中国木耳栽培种质资源的遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木耳[Auricularia auricula-judae (Bull.) Quel.],是世界上产量仅次于双孢蘑菇(Agaricus bisporus)、香菇(Lentinula edodes)及糙皮侧耳(Pleurotus ostreatus)的第四大栽培食用菌,在我国食用菌产业体系中占有重要的地位。中国作为世界木耳栽培的起源地,也是世界上最大的木耳生产国,拥有丰富的木耳种质资源,这些种质资源也是进一步选育木耳优良品种的基础。对我国木耳栽培种质资源的遗传多样性进行准确分析和客观评价,是开展木耳优良菌株选育和新品种开发的基础,也是加强菌种管理和新品种知识产权保护,促进整个木耳产业持续健康发展的前提。
     本研究以中国主栽的32个木耳菌株为研究对象,首次将生物学特性、TRAP分子标记技术、IGS序列分析及体细胞不亲和性4种方法引入到中国木耳栽培种质的遗传多样性研究中。本研究的目的是:对我国木耳栽培种质资源的遗传多样性进行分析,评价4种方法在木耳种质遗传多样性分析中的适用性,构建我国木耳主要栽培菌株的种性特征信息库。主要研究结果如下:
     1.对木耳供试菌株的27个重要的生物学特性指标进行主成分分析,结果表明用生物学性状对木耳种质进行初步分类鉴定时,应首先考虑菌株的培养生理特性,其次是耳片色泽,尺寸等形态特征,最后根据耳脉和耳片的形态特征进行分类。根据此方法可以在不损失或很少损失原有形态性状信息的前提下,将原来的27个性状转换为个数较少而且不相关的综合指标,从而为木耳种质的分类鉴定提供快速而准确的信息。
     2.对木耳的27个重要的生物学特性指标进行分析,发现供试菌株在各个生物学指标上均存在着明显的差异,UPGMA聚类结果表明供试菌株的欧氏系数变化范围为4.27到11.33,表明我国木耳栽培种质具有丰富的遗传多样性;协表征矩阵和欧氏系数矩阵之间的相关系数为0.77,表明聚类结果较好地体现了种质之间的遗传关系。在欧氏系数为6.73时,除黑29、186及C21等菌株分别各自均为一类之外,其他供试菌株聚为3个主要类群。主坐标分析也将32个供试菌株分为3个大的类群,同一类群中供试菌株的生物学特性更相似。
     3.将TRAP技术运用于木耳栽培菌株的遗传多样性分析中,基于木耳属的EST序列设计并筛选得到16对稳定性较好的引物组合,在32个供试菌株中共扩增得到535条DNA条带,多态性条带比例为97.9%,供试菌株的相似性系数变化范围为0.567到0.922,说明我国木耳栽培种质的遗传多样性丰富;协表征矩阵和欧氏距离矩阵之间的相关系数为0.92,表明聚类结果非常好地体现了种质之间的遗传关系。在遗传相似系数为0.67时,供试菌株聚为4个类群。主坐标分析分析中供试菌株也被划分为3个类群。
     4.首次拼接得到木耳栽培菌株AU110的rDNA全序列,并设计得到更适合于木耳菌株IGS区域扩增的引物对。AU110 rDNA全长为11210 bp,包含18S、5.8S、28S、ITS及IGS区域,其中18S rDNA为1805 bp,ITS为513 bp,28S为3135 bp,IGS1为2334 bp,5S为118 bp,IGS2为3304 bp。IGS1中不含重复片段。IGS2序列5’端富含GC(8551 bp至8638 bp),并包含(GGGGA)。重复片段,大大增加了IGS25端的测序难度,同时在8768 bp至8799 bp,8845 bp至8880 bp序列间存在着(TTAGG)。重复片段。
     5.32个木耳供试菌株IGS1序列构成的矩阵为2312 bp,其中保守位点2205 bp,变异位点为109 bp;IGS2序列的3’端序列矩阵长度为801 bp,其中保守位点757 bp,变异位点为44个。基于IGS1全长及IGS2 3’端,运用最小进化法和最大简约法对木耳菌株间的亲缘关系进行分析,结果表明木耳菌株IGS序列变异程度较高,由此表明我国木耳栽培种质的遗传多样性丰富。基于IGS1全长和IGS2 3’端序列,32个菌株分别将划分为5个或6个类群;基于两者的综合序列,32个菌株则被划分为3个类群。综合序列分析较单序列分析结果富含更多变异位点信息,能更有效地反映菌株间的系统发育关系。
     6.木耳供试菌株之间的体细胞不亲和性反应具有丰富的多态性,不同菌株的体细胞不亲和反应在拮抗反应类型、拮抗反应程度及菌丝交接处色素三个方面均存在差异,拮抗反应类型可以划分为隆起型、沟壑型和隔离型,拮抗反应程度可以分为无拮抗、较强和非常强,菌丝交接处色素分为有或无,三者之间不存在着明显的相关性。将木耳菌株间的不亲和类型、色素有无及程度分别设为变量,进行赋值聚类分析,综合分析后发现,基于不亲和性反应程度的聚类能很好地反映供试菌株之间的亲缘关系,而基于拮抗反应类型和色素有无的聚类分析不能反映供试菌株之间的亲缘关系。
     7.在基于木耳体细胞不亲和性反应程度的聚类分析中,供试菌株的欧氏系数变化范围为3.724到10.633,协表征矩阵和相似系数矩阵的相关系数为0.78,表明聚类结果很好地体现了栽培种质之间的遗传关系,进一步说明我国木耳栽培种质具有丰富的遗传多样性。在欧氏系数为7.26时,木耳种内32个菌株聚为6个类群。主坐标分析将供试菌株分为3个类群,具有明显的拮抗反应的供试菌株在UPGMA聚类分析和PCO分析中聚在不同的组别,无明显拮抗反应的菌株聚在一起,从而表明,木耳菌株间的拮抗程度与亲缘关系确实呈正比。
     总体来看,我国木耳栽培种质的遗传多样性丰富,不同栽培地域的菌株间存在着明显的遗传差异,但同一地区的栽培菌株遗传背景比较一致。32个供试菌株可分为3个主要类群,主要栽培地域分别对应东北地区,中部、华东及西北地区,华北及西南地区,证明了各栽培区域的主栽菌株主要来自于本地野生菌株驯化。东北地区的栽培菌株遗传背景单一且与其它地区菌株遗传关系较远,中部及华北地区存在引种现象,部分菌株可能为同物异名;同时,研究结果证实4种分析方法均可有效地应用于中国木耳栽培种质资源的遗传多样性分析。本研究的结论对将来木耳遗传育种研究中亲本的选择具有重要的指导意义,也为未来进一步开展木耳菌种快速鉴定、遗传多样性的分析和特异性SCAR标记开发等方面的研究工作奠定了基础。
Auricularia auricula-judae, the fourth most cultivated edible mushroom (following Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes) in terms of total world production, is play a very important role in mushroom industry in China. As the cultivated origination and the most productive country of A.auricula-judae in the world, China has abundant cultivated germplasm resources of A. auricula-judae, and the rich gremplasm lays the foundation for further breeding programmer of A.auricula-judae. Accurate identification and objective evaluation on the genetic diversity of A.auricula-judae cultivated germplasm in China, is the basis of cross breeding and new variety exploition, as well as the premise of strengthen the strains management and intellectual property rights protection, which could promote the healthy and continued development of A.auricula-judae industry of China.
