人参皂甙Rg1对百草枯诱导的PC12细胞损伤的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease, PD)是常见的老年神经系统退行性疾病,以中脑黑质致密带多巴胺(Dopamine, DA)能神经元变性、丢失及支配纹状体神经的DA水平的下降为主要特征。其致病因素及潜在发病机制还不明确,内源性和外源性神经毒素的损害部分说明这一发病过程。多项证据表明,环境中的杀虫剂、金属、碳氢化合物等被疑为参入PD发病的起始阶段。
     百草枯(1,1,-dimethyl-4,4,-bypiridinium, Parquat, PQ)是一种广泛使用的非选择性的除草剂,它与已知神经毒物1-甲基-4-苯基-1,2,3,6-四氢吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPTP)的活性代谢产物1-甲基-4-苯基-吡啶(1-methyl-4-pheny1-pyridium, MPP+)的化学结构极其相似,这种结构的相似性预示了它可能是PD的病原学潜在因素之一。大量流行病学研究显示长期接触PQ明显增加了PD的发病危险。研究发现PQ选择性的破坏实验动物的黑质纹状体DA能神经元。
     人参皂甙是来源于人参根部的药理活性成分。研究发现:通过提高胆碱能神经活力,人参皂甙Rg1和Rb1均可以逆转东莨菪碱诱导的健忘症,发挥神经营养和神经保护作用。其中人参皂甙Rg1还具有提高免疫力,延缓衰老等功效,其神经保护作用日益受到人们的关注。
     PC12细胞来源于大鼠肾上腺嗜铬瘤细胞,具有与DA能神经元的合成物、转运系统的类似特征。而且,PC12细胞合成的递质、表达的受体接近中脑DA能神经元,是DA能神经元体外研究理想模型。然而,人参皂甙Rg1对PQ诱导的DA能神经元的损伤是否具有保护作用,目前尚未见报道。在我们的实验中,我们利用PQ诱导的PC12细胞的损伤作为PD的体外模型来研究人参皂甙Rg1可能的神经保护作用及相关机制。
     实验一
     目的:筛选出PQ诱导PC12细胞损伤的有效浓度、时间及人参皂甙Rg1对该浓度PQ损伤PC12细胞的有效保护浓度。方法:PQ损伤作用设空白对照组及100、200、400、600、800、1000μmol/L六个PQ浓度组,各浓度设12、24、36、48 h四个干预时间。人参皂甙Rg1保护作用设空白对照组、PQ组(终浓度800μmol/L)、预处理组:加PQ(终浓度800μmol/L)前分别加入浓度为5、10、20μmol/L的人参皂甙Rg1预孵育24 h。采用MTT比色法和乳酸脱氢酶(LDH)释放量测定法对各浓度进行筛选。结果:经MTT比色法检测,PQ对PC12细胞具有损伤作用,其诱导的细胞活力的降低具有剂量和时间依赖性。与空白对照组相比,800μmol/L PQ处理24 h后细胞活力为44.8±6.9%(P<0.05)。而经不同浓度的人参皂甙Rg1预处理后,我们发现5、10、20μmol/L人参皂甙Rg1预处理组与PQ组(49.5±4.2%)相比,可减少细胞损伤,细胞活力分别上升为55.7±2.8%、71.2±3.8%、84.4±3.2%(P<0.05)。空白对照组LDH(单位为:U/mg prot)的释放量为89.5±3.1,PQ组LDH释放量明显增高为180.9±3.8(与空白对照组相比P<0.05),人参皂甙Rg1(5、10、20μmol/L)保护组抑制了PQ所引起的LDH释放量的升高(分别为160.8±3.8、145.8±4.4、118.3±4.0,与PQ组相比P<0.05)。结论:PQ对PC12细胞具有损伤作用,且这种损伤具有剂量和时间依赖性;人参皂甙Rg1对PQ所引起的PC12细胞损伤具有保护作用。
     实验二
     目的:探讨人参皂甙Rg1对PQ诱导PC12细胞凋亡的影响。方法:MTT比色试验检测细胞活性;FCM检测细胞凋亡比例;Hoechst 33258染色观察细胞核形态的改变。结果:MTT法检测显示,5、10、20μmol/L人参皂甙Rg1可抑制800μmol/L PQ作用24 h所诱导的PC12细胞活性的降低,与PQ组(46.4±3.6%)相比,人参皂甙Rg1预处理后细胞活力分别上升为53.6±3.3%、73.2±3.1%、82.2±2.6%(P<0.05);FCM结果显示,PQ处理后,凋亡细胞的比例(48.9%)与空白对照组(12.8%)相比是增加的,而经5、10、20μmol/L人参皂甙Rg1预处理后,凋亡细胞比例分别降至39.8%,20.1%,12.3%;正常细胞核经Hoechst 33258染色后显示为较大的圆形,形态规则,染色均匀弥散。经PQ处理24 h后,多数细胞显示胞核凝集,且可见DNA荧光碎片。与PQ组相比,5、10、20μmol/L人参皂甙Rg1预处理可抑制PQ诱导的细胞损伤,显著减少胞核凝集。结论:人参皂甙Rg1可抑制PQ诱导的PC12细胞调亡。
     实验三
     目的:探讨人参皂甙Rg1对PQ诱导PC12细胞损伤的抗氧化作用机制。方法:比色法进行谷胱甘肽还原酶(GSH)、超(过)氧化物歧化酶(SOD)的活性测定。结果:PQ诱导的PC12细胞,SOD、GSH(单位均为:U/mg prot)活性较空白对照组有显著的下降(SOD的活性从130.51±5.99下降到53.12±2.67,GSH的活性从107.87±4.84下降到49.50±2.54,与空白对照组相比P<0.05)。使用5、10、20μmol/L人参皂甙Rg1预处理后,SOD、GSH活性同PQ组相比有显著的升高(SOD的活性分别为80.58±3.36、105.08±4.92、118.35±3.69;GSH的活性分别为61.53±3.90、72.90±4.32、87.39±4.54,与PQ组相比P<0.05)。结论:人参皂甙Rg1可明显抑制PQ诱导的PC12细胞SOD、GSH的活性的下降,从而表现较强的抗氧化活性。
     实验四
     目的:探讨人参皂甙Rg1对PQ诱导PC12细胞调亡作用机制。Rh123染色检测细胞线粒体膜电位(MMP);Caspase-3活性检测;免疫细胞化学染色测Cyt C、Bcl-2表达;Western blotting方法检测凋亡相关蛋白Bcl-2、Bax表达。结果:Rh123染色表明空白对照组细胞线粒体显示明亮绿色,荧光强度较强,表现较高的膜电位水平。PQ作用24 h后,Rh123染色荧光强度明显减弱,表明细胞MMP显著下降。分别加入5、10、20μmol/L人参皂甙Rg1后,与PQ组相比荧光强度增强,MMP显著提高;PQ组Caspase-3(单位为:pmol.min-1.mg-1)活性显著增强(与空白对照组相比P<0.001),与PQ组(1600.6±55.7)相比,经人参皂甙Rg1预处理后,Caspase-3活性分别降至1219.7±28.7、1083.8±82.7、925.0±29.1(P<0.001);免疫细胞化学染色显示正常组细胞形态良好,Cyt C、Bcl-2的免疫细胞化学染色呈淡棕黄色,均匀分布于胞质及突起内。PQ处理后部分细胞变圆,皱缩,Cyt C在细胞内表达增强,染色呈深棕黄色。PC12细胞的Bcl-2表达应激、代偿性增强,染色细胞呈深棕黄色,阳性染色分布于胞质和突起中,着色细胞数目多。人参皂甙Rg1预处理组的Cyt C免疫细胞化学染色明显减弱,而Bcl-2得到表达增加,细胞着色进一步加深,细胞形态也有改善。PQ组细胞Cyt C表达呈阳性细胞数(50.3%±1.6%)明显增多,5、10、20μmol/L人参皂甙Rg1预处理则明显减少Cyt C表达呈阳性细胞数(44.9±3.5%、42.0±2.6%、28.0±2.1%),较PQ诱导组下降明显(P<0.05); Western blotting检测Bcl-2、Bax蛋白表达,结果表明PQ处理后胞浆内Bcl-2、Bax表达增加。人参皂甙Rg1预处理后Bcl-2表达进一步增加,而Bax的表达减少,同时,Bax/Bcl-2的比率显著降低。结论:人参皂甙Rg1对PQ诱导的PC12细胞损伤具有保护作用;机制可能与其抑制PQ引起的细胞MMP下降,Caspase-3激活,调节凋亡相关蛋白Cyt C及Bcl-2、Bax在胞浆中表达有关。
Parkinson's disease(PD)is an age-related progressive neurodegenerativeisease which defining pathological features are selective loss of dopaminergiceurons in substantia nigra pars compacta and subsequent decrease of dopamineevels in the striatum,the main target innervated by these neurons.Although thetiology of PD remains unclear,both exogenous and endogenous neurotoxicubstances are known to provide partial explanation of these processes.Severalactors are suspected to participate in the onset of PD that includesnvironmental exposure to pesticides,metals and hydrocarbons.
