-phytoplankton diets on growth and survival of sea scallop (Placopecten magellanicus) larvae. Aquaculture 259, 169-180.
    49. Heras, H., Garin, C., Pollero, R., 1998. Biochemical composition and energy sources during embryo development and in early juveniles of the snail Pomacea canaliculata (Mollusca: Gastropoda). Journal of Experimental Zoology Part A: Comparative Experimental Biology 280, 375-383.
    50. Holland, D., 1978. Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. Biochemical and biophysical perspectives in marine biology 4, 85-123.
    51. Holland, D., Spencer, B., 1973. Biochemical changes in fed and starved oysters, Ostrea edulis L. during larval development, metamorphosis and early spat growth. Journal of the Marine Biological Association of the UK 53, 287-298.
    52. Kempf, S., Page, L., 2005. Anti-tubulin labeling reveals ampullary neuron ciliary bundles in opisthobranch larvae and a new putative neural structure associated with the apical ganglion. The Biological Bulletin 208, 169.
    53. Kreiling, J., Jessen-Eller, K., Miller, J., Seegal, R., Reinisch, C., 2001. Early development of the serotonergic and dopaminergic nervous system in Spisula solidissima (surf clam) larvae. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology 130, 341-351.
    54. Lane, A., 1989. The effect of a microencapsulated fatty acid diet on larval production in the European flat oyster Ostrea edulis L.
    55. Lelong, C., Mathieu, M., Favrel, P., 2000. Structure and expression of mGDF, a new member of the transforming growth factor-b superfamily in the bivalve mollusc Crassostrea gigas. European Journal of Biochemistry 267, 3986-3993.
    56. Lin, M., Leise, E., 1998. Gangliogenesis in the prosobranch gastropod Ilyanassa obsoleta. The Journal of Comparative Neurology 374, 180-193.
    57. Marois, R., Carew, T., 1997. Fine structure of the apical ganglion and its serotonergic cells in the larva of Aplysia californica. The Biological Bulletin 192, 388.
    58. Millican, P., Helm, M., 1994. Effects of nutrition on larvae production in the European flat oyster, Ostrea edulis. Aquaculture 123, 83-94.
    59. Miyamoto, H., Miyoshi, F., Kohno, J., 2005. The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata. Zoological science 22, 311-315.
    60. Moran, A., Manahan, D., 2004. Physiological recovery from prolonged‘starvation’in larvae of the Pacific oyster Crassostrea gigas. Journal of Experimental Marine Biology and Ecology 306, 17-36.
    61. Moueza, M., Gros, O., Frenkiel, L., 1999. Embryonic, larval and postlarval development of the tropical clam, Anomalocardia brasiliana (Bivalvia, Veneridae). Journal of Molluscan Studies 65, 73.
    62. Moueza, M., Gros, O., Frenkiel, L., 2006. Embryonic development and shell differentiation in Chione cancellata (Bivalvia, Veneridae): an ultrastructural analysis. Invertebrate Biology 125, 21-33.
    63. Needham, J., 1943. Biochemistry and morphogenesis. The American Journal of the Medical Sciences 205, 883.
    64. Nevejan, N., Courtens, V., Hauva, M., Gajardo, G., Sorgeloos, P., 2003a. Effect of lipid emulsions on production and fatty acid composition of eggs of the scallop Argopecten purpuratus. Marine Biology 143, 327-338.
    65. Nevejan, N., Saez, I., Gajardo, G., Sorgeloos, P., 2003b. Energy vs. essential fatty acids: what do scallop larvae (Argopecten purpuratus) need most? Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 134, 599-613.
    66. Page, L., 1997. Larval shell muscles in the abalone Haliotis kamtschatkana. The Biological Bulletin 193, 30.
    67. Page, L., Parries, S., 2000. Comparative study of the apical ganglion in planktotrophic caenogastropod larvae: ultrastructure and immunoreactivity to serotonin. The Journal of Comparative Neurology 418, 383-401.
    68. Pandian, T., 1967. Changes in chemical composition and caloric content of developing eggs of the shrimp Crangon crangon. Helgoland Marine Research 16, 216-224.
    69. Pandian, T., 1969. Yolk utilization in the gastropod Crepidula fornicata. Marine Biology 3, 117-121.
    70. Paul, J., 1980. Salinity-temperature relationships in the queen scallop Chalamys opercularis. Marine Biology 56, 295-300.
    71. Pechenik, J., 1979. Role of encapsulation in invertebrate life histories. American Naturalist 114, 859-870.
    72. Pechenik, J., 1982. Ability of some gastropod egg capsules to protect against low-salinity stress. Journal of Experimental Marine Biology and Ecology 63, 195-208.
    73. Pechenik, J., Marsden, I., Pechenik, O., 2003. Effects of temperature, salinity, and air exposure on development of the estuarine pulmonate gastropod Amphibola crenata. Journal of Experimental Marine Biology and Ecology 292, 159-176.