     In this study,32 main cultivars of A.auricula-judae in China were selected as material; four methods (physiological characteristics, TRAP molecular marker, intergenic spacer analysis and somatic incompatibility) were firstly introduced to analyze phylogenetic relationship and genetic diversity of A.auricula-judae cultivated germplasm in China. The aim of the present study was to identify the genetic relationship of A.auricula-judae in China, and evaluate the efficiency of these four different methods in analyzing genetic diversity of A.auricula-judae in China, construct the physiological characteristic information database of main cultivars. The main results of this study were as follows:
     1. The principal components analysis of 27 physiological characteristic indexes of main cultivars of A.auricula-judae in China demonstrated that, for rapidly and effectively analyze the relationship among different A.auricula-judae strains based on physiological characteristics, the most important factor is the characteristics of mycelium, follow by color and size of fruitbody, and finally, the wrinkle and shape of the fruitbody. According to this method,27 stable and important physiological characteristics could be transformed to fewer and non-related comprehensive indexes, which provided rapidly and accurate information for the classification based on physiological traits.
     2. The analysis of 27 important physiological indexes demonstrated that distinct difference existed among test strains. Euclidean distance similarity coefficients among the 32 tested strains were ranged from 4.27 up to 11.33, which indicated there was rich genetic diversity in Chinese cultivated germplasm of A.auricula-judae. The co-phenetic correlation between clustering and the data matrix was estimated at 0.77, corresponding to a good fit. UPGMA dendrogram grouped all strains into 3 main clusters at a Euclidean distance index value of 6.73, while H29,186 and C21 was represent a single cluster respectively. The principal coordinate analysis also divided 32 test cultivars into 3 groups; the strains in the same group had more similar physiological traits.
     3.TRAP molecular marker were applied to analyze the genetic diversity of cultivated strains of A.auricula-judae in China, the PCR primer were designed based on EST sequence and 16 stable primer pairs were selected for demonstrate genetic diversity among 32 test strains. Among 535 amplified DNA fragments,97.9% were polymorphic. Genetic similarities by SM coefficients among the 32 genotypes varied from 0.567 to 0.922, which means a vast genetic diversity was found in Chinese cultivated germplasm of A.auricula-judae. The co-phenetic correlation between the clustering and the data matrices was estimated at 0.92, which means the clustering result reflects the germplasm genetic relationships very well. UPGMA dendrogram grouped the 32 genotypes into 4 main clusters at a similarity index value of 0.67. The principal coordinate analysis also divided 32 test cultivars into 3 groups.