     Paraquat(1,1,-dimethyl-4,4,-bypiridinium,Parquat PQ),a nonselectiveerbicide widely used in agriculture,has extremely similar chemical structureith MPP+(1-methyl-4-pheny1-pyridium,MPP+),the active metabolite ofPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)which is a knowneurotoxin.The structural similarity between MPP+and PQ confers to theseindings a potential interest in the study of the etiological causes of PD.pidemiological studies have found that there is an association between the use of PQ in agriculture and incidence of PD. Furthermore, research using animal models has also indicated the neurotoxicity induced by PQ in nigrostriatal dopaminergic cells.
     Ginsenosides, the pharmacologically active components found in ginseng, and may modulate neurotransmission. Both Rg1 and Rb1 are capable of partially reversing scopolamine induced amnesia by improving cholinergic activity and having partial neurotrophic and neuroprotective effects. Ginsenosides Rg1 has a lot of beneficial effects, such as improving learning and memory, enhancing immunity, and delaying apolexis. It seems to be an interesting drug for the neuroprotective effect of Ginsenosides Rg1.
     PC12 cells, the rat adrenal pheochromocytoma cell line, which possesses dopamine synthesis, metabolism and transporting systems. The membrane receptors and synthesizing transmitters of PC12 cell close to dopaminergic neurons in midbrain. Therefore, it has been used as a cellular model of PD. In this study, we investigated whether Ginsenosides Rg1 can protect against PQ-induced apoptosis in cultured PC12 cells as model of PD in vitro, and related mechanisms of the neuroprotective effect.
     Experiment 1
     Objective: To sieve the effective concentration of PQ inducing injury and the protective concentration of Ginsenosides Rg1 to the injury in PC12 cells. Methods: Setting control group and 100, 200, 400, 600, 800, 1000μmol/L PQ groups, PC12 cells were respectively exposed to various concentrations of PQ for 12, 24, 36, 48 h; Ginsenosides Rg1 protective groups were set control,PQ group(800μmol/L),preventive groups: pretreated with Ginsenoside Rg1(final concentration: 5, 10, 20μmol/L) for 24 h, then PQ(final concentration: 800μmol/L) was added for an additional 24 h. The cell viability was measured by MTT chromometry and LDH-release assay. Results: After exposed to a range of concentrations of PQ for various periods of time, there was a dose- and time-dependent decrease in cell viability as measured by MTT assay. In the experimental group treated with 800μmol/L PQ for 24 h, cell viability was reaching 44.8±6.9% compared with control group (P<0.05). PC12 cells were incubated with different concentrations of Ginsenoside Rg1 for 24 h then exposed to 800μmol/L PQ for another 24 h. Compared with control group, it is observed that pretreatment with Ginsenoside Rg1(5, 10, 20μmol/L) caused a significant decrease in the level。of cell death compared with PQ-treated cells(49.5±4.2%). After incubated with Ginsenoside Rg1, cell viability was reaching 55.7±2.8%、71.2±3.8%、84.4±3.2%, respectively(P<0.05). Different concentrations of Ginsenoside Rg1 had protective effects on the PQ damage, in certain scope the protective effects potentized along with the increase of Ginsenoside Rg1 concentration. Conclusion: PQ can injure PC12 cells, and the injury is in a dose and time dependent manner. In certain scope Ginsenoside Rg1 has protective effects on the injury induced by PQ in PC12 cells, which potentize along with the increase of Ginsenoside Rg1 concentration.