    74. Pernet, F., Bricelj, V., Parrish, C., 2005. Effect of varying dietary levels ofω6 polyunsaturated fatty acids during the early ontogeny of the sea scallop, Placopecten magellanicus. Journal of Experimental Marine Biology and Ecology 327, 115-133.
    75. Pernet, F., Tremblay, R., 2004. Effect of varying levels of dietary essential fatty acid during early ontogeny of the sea scallop Placopecten magellanicus. Journal of Experimental Marine Biology and Ecology 310, 73-86.
    76. Plummer, J., 2002. The bivalve larval nervous system. MSc. Thesis. Department of Physiology and Biophysics. Dalhousie University.
    77. Ponis, E., Probert, I., V¨|ron, B., Le Coz, J., Mathieu, M., Robert, R., 2006. Nutritional value of six Pavlovophyceae for Crassostrea gigas and Pecten maximus larvae. Aquaculture 254, 544-553.
    78. Raineri, M., 1995. Is a mollusc an evolved bent metatrochophore? A histochemical investigation of neurogenesis in Mytilus (Mollusca: Bivalvia). JOURNAL-MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM 75, 571-571.
    79. Rupp, G., Parsons, G., 2004. Effects of salinity and temperature on the survival and byssal attachment of the lion's paw scallop Nodipecten nodosus at its southern distribution limit. Journal of Experimental Marine Biology and Ecology 309, 173-198. 45
    80. Silberfeld, T., Gros, O., 2006. Embryonic development of the tropical bivalve Tivela mactroides (Born, 1778)(Veneridae: subfamily Meretricinae): a SEM study. Cah. Biol. Mar 47, 243-251.
    81. Smith, F., 1935. The development of Patella vulgata. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 225, 95-125.
    82. Smith, S., 1967. The development of Retusa obtusa (Montagu)(Gastropoda, Opisthobranchia). Canadian Journal of Zoology 45, 737-764.
    83. Strathmann, R., 1985. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annual Review of Ecology and Systematics 16, 339-361.
    84. Tang, B., Liu, B., Wang, G., Zhang, T., Xiang, J., 2006. Effects of various algal diets and starvation on larval growth and survival of Meretrix meretrix. Aquaculture 254, 526-533.
    85. Tettelbach, S., Rhodes, E., 1981. Combined effects of temperature and salinity on embryos and larvae of the northern bay scallop Argopecten irradians irradians. Marine Biology 63, 249-256.
    86. Utting, S., Doyou, J., 1992. The increased utilization of egg lipid reserves following induction of triploidy in the Manila clam (Tapes philippinarum). Aquaculture 103, 17-28.
    87. Utting, S., Millican, P., 1997. Techniques for the hatchery conditioning of bivalve broodstocks and the subsequent effect on egg quality and larval viability. Aquaculture 155, 45-54.
    88. Voronezhskaya, E., Nezlin, L., Odintsova, N., Plummer, J., Croll, R., 2008. Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia). Zoomorphology 127, 97-110.
    89. Voronezhskaya, E., Tyurin, S., Nezlin, L., 2002. Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). The Journal of Comparative Neurology 444, 25-38.
    90. WANG, G., LIU, B., TANG, B., ZHANG, T., XIANG, J., 2006. Pharmacological and immunocytochemical investigation of the role of catecholamines on larval metamorphosis by |?-adrenergic-like receptor in the bivalve Meretrix meretrix. Aquaculture 258, 611-618.
    91. Wanninger, A., Haszprunar, G., 2003. The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology 122, 77-85.
    92. Wanninger, A., Ruthensteiner, B., Lobenwein, S., Salvenmoser, W., Dictus, W., Haszprunar, G., 1999. Development of the musculature in the limpet Patella (Mollusca, Patellogastropoda). Development Genes and Evolution 209, 226-238.
    93. Whyte, J., Bourne, N., Ginther, N., 1990. Biochemical and energy changes during embryogenesis in the rock scallop Crassadoma gigantea. Marine Biology 106, 239-244.
    94. Whyte, J., Bourne, N., Ginther, N., 1991. Depletion of nutrient reserves during embryogenesis in the scallop Patinopecten yessoensis (Jay). Journal of Experimental Marine Biology and Ecology 149, 67-79.
    95. Whyte, J., Bourne, N., Hodgson, C., 1987. Assessment of biochemical composition and energy reserves in larvae of the scallop Patinopecten yessoensis. Journal of Experimental Marine Biology and Ecology 113, 113-124.
    96. Zandee, D., Kluytmans, J., Zurburg, W., Pieters, H., 1980. Seasonal variations in biochemical composition of Mytilus edulis with reference to energy metabolism and gametogenesis. Netherlands Journal of Sea Research 14, 1-29.
    97. Zhang, C., Xie, L., Huang, J., Chen, L., Zhang, R., 2006. A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata). Biochemical and biophysical research communications 342, 632-639.
    98. Zhang, Y., Meng, Q., Jiang, T., Wang, H., Xie, L., Zhang, R., 2003. A novel ferritin subunit involved in shell formation from the pearl oyster (Pinctada fucata). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 135, 43-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700