     4. The complete nuclear rDNA gene complex of AU110 was obtained firstly, and the primer pairs which were more suitable for amplify IGS region of A.auricula-judae were designed. The complete nuclear rDNA length of AU110 was 11209bp, which contains the 18S,5.8S and 28S rDNA gene as well as the ITS and IGS regions. The exact size of each gene was estimated namely 1805 bp for the 18S rDNA,513 bp for ITS sequence,3135 bp for 28S,2334 bp for IGS1,118 bp for 5S and 3304 bp for IGS2 region. IGS1 region have no repeat, and the sequence of IGS2 5'end region was GC-rich (from 8551bp to 8638bp), with (GGGGA)n repeat, which increased the difficulty in complete IGS2 sequencing, and (TTAGG)n repeat existed in the sequence from 8768bp to 8799bp as from 8845bp to 8880bp in IGS2 sequence.
     5. The IGS1 matrix length of 32 test cultivars of A.auricula-judae was 2312bp, which contain conserves sites 2205bp, variable sites 109bp; The matrix length of IGS2 3'end was 801bp, which contain conserves sites 757bp, variable sites 44bp. Based on the IGS1 complete sequence and IGS2 3'end, the phylogenetic relationship among test cultivars was analyzed by applying the minimum evolution and maximum parsimony methods. The research result demonstrated that the variability of IGS region was high, and a vast genetic diversity in the cultivated germplasm found in China. The 32 test strains were divided into 5 or 6 groups based on IGS1 complete sequence and IGS2 3'end respectively, while divided into 3 groups based on integrated IGS1 and IGS2 3'end region analysis. The integrated sequence analysis contained more variable information than the analysis based on single gene, and can more effectively reflect the phylogenetic relationships among test strains.
     6. The somatic incompatibility reactions among test cultivars have abundant polymorphism, and obvious difference was found among test strains in three aspects: reaction types, reaction intensity and pigment in the junction of mycelium. The reaction types can be divided into hyphal aggregate, ravine and clear zone. Intensity was scored with compatibility, weak incompatibility and strong incompatibility. Pigment types were indicated by the presence or absence of pigment. There were no correlation among the reaction types, pigment production, and intensity in the SIT phenomenon. UPGMA dendrograms were constructed by setting all the tested strains as samples, and then the types, pigment and intensity respectively as variables. The clustering analysis based on SIT intensity could reflect the relationship among the test strains, while the clustering analysis based on SIT types and pigment failed.
     7. In the UPGMA clustering analysis based on SIT intensity among test strains, Euclidean distance similarity coefficients was ranged from 3.724 up to 10.633; the co-phenetic correlation between the clustering and the data matrix was estimated at 0.78, which means the clustering result reflects the germplasm genetic relationships very well. The UPGMA dendrogram based on SIT intensity grouped all strains into 6 main clusters at a Euclidean distance index value of 7.26. The principal coordinate analysis also divided 32 test cultivars into 3 groups. The test strains has visible somatic incompatibility reactions were divided into different group in UPGMA and PCO analysis, while those strains compatible with each other were cluster together, the SIT reaction intensity and genetic relationship were positive correlation.
     As a whole, there was rich genetic diversity in Chinese cultivated germplasm of A.auricula-judae, most strains originated from different cultivated area existed obvious genetic divergence, while the strains originated from same cultivated area have a high similarity genetic background. The 32 tested strains could be divided into three groups corresponding to the Northeast, the South,Central and the Northwest, as well as the North and Southwest regions respectively, which also proved that the cultivated strains were mostly domesticated from the local wild-type strains. The genetic background of cultivated strains in Northeast were similarity, and the strain introduction phenomenon can be found in Central and North region of China, partial strains demonstrated higher similarity coefficients and were suspected to be synonymous. Meanwhile, the result proved all the four analytical methods were reliable for analyze the genetic diversity in Chinese cultivated germplasm of A.auricula-judae. The research conclusion obtained in the present work provides significant information for further cross-breeding and genetic improvement of A. auricula-judae, and providing powerful tools for the development of strains rapidly identification, genetic diversity analysis and strains-special SCAR markers in A.auricula-judae.
引文
1.边银丙,罗信昌,王斌,金德敏,周启.黑木耳电泳核型分析.菌物系统,2000,19,1:78-80.
    2. 陈春涛,姚占芳.33个香菇栽培菌株的拮抗性测定及鉴定中的应用.中国食用菌,1996,15:3-4.
    3. 陈强,李翠新,李辉平,张金霞.真菌营养不亲和研究进展.食用菌学报,2007,14: 73-77.
    4.陈学军,程志芳,陈劲枫,娄群峰,耿红.辣椒种质遗传多样性的RAPD和ISSR及其表型数据分析.西北植物学报,2007,27:662-670.
    5. 陈影,姚方杰,刘桂娟,王海英,刘黎军,陆伟.黑木耳栽培种质资源的农艺性状多样性研究.中国菌物学会2009学术年会论文摘要集,2009,123.
    6. 戴肖东,张介弛,韩增华.黑木耳“黑29”菌株的特性及栽培要点.食用菌,2003:10-11.
    7. 戴玉成,周丽伟,杨祝良,文华安,图力古尔,李泰辉.中国食用菌名录.菌物学报,2010,29(1):1-21.