     Experiment 2
     Objective: To explore the neurotoxic effect of PQ on PC12 cells and observe the protective effect of Ginsenoside Rg1 against the apoptosis induced by PQ. Methods: MTT assay was used to detect the cell viability; FCM was used to detect the apoptosis ratio; Hoechst 33258 staining was employed to observe morphological changes of the cell nuclear. Results: MTT assay showed that 5, 10, 20μmol/L Ginsenoside Rg1 inhibited the decrease of cell viability induced by 800μmol/L PQ for 24 h. Compared with PQ-treated cells (46.4±3.6%), after pretreatment with Ginsenoside Rg1, cell viability was reaching 53.6±3.3%, 73.2±3.1%, 82.2±2.6%(P<0.05), respectively; FCM results indicated that, after PQ treatment, the percentage of apoptotic cells (48.9%) was increased compared with control (12.8%), but was dropped respectively to 39.8%, 20.1%,and 12.3% with 5, 10, 20μmol/L Ginsenoside Rg1 pretreatment; Hoechst 33258 staining demonstrated nuclear condensation, one of the typical hallmarks of apoptosis. Nuclei of normal cells appeared with regular contours and were round and large in size, which showed a homogeneous and diffused staining. While exposed to PQ for 24 h, most cells exhibited an asymmetric and fluorescent fragment could be seen in some cells in PQ group. 5, 10, 20μmol/L Ginsenoside Rg1 significantly inhibited PQ-induced cell damage, and condensed nuclei decreased markedly compared with PQ-induced group. Conclusion: Ginsenoside Rg1 can relieve the apoptosis induced by PQ in PC12 cells.
     Experiment 3
     Objective: To explore the related mechanisms of the protective effect of Ginsenoside Rg1 on PQ-induced apoptosis in PC12 cells. Methods: The active of superoxide dismutase(SOD),γ-glutamylcysteinylglycine(GSH) were (unit:U/mg prot) in PQ-induced cells decreased markedly from 130.51±5.99 to 53.12±2.67 and 107.87±4.84 to 49.50±2.54, respectively, compared with controls. However, the activities of SOD, GSH increaseed by 80.58±3.36, 105.08±4.92, 118.35±3.69,and 61.53±3.90, 72.90±4.32, 87.39±4.54 with 5, 10, 20μmol/L Ginsenoside Rg1 treatment, severally(P<0.05). Conclusion: The mechanisms of the protective effect of Ginsenoside Rg1 was partially dependent on antioxidative stress effects, inhibiting decrease the activation of SOD, GSH in PC12 cells induced by PQ.
     Experiment 4
     Objective: To explore the related mechanisms of the protective effect of Ginsenoside Rg1 on PQ-induced apoptosis in PC12 cells. Methods: Mitochondrial membrane potential(MMP) was detected by Rh123 staining; Caspase-3 activity was measured with a colorimetric Caspase-3 assay kit; the expression of pro-apoptotic protein Cyt C and Bcl-2 in cytosol was observed by immunocytochemical staining, and the expression of Bcl-2, Bax was observed by Western blotting. Results: Control cells exhibited numerous brightly staining mitochondria that emitted green fluorescence,which was indicative of normal high membrane potential, PQ treatment induced a transition in mitochondria permeability and a significant loss of membrane potential. Ginsenoside Rg1 treatment inhibited the collapse of mitochondrial membrane potential with increasing dosage, as indicated via the reappearance of brightly green mitochondrial staining; A significant increase in Caspase-3 (unit: pmol.min-1.mg-1) activity was induced after PQ exposure compared with controls (P<0.001), while this activation was reduced by 5, 10, 20μmol/L Ginsenoside Rg1 incubation. After pretreatment with Ginsenoside Rg1, the Caspase-3 activity reached to 1219.7±28.7, 1083.8±82.7, 925.0±29.1(P<0.001), respectively, compared with group treated with PQ alone (1600.6±55.7); In control group, the staining cells were light-coloured and their morphous was more integrity. After incubating with PQ for 24 h, the expression of Cyt C and Bcl-2 increased in PC12 cells. Most cells were stained and their morphous changed. The staining cells were dark yellowish-brown and the positive stain distributed in cytoplasm. Immunocytochemical staining indicated that 5, 10, 20μmol/L Ginsenoside Rg1 downregulated the over-expression of Cyt C and significantly further enhanced anti-apoptotic Bcl-2 protein levels in the cytosol induced by PQ and improved the morphous of PC12 cells. Western blotting revealed an increased expression of Bcl-2, Bax in PQ treated group. Treatment of PC12 cells with Ginsenoside Rg1(5, 10, 20μmol/L) for 24 h, significantly further enhanced anti-apoptotic Bcl-2 protein levels in PC12 cells as compared with controls. Protein levels of pro-apoptotic Bax were significantly reduced, and the Bax/Bcl-2 ratio was significantly decreased in PC12 cells. Conclusion: Apoptosis of PC12 cells was induced by PQ, and this effect could be attenuated by Ginsenoside Rg1. The possible mechanism may be through maintaining MMP, inhibiting Caspase-3 activity and regulating the expression of pro-apoptotic protein protein Cyt C, Bcl-2 and Bax in cytosol.