    8. 范俊,王淑珍.松茸过氧化物酶和酯酶同工酶的研究.食用菌,2001,23:6-7.
    9. 盖钧镒主编.试验统计方法.北京:中国农业出版社,2000.
    10.高山.基于nLSU rDNA和ITS序列对侧耳属系统发育关系的研究.[硕士学位论文].武汉:华中农业大学图书馆,2008.
    11.郭晓帆,陈艳秋.黑木耳品种比较试验.延边大学农学学报,2005,27:40-43.
    12.郭砚翠,刘凤春,王雅茹,李国华,王玉文.黑木耳原生质体再生株选育高产菌株研究.食用菌学报,1994.1:7.10.
    13.韩新才,杨新美.光木耳和琥珀木耳种间营养缺陷型原生质体融合的研究.真菌学报,1991,10:223-230.
    14.何正文,刘运生,陈立华,曹美鸿,夏家辉.正交设计直观分析优化PCR条件.湖南医科大学学报,1998,23:403-404.
    15.候军,杜爱玲,谢庆华.黑木耳98.1生物学特性及栽培技术要点.河南农业科学,2001:21-22.
    16.胡润芳,薛珠政.白灵侧耳菌丝营养生理特性研究.食用菌学报,2005,12:21-26.
    17.胡延吉,赵檀方.小麦农艺性状主成分分析与种质资源评价德研究.作物研究,1994,8(2):31-34.
    18.黄晨阳,张金霞,郑素月,管桂萍,张瑞颖.刺芹侧耳rDNA的IGS2多样性分析.农 业生物技术学报,2005,13:592-595.
    19.黄亚东.木耳的极性研究.[硕士毕业论文].武汉:华中农业大学图书馆,2004.
    20.贾建航,金德敏,边银丙.李金国,李荣旗,蒋兴村,王斌,翁曼丽.食用真菌空间诱变育种研究.食用菌学报,1998,5:11-16.
    21.孔秋生.萝卜种质资源遗传多样性和亲缘关系的研究.[硕士毕业论文].武汉:华中农业大学图书馆,2003.
    22.李鸿雁.扁蓿豆种质资源遗传多样性的研究.[博士毕业论文].呼和浩特:内蒙古农业大学图书馆,2008.
    23.李雪玲,姚一建.基于28S rDNA序列构建侧耳属系统发育树.菌物学报,2004,23:345-350.
    24.李英波,罗信昌.香菇菌株限制性片段长度多态性.中国食用菌,1995:10-16.
    25.李玉.中国黑木耳.长春:长春出版社,2001,1-12.
    26.梁宏.彭友良.张国珍,陈万权,刘泰国.腥黑粉菌属3种检疫性真菌rDNA-IGS区的扩增及其序列分析.植物病理学报,2006,36(5):407-412.
    27.林范学,林芳灿.香菇亲本菌株及其杂交后代的RAPD分析.菌物系统,1999,18:279-283.
    28.凌建亚,彭俊峰.核糖体DNA ITS区应用于虫草属无性型鉴定的初步研究.山东农业大学学报(理学版),2003,38:113-117.
    29.吕作舟.食用菌栽培学.北京:中国农业出版社,2006,130-155.
    30.马富英,罗信昌.28SrDNA PCR-RFLP分析在侧耳属系统发育研究中的应用.华中农业大学学报,2002,21:201-205.
    31.马庆芳,孔祥辉,戴肖东,韩增华,张丕奇.东北地区黑木耳生产菌株栽培特性研究.食用菌学报,2007,14:59-61.
    32.马志刚.分子标记在侧耳属菌株分类中的应用.[硕士学位论文].武汉:华中农业大学图书馆,2005.
    33.卯晓岚.中国大型真菌.河南:河南科学技术出版社,2000,507.
    34. 孟宇,蒋昌顺,廖问陶,张义正.糙皮侧耳(Pleurotus ostreatus)的AFLP指纹图谱分析.遗传学报,2003,30:1140-1146.
    35.钱迎倩.生物多样性与生物技术.中国科学院院刊,1994,2:135-138.
    36.秦莲花.香菇菌株特异性分子标记的构建研究. [博士学位论文].南京:南京农业大学,2005.
    37.曲绍轩.白灵侧耳栽培品种不亲和性因子和rDNA-IGS2序列分析.[硕士学位论文].北京:中国农业科学院研究生院,2008.
    38.唐传红,张劲松,陈明杰,李泰辉,曹晖,谭琦,潘迎捷.利用拮抗试验和RAPD 对灵芝属菌株进行分类研究.微生物学通报,2005,32:72-75.
    39.唐利华.中国黑木耳主要栽培菌株分子指纹分析.[硕士学位论文].武汉:华中农业大学图书馆,2006.
    40.王川易,郭宝林.植物核基因组核糖体基因间隔区序列的结构特点及其在系统发育研究中的应用.武汉植物学研究.2008,26(4):417-423.
    41.王芳,周延清.TRAP标记技术在植物研究中的应用.河南农业科学,2008,6:15-17.
    42.王磊,蔡德华,宿红艳,张丽,徐圣涛.拮抗实验和RADP对鸡腿菇栽培菌株亲缘关系的研究.安徽农业科学,2006,34:3903-3904.
    43.王青山,李葱葱,王晶,王丹,张明.AFLP分子标记技术及应用研究进展.吉林农业科学,2005,30:29-33.
    44.王胜军,陆作楣,万建民.采用表型和分子标记聚类研究杂交籼稻亲本的遗传多样性.中国水稻科学,2006,20:475-480.
    45.王述民,曹永生,Redden RJ.我国小豆种质资源形态多样性的鉴定和分类研究.作物学报,2002,28(6):727-733.
    46.王玉江,韩增华,张介弛,张丕奇,孔祥辉,马庆芳,戴肖东,朴万华,孟继海.黑木耳10个栽培菌株栽培特性的比较.食用菌,2003,21:11-12.
    47.王振和,武忠伟,王斌.杏鲍菇菌丝营养生理特性研究.河南师范大学学报(自然科学版),2007,35:139-143.
    48.吴康云,边银丙.黑木耳种内杂交子的鉴定技术.菌物系统,2002,21(2):210-214.
    49.吴舒致,黎裕.谷子种质资源的主成分分析和图论主成分分类.西北农业学报,1997,6(2):46-50.
    50.吴学谦,李海波,魏海龙,付立忠,吴庆其,彭华正,朱睦元.SCAR分子标记技术在香菇菌株鉴定上的应用研究.菌物学报,2005,24:259-266.
    51.武耀廷,张天真,殷剑美.利用分子标记和形态学性状检测的陆地棉栽培品种遗传多样性.遗传学报,2001,28:1040-1050.
    52.夏家辉.丝瓜种质资源遗传多样性的研究.[硕士毕业论文].武汉:华中农业大学图书馆,2007.
    53.肖海峻.鹅观草种质资源遗传多样性研究.[博士毕业论文].呼和浩特:中国农业科学院研究生院草原研究所,2007.
    54.肖扬.几种新型分子标记技术在中国香菇种质资源遗传多样性研究中的应用.[博士毕业论文].武汉:华中农业大学图书馆,2009.
    55.谢宝贵,刘维侠,王秀全,江玉姬.金针菇子实体颜色基因的分子标记. 《福建农林大学学报(自然科学版)》,2004,33:363-368.
    56.许峰,刘宇,王守现,张英春,赵爽,耿小丽,孟莉莉.北京地区白色金针菇菌株的SRAP分析.中国农学通报,2010,26:55-59.
    57.许美燕,唐传红,张劲松,唐庆九,杨焱,贾薇,潘迎捷.利用SRAP和ISSR建立快速鉴定灵芝属菌株的SCAR标记.菌物学报,2008,27:707-717.
    58.阎培生.中国木耳属菌株的分子鉴定及分子系统发育关系研究.[博士毕业论文].武汉: 华中农业大学图书馆,1998.
    59.阎培生,罗信昌,周启.利用RAPD技术对木耳属菌株进行分类鉴定的研究.菌物系统,2000:29-33.
    60.杨国良,杨秀琴,杨晓仙,李育岳,汪麟.毛木耳与黑木耳原生质体融合育种研究.1990,10:14-16.
    61.杨新美.食用菌栽培学.北京:中国农业出版社,1996,167-180.
    62.姚占芳,吴云汉.黑木耳的生物学特性及生产性能的研究.河南农业大学学报,1991,25: 185-192.
    63.袁长婷.核糖体RNA基因间隔区ITS及IGS在真菌分子生物学鉴定和分型中的应用.[博士学位论文].上海:第二军医大学图书馆,2001.
    64.曾凡亚,张义正.食用真菌线粒体DNA的直接分析.微生物学通报,1998,25:5-9.
    65.张红玉,付立忠,吴学谦,李海波,魏海龙,吴庆其,王立安.灵芝原生质体融合子的SRAP分子标记鉴定.食用菌学报,2009,16:5-9.
    66.张金霞,黄晨阳,张瑞颖,管桂萍.中国栽培白灵侧耳的RAPD和IGS分析.菌物学报,2004,23:514-519.
    67.张金霞,谢宝贵.食用菌菌种生产与管理手册.中国农业出版社,2006.
    68.张松,李庆文,黄光聆.灵芝酯酶同工酶的研究.食用菌学报,1995,2:23-26.
    69.张献龙,唐克轩主编.植物生物技术.北京:科学出版社.2004:406-416.
    70.张志华,洪葵.核酸序列直接分析在真菌鉴定方面的应用.西南热带农业大学学报,2006,12:39-43.
    71.赵冰.蜡梅种质资源遗传多样性与核心种质构建的研究.[博士毕业论文].北京:北京林业大学图书馆,2008.
    72.赵厚坤,李云龙,刘柱.黑木耳杂交育种试验.中国食用菌,2008,27:19-21.
    73.赵丽.紫外线诱变筛选黑木耳优良菌株及RAPD鉴定.[硕士毕业论文].延吉:延边大学图书馆,2009.