引文
[1] Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain, 1991, 114: 2283-2301.
    [2] Campenhausen SV, Bornschein B, Wick R, et al. Prevalence and incidence of Parkinson's disease in Europe. European Neuropsychopharmacology, 2005, 15: 473-490.
    [3] Samii A, Nutt JG, Ransom BR. Parkinson's disease. Lancet, 2004, 363: 1783-1793.
    [4] Zhang ZX, Roman GC, Hong Z, et al. Parkinson's disease in China: prevalence in Beijing, Xian, and Shanghai. The Lancet, 2005, 365: 595-597.
    [5] Zhang ZX, Roman GC. Worldwide occurrence of Parkinson's disease: an updated review. Neuroepidemiology, 1993, 12: 195-208.
    [6] Gorell JM, Peterson EL, Rybicki BA, et al. Multiple risk factors for Parkinson's disease. Journal of the Neurological Sciences, 2004, 217 (2): 169-174.
    [7] McInerney-Leo A, Hadley DW, Gwinn-Hardy K, et al. Genetic testing in Parkinson's disease. Mov Disord, 2005, 20: 1-10.
    [8] DiMonte DA, Lavasani M, Manning-Bog AB. Environmental factors in Parkinson's disease. Neurotoxicology, 2002, 23 (4-5): 487-502.
    [9] McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental Risk Factors and Parkinson's Disease: Selective Degeneration of Nigral Dopaminergic Neurons Caused by the Herbicide Paraquat. Neurobiology of Disease, 2002, 10 (2): 119-127.
    [10] Liou HH, Tsai MC, Chen CJ, et al. Environmental risk factors and Parkinson's disease: a case-control study in Taiwan. Neurology, 1997, 48: 1583-1588.
    [11] Donaire V, Niso M, Morán JM, et al. Heat shock proteins protect both MPP+ and paraquat neurotoxicity. Brain Research Bulletin, 2005, 67 (6): 509-514.
    [12] 丁正同, 蒋雨平, 任惠民, 等. 小鼠慢性暴露于百草枯对其脑线粒体呼吸链复合酶活性的影响. 中国临床神经科学, 2003, 11 (3): 243 -246.
    [13] 杜芸兰, 刘振国, 陈生弟, 等. 百草枯诱导小鼠α-突触核蛋白表达升高并聚集的实验研究. 中国神经免疫学和神经病学杂志, 2005, 12 (1): 14-17.
    [14] 朱建如, 宋毅. 食品中农药污染及其控制对策. 公共卫生与预防医学, 2005, 16 (2): 64-65.
    [15] imant M, Deepa SM, Mark S, et al. L-DOPA administration enhances 6-hydroxydopamine generation. Brain Research, 2005, 1063 (2): 180- 186.
    [16] Melvin KG, Doan J, Pellis SM, et al. Pallidal deep brain stimulation and L-dopa do not improve qualitative aspects of skilled reaching in Parkinson's disease. Behavioural Brain Research, 2005, 160 (1): 188-194.
    [17] Chen XC, Chen LM, Zhu YG, et al. Involvement of CDK4, pRB, and E2F1 in ginsenoside Rg1 protecting rat cortical neurons from β-amyloid- induced apoptosis. Acta Pharmacol Sin, 2003, 24 (12): 1259-1264.
    [18] 李爱红, 柯开富, 吴小梅, 等. 人参皂甙Rb1、Rb3、Rg1对培养皮层神经细胞的抗缺血效应及其机制. 中风与神经疾病杂志, 2004, 21 (3): 231-235.
    [19] 李冬梅, 潘鑫鑫, 马建华, 等. 人参皂甙Rgl对大鼠实验性局灶性脑缺血损伤的保护作用. 中华综合临床医学, 2004, 6 (6): 1-3.
    [20] 陈 滢, 陈晓春. Bcl-2家族是人参皂甙Rgl抗黑质神经元凋亡的重要调控蛋白. 解剖学报, 2002, 33 (5): 496-497.
    [21] Mook-Jung I, Hong HS, Boo JH, et al. Ginsenoside Rb1 and Rg1 improve spatial learning and increase hippocampal synaptophysin level in mice. J Neurosci Res, 2001, 63 (6): 509-515.
    [22] Wang XY, Chen J, Zhang JT, et al. Effect of ginsenoside Rg1 on learning and menmory impairment induced by beta-amyloid peptide (25-35) and its mechanism of action.Yao Xue Xue Bao, 2001, 36 (1): 1-4.
    [23] 周玢, 洪震, 黄茂盛, 等. 上海城乡帕金森病患病率研究. 脑与神疾病杂志, 2001, 9 (6): 330-332.
    [24] Baldereschi M, Di Carlo A, Rocca WA , et al. Parkinson's disease and parkinsonism in a longitudinal study: two fold higher incidence in men. ILSA working group. Italian longitudinal study on aging. Neurology, 2000, 55 (9): 1358-1363.
    [25] Currie LJ, Harrison MB, Rugman JM, et al. Postmenopausal estrogen use affects risk for Parkinson's disease. Arch Neurol, 2004, 61 (6): 886-888.
    [26] Pals P, Van Everbroeck B, Rubben B, et al. Case-control study of environmental risk factors for Parkinson's disease in Belgium. Eur J Ep idemiol, 2003, 18 (12): 1133-1142.
    [27] Taylor CA, Saint-Hilaire MH, Cupp les LA, et al. Environmental, medical, and family history risk factors for Parkinson's disease: a New England based case control study. Am J Med Genet, 1999, 88 (6): 742-749.
    [28] Quik M. Smoking, nicotine and Parkinson's disease. Trends Neurosci, 2004, 27: 561-568.