    74.郑素月,黄晨阳,张金霞.中国栽培平菇的RAPD分析.山东农业大学学报(自然科学版),2005,36:186-190.
    75.郑素月,张金霞,王贺祥,黄晨阳.我国栽培平菇近缘种的多相分类.中国食用菌,2003,22:3-6.
    76.朱虎.高赖氨酸蛋白基因转化银耳研究.[硕士学位论文].福州:福建农林大学图书馆,2004.
    77. Akopyanz N, Bukanov N, Westblom TU, Berg DE. PCR-based RFLP analysis of DNA sequence diversity in the gastric pathogen Helicobacter pylori. Nucleic Acid Research,1992,20:6221-6225.
    78. Alker W, Doolittle W. Redividing the basidiomycetes on the basis of 5S rRNA sequences. Nature,1982,299:723-724.
    79. Alwala S, Kimbeng CA, Veremis JC, Gravois KA. Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica,2008,164:37-51.
    80. Alwala S, Suman A, Arro JA,Veremis JC, Kimbeng CA. Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci,2006,46:448-455.
    81. Anderson MJ. PCO:a FORTRAN computer program for principal coordinate analysis. Department of Statistics, University of Auckland, New Zealand,2003.
    82. Austen RD, Ganley Barry S. Extraordinary ribosomal spacer length heterogeneity in a Neotyphodium endophyte hybrid:Implications for concerted evolution. Genetics, 1998,150:1625-1637.
    83. Berloo RV, Zhu A, Ursem R, Verbakel H, Gort G, Eeuwijk FAV. Diversity and linkage disequilibrium analysis within a selected set of cultivated tomatoes. Theor Appl Genet,2008,117:89-101.
    84. Brower AVZ, DeSalle R, Vogler A. Gene trees, species trees and systematics: acladistic perspective. Annu Rev Ecol Syst,1996,27:423-450.
    85. Bunyard BA, Chaichuchote S, Nicholson MS, Royse DJ. Ribosomal DNA analysis for resolution of genotypic classes of Pleurotus. Mycol Res,1996a,100:143-150.
    86. Bunyard BA, Nicholson MS, Royse DJ. Phylogeny of the genus Agarics inferred from restriction analysis of enzymatically amplified ribosomal DNA. Fungal Genet Biol,1996b,20:243-253.
    87. Ceresini PC, Shew HD, Vilgalys RJ, Cubeta MA. Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco in North Carolina. Mycologia,2002,94(3): 437-449.
    88. Chen G, Luo YC, Ji BP, Li B, Guo Y, Li Y, Su W, Xiao ZL. Effect of polysaccharide from Auricularia auricula on blood lipid metabolism and lipoprotein lipase activity of ICR mice fed a cholesterol-enriched diet. J Food Sci,2008,73(6):103-108.
    89. Chen JF, Hu JG, Vick BA, Jan CC. Molecular mapping of a nuclear male-sterility gene in sunflower (Helianthus annuus L.) using TRAP and SSR markers. Theor Appl Genet,2006,113:122-127.
    90. Chen X, Michelle S, Romaine CP. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol,2000,66:4510-4513.
    91. Chu CG, Xu SS, Friesen TL, Faris JD. Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breeding,2008,22:251-266.
    92. Cortesi P, McCulloch CH, Song H, Lin H, Milgroom MG. Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. Genetics,2001,159:107-118.
    93. Debets F, Yang X, Griffiths AJF. Vegetative incompatibility in Neurospora-its effect on horizontal transfer of mitochondrial plasmids and senescence in natural populations. Curr Genet,1994,26:113-119.
    94. Dutta SK, Veima M. Primary structure of the nontranscribed spacer region and flanking sequence of the ribosomal DNA of Neuropora crassa and comparision with other organisms. Biochem Biophys Res Co,1990,170:187-193.
    95. Gandeboeuf D, Dupre C, Roeckel-Drevet P, Nicolas P, Chevalier G. Grouping and identification of Tuber Species using RAPD markers. Can J Microbiol,1997,75: 36-45.
    96. Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L.Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol,2003,69:616-624.
    97. Godwin ID, Aitken EAB, Smith LW. Application of inter simple sequence repeat (ISSR) markers to plant genetics. ElectropHoresis,1997,18:1524-1528.
    98. Gonzalez D, Cubeta MA, Vilgalys R. Phylogenetic utility of indels within ribosomal DNA and β-tubulin sequences from fungi in the Rhizoctonia solani species complex. Mol Phylogenet Evol,2006,40:459-470.
    99. Gorokhova E, Doeling TE, Weider LJ, Crease TJ, Elser JJ. Functional and ecological significance of rDNA intergenic spacer variation in a clonal organism under divergent selection for production rate. Proc R Soc Lond B,2002,269:2373-2379.
    100. Groot MJA, Bundock P, Hooykaas PJJ. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol,1998,16:839-842.
    101. Guidot A, Lumini E, Debaud JC, Marmeisse R. The nuclear rDNA intergenic spacer as a target sequence to study intraspecific diversity of the ectomycorrhizal Hebelama cylindrosporum directly on Pinnus root systems. Appl Envion Microbiol, 1999,65:903-909.