    [29] Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson's disease. JAMA, 2000, 283: 2674-2679.
    [30] Schwarzschild MA , Chen JF , Ascherio A. Caffeinated clues and the promise of adenosine A antagonists in PD. Neurology, 2002, 58 (8): 1154-1160.
    [31] Pan T, Jankovic J, Le W. Potential therapeutic p roperties of green tea polyphenols in Parkinson's disease. Drugs Aging, 2003, 20 (10): 711-721.
    [32] Dekkel MC, Bonifati V, Van Duijn CM.Parkinson's disease: pieeing together a genetic jigsaw. Brain, 2003, 126: 1722-1733.
    [33] Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 2004, 304-311.
    [34] Bonifati V, Rizzu P, van Baren MJ, et a1. Mutatitas in the DJ-l gene associated the autosomal recessive early-onset parkinsonism. Science, 2003, 299 (5604): 256-259.
    [35] Tanner CM, Ottman R, Goldman SM, et al. Parkinson's disease in twins: an etiologicstudy. JAMA, 1999, 281 (4): 341-346.
    [36] Zorzon M, Capus L, Pellegrino A, et al. Familial and environmental risk factors in Parkinson's disease: a case-control study in north-east Italy. Acta Neurol Scand, 2002, 105 (2): 77-82.
    [37] Klodowska DG, Jasinska MB, Safranowk K, et al. The role of environmental factors in Parkinson's disease may depend on disease onset age. Neurol Neurochir Pol, 2005, 39 (6): 445-450.
    [38] Kordysh EA, Herishanu Y, Goldsmith JR. Chemical exposures and Parkinson's disease in residents of three Negev kibbutzim. Environ Res, 1997, 73 (1-2): 162-165.
    [39] Langston JW. MPTP: insights into the etiology of Parkinson's disease. Eur Neurol, 1987, 26: 2-10.
    [40] Biousse V, Skibell BC, Watts RL, et al. Ophthalmologic features of Parkinson's disease. Neurology, 2004, 62 (2): 177-180.
    [41] Liberatone GT, Jackson-Lewis V, Vukosavie S, et al. Inducable nitrogen oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Nat Med, 1999, 5 (12): 1403-1409.
    [42] Kotake Y, Tasaki Y, Makino Y, et al. 1-Benzyl-1, 2, 3, 4- tetrahydroisoquinoline as a parkinsonism-inducing agent: a novel endogenous amine in mouse brain and parkinsonian CSF. Neurochem, 1995, 65 (6): 2633-2638.
    [43] Priyadarshi A, Khuder SA, Schauh EA, et al. Environmental risk factors and Parkinson's disease: a metaanalysis. Environ Res, 2001, 86 (2): 122-127.
    [44] Barbeau A, Dallaire L, Buu NT, et al. Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in Rana pipiens. Life Sci, 1985, 37: 1529-1538.
    [45] Sanchez-Ramos JR, Hefti F, Weiner WJ. Paraquat and Parkinson's disease. Neurology, 1987, 37 (1): 1820-1821.
    [46] Naylor JL, Widdowson PS, Simpson MG, ET AL. Further evidence that the blood/brain barrier impedes paraquat entry into the brain. Hum Exp Toxicol, 1995, 14: 587-594.
    [47] Shimizu K, Ohtaki K, Matsubara K, et al. Carrier-mediated processes in blood-brain barrier penetration and neural uptake of paraquat. Brain Res, 2001, 906: 135-142.
    [48] Shimizu K, Matsubara K, Ohtaki K, et al. Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res, 2003, 976: 243-252.
    [49] Thiruchelvam M, Richfield EK, Baggs RB, et al. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease. J Neurosci, 2000, 20: 9207-9214.
    [50] Corrigan FM, Wienburg CL, Shore RF, et al. Organochlorine insecticides in substantianigra in Parkinson's disease. J Toxicol Environ Health, 2000, 59: 229-234.
    [51] Fleming L, Mann JB, Bean J, et al. Parkinson's disease and brain levels of organochlorine pesticides. Ann Neurol, 1994, 36 (1): 100-103.
    [52] Uversky VN, Li J, Fink AL. Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson's disease. FEBS Lett, 2001, 500: 105-108.
    [53] Kitazawa M, Anantharam V, Kanthasamy AG. Dieldrininduced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells. Free Radic Biol Med, 2001, 31: 1473-1485.
    [54] Miller GW, Kirby ML, Levey AI, et al. Heptachlor alters expression and function of dopamine transporters. Neurotoxic, 1999, 20 (4): 631-637.
    [55] Karen DJ, Li W, Harp PR, et al. Striatal dopaminergic pathways as a target for the insecticides permethrin and chlorpyrifos. Neurotoxicology, 2001, 22: 811-817.
    [56] Sherer TB, Kim JH, Betarbet R, et al. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol, 2003, 179 (1): 9-16.
    [57] Alam M, Schmidt WJ. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Bahav Brain Res, 2002, 136 (1): 317-324.
    [58] Pezzoli G, Canesi M, Antonini A, et al. Hydrocarbon exposure and Parkinson's disease. Neurology, 2000, 55 (5): 667-673.
    [59] Corrigan FM, Murray L, Wyatt CL, et al. Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson's disease. Exp Neurol, 1998, 150: 339-342.
    [60] Seegal RF, Bush B, Shain W. Lightly chlorinated ortho-substituted PCB congeners decrease dopamine in nonhuman primate brain and in tissue culture. Toxicol Appl Pharmacol, 1990, 106: 136-144.
    [61] Seidler A, Hellenbrand W, Robra BP, et al. Possible environmental, occupational, and other etiologic factors for Parkinson's disease: a case-control study in Germany. Neurology, 1996, 46 (5): 1275-1284.
    [62] Chaturvedi S, Ostbye I, Stoessl AJ, et al. Environmental exposures in elderly Canadians with Parkinson's disease. Can J Neurol Sci, 1995, 22 (3): 232-234.
    [63] Zatta P, Lucchini R, van Rensburg SJ, et al. The role of metals in neurodegenerative processes: aluminum, manganese, and zinc. Brain Res Bull, 2003, 62 (1): 15-28.
    [64] Gorell JM, Johnsona CC, Rybicki BA, et al. Occupational exposure to manganese, copper, ead, iron, mercury and zinc and the risk of Parkinson's disease. Neurotoxicology, 1999, 20 223): 239-247.
    [65] Rybicki BA, Johnsona CC, Uman J, et al. Parkinson's disease mortality and the industrial use of heavy metals in MICHIGAN. Movement Disord, 1993, 8 (1): 87-92.
    [66] 陈彪, 刘霖, 梁秀龄, 等. 帕金森病病因研究. 中山医科大学学报, 1991, 12 (2): 143 -146.
    [67] Montgomery EBJ. Heavy metals and the etiology of Parkinson's disease and other movement disorders. Toxicology, 1995, 97 (1-3): 3-9.
    [68] Dexter DT, Carayon A, Vidailhet M, et al. Decreased ferritin levels in brain in Parkinson's disease. J Neurochem, 1990, 55: 16-20.
    [69] Desole MS, Esposito G, Migheli R, et al. Cellular defence mechanisms in the striatum of young and aged rats subchronically exposed to manganese. Neuropharmacology, 1995, 34: 289-295.
    [70] 王悦, 段春礼, 张海燕, 等. 氯化锰对大鼠中脑多巴胺能神经元毒性的研究. 神经解剖学杂志, 2001, 17 (1): 57-61.
    [71] Hattori N. Etiology and pathogenesis of Parkinson's disease:from mitochondrial dysfunctions to familial Parkinson's disease. Rinsho Shinkeigaku, 2004, 44 (425): 241-262.
    [72] Simon DK, L in M T, Zheng L, et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease. Neurobiol Aging, 2004, 25: 71-81.
    [73] Mawrin C, Kieches E, Krause G, et al. Region specific analysis of mitochondrial DNA deletions in neurodegenerative disorders in humans. Neurosci Lett, 2004, 357: 111-114.
    [74] Autere J, M oilanen JS, Finnila S, et al. Mitochondrial DNA polym or phism s at risk factors for Parkinson's disease and Parkinson's disease dementia. Hum Genet, 2004, 115: 29-35.
    [75] Swerdlow RH, Parks JK, Miller SW, et al. Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol, 1996, 40 (4): 663-671.
    [76] Naoi M, Maruyam W. Cell death of dopamine neurons in aging and Parkinson's disease. Mech Ageing Dev, 1999, 111 (2-3): 175.
    [77] Adam-Vizi V. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal, 2005, 7: 1140-1149.
    [78] Soto Otero R, Mendez Alvarez E, Hermida Ameijeiras A, et al. Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease. J Neurochem, 2000, 74 (4): 1605-1612.
    [79] De Erausquin GA. Transactivation of cell death signals by glutamate transmission in dopaminergic neurons. Crit Rev Neurobiol , 2004, 16 (122): 107-119.
    [80] Kaneda K, Tachibana Y, Imanishi M, et al. Down-regulation of metabotropic glutamate receptor 1alpha in globus pallidus and substantia nigra of parkinsonian monkeys. Eur J Neurosci, 2005, 22 (12): 3241-3254.
    [81] Orr CF, Rowe DB, Halliday GM, et al. An inflammatory review of Parkinson's disease. Prog Neurobiol, 2002, 68 (5): 325-340.
    [82] 裴正斌, 彭国光. 神经营养因子与帕金森病. 国外医学内科学分册,2004, 31 (6):252-255.
    [83] Zappia M, Crescibene L, Bosco D, et al. Anti-GM1 ganglioside antibodies in Parkinson's disease. Acta Neurol Scand, 2002, 106 (1): 54-57.
    [84] 汪锡金, 陈生弟, 刘卫国, 等. 免疫机制与帕金森病关系的研究.临床神经病学杂志, 2004, 17 (4): 241-244.
    [85] Nagatsu T, Mogi M, Ichinose H, et a1. Changes in cytokines and neurotrophins in Parkinson's disease. J Neurol Transm Suppl, 2000, 60: 277-290.
    [86] Dawsoan TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science, 2003, 302(5646): 819-822.
    [87] McNaught KS, lanow CW. Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson's disease. Ann Neurol, 2003, 53 (3): 73-84.
    [88] McNaught KS, Belizaire R, lsacson O, et a1. Altered proteasomal function in sporadic Parkinson's disease. Exp Neurol, 2003, 179 (1): 38-46.
    [89] Sidhu A, Wersinger C, M oussa CE, et al. The role of alpha-synuclein in both neuroprotection and neurodegeneration. Ann N Y Acd Sci, 2004, 1035: 250-270.
    [90] Goers J, M anning-Bog AB, McCorm ack AL, et al. Nuclear localization of α-synuclein and its interaction with histones. Biochem istry, 2003, 42: 8465-8471.
    [91] 杨卉, 陈生弟. 帕金森病发病机制和早期诊断的新近展. 中国处方药. 2003, 5: 48-51.
    [92] Kim R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer, 2005, 103: 1551-1560.
    [93] Kowaltowski AJ, Fiskum G. Redox mechanisms of cytoprotection by Bcl-2. Antioxid Redox Signal, 2005, 7: 508-514.
    [94] Rao RV, Bredesen DE. Misfolded proreins, endoplasm ic reticulum stress and neurodegeneration. Curr Opin in Cell Biol, 2004, 16: 653-662.
    [95] Gorell JM, Johnson CC, Rybicki BA, et al. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology, 1998, 50: 1346-1350.
    [96] Semchuk KM, Love EJ, Lee RG. Parkinson's disease and exposure to agricultural work and pesticide chemicals. Neurology, 1992, 42: 1328-1335.