    102. Guillaumin JJ, Anderson JB, Legrand P, Ghahari S, Berthelay S. A comparison of different methods for the identification of genets of Armillaria spp. New Phytol, 1996,133:333-343.
    103. Guler P. Somatic incompatibility in Agaricus bitorquis (Quel.) Sacc. Afr J Biotechnol,2008,7:276-281.
    104. Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser,1999,41:95-98.
    105. Hamza S, Hamida WB, Rebai A, Harrabi M. SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits.Euphytica, 2004,135:107-118.
    106. Hobbs C. Medicinal mushrooms:an exploration of tradition, healing and culture. Botanica Press, Santa Cruz, Calif,1995.
    107. Hu J, Ochoa OE, Truco MJ, Vick BA. Application of TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica,2005,144:225-235.
    108. Hu J, Vick BA. Target Region Amplification Polymorphism:A novel marker technique for plant genotyping. Plant Mol Biol Rep,2003,21:289-294.
    109. Huysmans E. The nucleotide sequences of the 5S rRNA of four mushroom and their use in studying the phylogenetic position of basidiomycetes among the eukaryotes. Nucleic Acids Res,1983,11:2871-2880.
    110. Iwen PC, Hinrich SH, Rupp ME. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol,2002,40:87-109.
    111. Johannesson H, Stenlid JN. Nuclear reassortment between vegetative mycelia in natural populations of the basidiomycete Heterobasidion annosum. Fungal Genet Biol,2004,41:563-570.
    112. Jolliffe IT. Principal component analysis. Springer Series in Statistics,2002.
    113. Joshi SP, Ranjekar PK, Gupta VS. Molecular markers in plant genome analysis. Curr Sci India,1999,77:230-240.
    114. Kay E, Vilgalys R. Spatial distribution and genetic relationships among individuals in a natural population of the oyster mushroom Pleurotus ostreatus. Mycologia, 1992,84:173-182.
    115. Khush RS, Becker E, Wach M. DNA amplification polymorphisms of the cultivated mushroom Agaricus bisporus. Appl Envion Mcrobiol,1992,58:2971-2977.
    116. Kirk PM, Cannon PF, Minter DW, Stalpers JA.Dictionary of the fungi (10th edition). CAB International, Wallingford,2008.
    117. Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific markers. The Plant J,1993,4:403-410.
    118. Kumar S, Tamura K, Nei M. MEGA 3.1:Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform,2004,5: 150-163.
    119. Kumar V, Sharma S, Sharma AK, Sharma S, Bhat KV. Comparative analysis of diversity based on morpho-agronomic traits and microsatellite markers in common bean. Euphytica,2009,170:249-262.
    120. Lanfro L, Myss P, Marzachi G, Bonfante P. DNA probes for identification of the ectomycorrhizal fungus Tuber magnatum Pico. FEMS Microbiol Lett,1993,114: 245-252.
    121. Lele S, Richtsmeier JT. Euclidean distance matrix analysis:a coordinate-free approach for comparing biological shapes using landmark data. Am J Phys Anthropol,1991,86:415-427.
    122. Lind M, Stenlid J, Olson A. Genetics and QTL mapping of somatic incompatibility and intraspecific interactions in the basidiomycete Heterobasidion annosum s.l. Fungal Genet Biol,2007,44:1242-1251.
    123. Liu JC, Liu LK, Hou N, Zhang AM, Liu CG. Genetic diversity of wheat gene pool of recurrent selection assessed by microsatellite markers and morphological traits. Euphytica,2007,155:249-258.
    124. Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Gene,2005,111:782-794.
    125. Loftus MG, Lodder SC, Legg EJ. Molecular mushroom breeding.In Elliott TJ (ed.). Science and Cultivation of Edible Fungi. Balkema, Rotterdam, Netherlands,1995, 2:3-9.
    126. Ma ZC, Wang JG, Zhang LN, Zhang YF, Ding K. Evaluation of water soluble β-D-glucan from Auricularia auricular-judae as potential anti-tumor agent. Carbohyd Polym,2010,80:977-983.
    127. Machouart M, Lacroix C, Bui H. Polymorphisms and ihtronic structures in the 18S subunit ribosomal RNA gene of the fungi Scytalidium dimidiatum and Scytalidium hyalinum. FEMS Microbiol Lett,2004,238:455-467.
    128. Mantel M. The detection of disease clustering and generalized regression approach. Cancer Res,1967,27:209-220.
    129. Marcais B, Cael O, Delatour C. Genetics of somatic incompatibility in Collybia fusipes. Mycol Res,2000,104:304-310.
    130. Martin F, Selosse MA, Le Tacon F. The nuclear rDNA intergenic spacer of the ectomycorrhizal basidiomycete Laccaria bicolor:structural analysis and allelic polymorphism. Microbiology,1999,145:1605-1611.
    131. Masabide S. Interspecific heterokaryon formation between Auricularia auricular-judae and Auricularia polytricha by electrical protoplast fusion. Research Bulletins of the College Experiment Forests,1992,49:219-259.