    [97] Petrovitch H, Ross GW, Abbot RD, et al. Plantation work and risk of Parkinson's disease in a population-based longitudinal study. Arch Neurol, 2002, 59: 1787-1792.
    [98] Corasaniti MT, Strongoli MC, Rotiroti D, et al. Paraquat: a useful tool for the in vivo study of mechanisms of neuronal cell death. Pharmacol Toxicol, 1998, 83: 1-7.
    [99] Barlow BK, Thiruchelvam MJ, Bennice L, et al. Increased synaptosomal dopamine content and brain concentration of paraquat produced by selective dithiocarbamates. J Neurochem, 2003, 85:1075-086.
    [100] Sian J, Dexter DT, Lees AJ, et al. Alterations in glutathione levels in Parkinson'sdisease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol, 1994, 36: 348-355.
    [101] Thiruchelvam M, Richfield EK, Baggs RB, et al. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease. J Neurosci, 2000, 20: 9207-9214.
    [102] Fukushima T, Yamada K, Hojo N, et al. Mechanism of cytotoxicity of paraquat. III. The effects of acute paraquat exposure on the electron transport system in rat mitochondria. Exp Toxicol Pathol, 1994, 46: 437-441.
    [103] Fukushima T, Tawara T, Isobe A, et al. Radical formation site of cerebral complex I and Parkinson's disease. J Neurosc Res, 1995, 42: 385-395.
    [104] Tawara T, Fukushima T, Hojo N, et al. Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch Toxicol, 1996, 70: 585-589.
    [105] Thakar JH, Hassan MN. Effects of 1-methyl-4-phenyl-1, 2, 3, 6- tetrahydropyridine (MPTP), cyperquat (MPP+) and paraquat on isolated mitochondria from rat striatum, cortex and liver. Life Sci, 1988, 43: 143-149.
    [106] Yang W, Sun A. Paraquat-induced free radical reaction in mouse brain microsomes. Neurochem Res, 1998, 23: 47-53.
    [107] Yumino K, Kawakami I, Tamura M, et al. Paraquat and diquat-induced oxygen radical generation and lipid peroxidation in rat brain microsomes. J Biochem, 2002, 131: 565-570.
    [108] LaVoie MJ, Hastings TG. Peroxynitrite- and nitrite-induced oxidation of dopamine: implications for nitric oxide in dopaminergic cell loss. J Neurochem, 1999, 73: 2546-2554.
    [109] Shimizu K, Matsubara K, Ohtaki K, et al. Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture. Neurosci Res, 2003, 46: 523-532.
    [110] Gonzalez-Polo RA, Rodriguez-Martin A, Moran JM, et al. Paraquat- induced apoptotic cell death in cerebellar granule cells. Brain Res, 2004, 1011: 170-176.
    [111] McCarthy S, Somayajulu M, Sikorska M, et al. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water- soluble Coenzyme Q10. Toxicol Appl Pharm, 2004, 28-31.
    [112] Liou HH, Chen RC, Chen TH, et al. Attenuation of paraquat-induced dopaminergic toxicity on the substantia nigra by (-)-deprenyl in vivo. Toxicol Appl Pharmacol, 2001, 172 (1): 37-43.
    [113] Thiruchelvam M, McCormack A, Richfield EK, et al. Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype. Eur J Neurosci, 2003, 18: 589-600.
    [114] Jian F. Genetic factors in Parkinson's disease and potential therapeutic targets. CurrNeurophar, 2003, 1:301-303.
    [115] Manning-Bog AB, McCormack AL, Purisai MG, et al. Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci, 2003, 23: 3095-3099.
    [116] Manning-Bog AB, McCormack AL, Li J, et al. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem, 2002, 277, 1641-1644.
    [117] Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin, 2005, 26: 143-149.
    [118] Seo JY, Lee JH, Kim NW, Her E, Chang SH, Ko NY, Yoo YH, Kim JW, Seo DW, Han JW, Kim YM, Choi WS. Effect of a fermented ginseng extract, BST204, on the expression of cyclooxygenase-2 in murine macrophages. Int Immunopharmacol, 2005, 5: 929-936.
    [119] Shen LH, Zhang JT. Ginsenoside Rg1 promotes proliferation of hippocampal progenitor cells. Neurological Research, 2004, 26: 422-428.
    [120] 周宜灿, 陈晓春, 朱元贵, 等. 人参皂苷Rgl可能通过抗氧化作用来保护帕金森病鼠黑质神经元. 中国临床药理学与治疗学, 2003, 8 (3): 273-277.
    [121] 陈晓春, 朱理安, 黄 春. 人参皂甙Rgl对多巴胺诱导PC12细胞凋亡的保护作用. 中药药理与临床, 2000, 16 (2): 13-15.
    [122] 张晓东, 李万海, 枉 前, 等. 人参皂甙 Rg1、Re 对 β-淀粉样蛋白诱导原代培养海马及皮质神经元损伤的保护作用. 第二军医大学学报, 2000, 21 (10): 491-493.
    [123] 吕俊华, 黄 丰, 刘月丽. 人参皂苷Rg1对LPS诱导的SK-N-SH细胞株脑啡肽酶表达的影响. 中药材, 2005, 28 (2): 117-119.
    [124] 赵朝晖, 陈晓春, 金建生, 等. 人参皂苷Rgl对细胞衰老过程中p21,cyclin E和CDK2表达的影响. 药学学报, 2004, 39 (9): 673-676.
    [125] 薛雨芳. 人参皂甙Rg1对大鼠海马脑片长时程增强效应影响的实验研究. 中医研究, 1999, 12 (2): 10-13.
    [126] 张均田. 人参皂苷Rgl的促智作用机制—对神经可塑性和神经发生的影响. 药学学报, 2005, 40 (5): 385-388.
    [127] Rudakewich MBa F, Benishin CG.. Neruotrophic and neuroprotect-ive action of ginsenosides Rb1 and Rg1. Planta Med, 2001, 67 (6): 533-537.
    [128] Wang Xiao-Ying, Zhang Jun-Tian. Effects of ginsenoside Rgl on synaptic plasticity of freely moving rats and its mechanism of action. Acta Pharmacol Sin, 2001, 22 (7): 657-662.
    [129] Shen LH, Zhang JT. Culture of neural sten cells from cerebral cortex of rat embryo and effects of drugs on the proliferation ability of stem cells.Yao Yue Yao Bao, 2003, 38 (10): 735-738.
    [130] Radad K, GilleG, MoldzioR, et al. Ginsenosides Rb1and Rg1 effects on survival andneurite growth of MPP+-affected Mesencephalic dopaminergic ceils. Neural Transm, 2004, 11 (1): 37-45.
    [131] Lihong Shen, Juntian Zhang. Ginsenoside Rg1 increases is chemiainduced cell proliferation and survival in the dentate gyrus of adult gerbils. Neuroscience Letters, 2003, 344 (19): 1-4.
    [132] 刘黎军, 杨 雷, 肖建德, 等. 人参皂甙Rbl、Rgl影响许旺细胞NGF表达的实验研究. 中华临床医药杂志, 2003, 60 (2): 9906-9909.
    [133] 潘树义, 余 磊, 刘大庸, 等. 人参皂甙Rb1、Rg1增强原代培养鼠胚脊髓运动神经元活力的实验研究. 中国临床解剖学杂志, 1999, l7 (4): 359-360.
    [134] 李君庆, 张均田. 年龄变化及人参皂甙Rgl对大鼠脑皮层细胞膜流动性的影响. 药学学报, 1997, 32 (1): 23-27.
    [135] 胡圣望, 胡 勇, 胡旺平, 等. 人参皂甙 Rgl 对慢性应激大鼠空间学习记忆能力的影响. 四川中医, 2004, 22 (3): 14-16.
    [136] Wesseling C, Van B, Ruepert C. Paraquat in developing countries. Int Occup Environ Health, 2001, 7: 275-286.
    [137] Cory-Slechta DA, Thiruchelvam M, Richfield EK et al. Developmental pesticide exposures and the Parkinson's disease phenotype. Birth Defects Res A Clin Mol Teratol, 2005, 73:136-139.
    [138] Walkinshaw G.Waters CM. Neurotoxin-induced cell death in neuronal PC12 ceils is mediated by induction of apoptosis. Neuroseience, 1994, 63: 975-987
    [139] Tuler SM, Hazen AA, Bowen JM. Release and metabolism of dopamine in a clonal line of pheochromocytoma (PC12) cells exposed to fenthion. Fundamental and Applied Toxicology, 1989, 13: 484-492.
    [140] Hartmann A, Hunot S, Michel PP, et a1. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci USA, 2000, 97 (6): 2875-2880.
    [141] Kelso GF, Porteous CM, et a1. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem, 2001, 276: 4588-4596.
    [142] Moorthy K, Sharma D, Basir SF,et a1. Administration of estradiol and progesterone modulate the activities of antioxidant enzyme and aminotransferases in naturally menopausal rats. Exp Gerontol, 2005, 40 (4): 295-302.
    [143] Balahan RS, Nemoto S, Finkel T. Mitochondria,oxidants,and aging. Cell, 2005, 120 (4): 483-495.
    [144] Berg D, Youdim MBH, Riederer P. Redox imbalance. Cell Tissue Res, 2004, 318: 201-213.
    [145] Chee JL, Guan XL, Lee JY, et al. Compensatory caspase activation in MPPP+-induced cell death in dopaminergic neurons. Cell Mol Life Sci, 2005, 62: 227-238.
    [146] Polat MF, Taysi S, Gul M, et al. Oxidant/ antioxidant status in blood of patients with malignant breast tumor and benign breast disease. Cell Biochem Funct, 2002, 20: 327-331.
    [147] Gelinas S, Bureau G, Valastro B, et al. Alpha and beta estradiol protect neuronal but not native PC12 cells from paraquat-induced oxidative stress. Neurotox Res, 2004, 6 (2): 141-148.
    [148] 方 芳, 陈晓春, 朱元贵. 抗氧化作用可能是人参皂甙Rgl抗细胞凋亡的机制. 中国临床药理学与治疗学, 2002, 7 (5): 412-416.
    [149] Bonneh-Barkay D, Reaney SH, Langston WJ, et al. Redox cycling of the herbicide paraquat in microglial cultures. Brain Res Mol Brain Res, 2005, 134 (1): 52-56.
    [150] Green DR. Apoptotic pathways: ten minutes to dead. Cell, 2005, 121: 671-674.
    [151] Zamzami N, Marchetti P, Castedo M, el a1. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med, 1995, 181 (5): 1661-1672.
    [152] van Gurp M, Festjens N, van Loo G, et al. Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun, 2003, 304 (3): 487-497.
    [153] Takahashi K, Loo G. Disruption of mitochondria during tocotrienol- induced apoptosis in MDA-MB-231 human breast cancer cells. Biochemical Pharmacology, 2004, 67: 315-324.
    [154] Michael C, Victoria DM, Mari N, et al. Mitochondria primed by death signals determines cellular addiction to antiapoptotic Bcl-2 family members. Cancer cell, 2006, 9 (5): 351-365.
    [155] Verma YK, Gangenahalli GU, Singh VK, et al. Cell death regulation by B-cell lymphoma protein. Apoptosis 2006, 11 (4): 459-471.
    [156] Tsujimoto Y, Shimizu S. Bcl-2 family: life or death switch. Febs Lett, 2000, 466: 6-10.
    [157] Adams JM, Cory S. Life or death decisions by the Bcl-2 protein family. Trends Biochem Sci, 2001, 26: 61-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700