    132. Matsumoto T, Obatake Y, Fukumasa-Nakai Y, Nagasawa E. Phylogenetic position of Pholiota nameko in the genus Pholiota inferred from restriction analysis of ribosomal DNA. Mycoscience,2003,44:197-202.
    133. Matsushita N, Kikuchi K, Sasaki Y, Guerin-Laguette A, Lapeyrie F, Vaario L M, Intini M, Suzuki K. Genetic relationship of Tricholoma matsutake and T. nauseosum from the Northern Hemisphere based on analyses of ribosomal DNA spacer regions. Mycoscience,2005,46(2):90-96.
    134. Micali CO, Smith ML. On the independence of barrage formation and heterokaryon incompatibility in Neurospora crassa. Fungal Genet Biol,2003,38:209-219.
    135. Moss T. A transcriptional function for thr repetive ribosomal spacer in Xenopus laevis. Nature,1983,302:223-228.
    136. Neale DB, Williams CG Restriction fragment length polymorpHism mapping in conifers and applications to forest genetics and tree improvement. Can J Forest Res, 1991,21:545-554.
    137. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH. Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform, 2008,4:193-201.
    138. Nicholson MS, Bunyard BA, Royse DJ. Phylogenetic Implications of Restriction Maps of the Intergenic Regions Flanking the 5S Ribosomal RNA Gene of Lentinula Species. Fungi,2009,2(4):48-57.
    139. Paran I, Michelmore RW. Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet,1993,85:985-993.
    140. Rayner ADM.The challenge of the individualistic myceclium. Mycologia,1991,83: 48-71.
    141. Redecker D, Szaro TM, Bowman RJ, Bruns TD. Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol Ecol,2001,10:1025-1034.
    142. Perez-Jimenez RM, Jimenez-Diaz RM, Lopez-Herrera CJ. Somatic incompatibility of Rosellinia necatrix on avocado plants in southern Spain. Mycol Res,2002,106: 239-244.
    143. Rohlf FJ. NTSYS-pc:Numerical Taxonomy and Multivariate Analysis System. Version 2.1. Exeter Publications, New York,2000.
    144. Saito T, Tanaka N, Shinozawa T. Characterization of subrepeat regions within rDNA intergenic spacers of the edible basidiomycete Lentinula edodes. Biosci Biotechnol Biochem,2002,66:2125-2133.
    145. Sneath PHA, Sokal RR. Numerical Taxonomy. WH Freeman and Company, San Francisco,1973.
    146. Sokal RR, Michener CD. A statistical method for evaluating systematic relationships. Univ Kans Sci Bull,1958,38:1409-1438.
    147. Sonnenberg ASM, Baars JJP, Hendrickx PM, Kerrigan RW. Breeding Mushrooms:State of the Art. Acta Edulis Fungi,2005,12:163-174.
    148. Sorkheh K, Shiran B, Gradziel TM, Epperson BK, Martinez-Gomez P, Asadi E. Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm:genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica,2007, 156:327-344.
    149. Stenlid J, Vasiliauskas R. Genetic diversity within and among vegetative compatibility groups of Stereum sanguinolentum determined by arbitrary primed PCR. Mol Ecol,1998,7:1265-1274.
    150. Tang LH, Xiao Y, Li L, Guo Q, Bian YB. Analysis of genetic diversity among Chinese Auricularia auricula cultivars using combined ISSR and SRAP markers. Curr Microbiol,2010,61:132-140.
    151. Terashima K, Cha JY, Nagasawa E, Miura K. Genetic variation in Armillaria mellea subsp. nipponica estimated using IGS-RFLP and AFLP analyses. Mycoscience, 2006,47:94-97.
    152. Terashima K, Matsumoto T, Hasebe K, Fukumasa-Nakai Y. Genetic diversity and strain-typing in cultivated strains of Lentinula edodes (the shii-take mushroom) in Japan by AFLP analysis. Mycol Research,2002,106(1):34-39.
    153. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res,1994, 22:4673-4680.
    154. Thorn RG, Moncalvo JM, Reddy CA, Vilgalys R. Phylogenetic analyses and the distribution of nematophagy support a monophyletic Pleurotaceae within the polyphyletic pleurotoid-lentinoid fungi. Mycologia,2000,92:241-252.
    155. Van der Nest MA, Slippers B, Stenlid J, Wilken PM, Vasaitis R, Wingfield MJ, Wingfield BD. Characterization of the systems governing sexual and self-recognition in the white rot homobasidiomycete Amylostereum areolatum. Curr Genet,2008,53:323-336.
    156. Wang L, Hu X, Feng Z, Pan Y. Development of AFLP markers and phylogenetic analysis in Hypsizygus marmoreus. J Gen Appl Microbiol,2009,55:9-17.
    157. Wang J, Guo L, Zhang K, Wu Q, Lin J. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresource Technol,2008,99:8525-8527.
    158. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res, 1990,18:6531-6535.
    159. Worrall JJ. Somatic incompatibility in basidiomycetes. Mycologia,1997,89:24-36.
    160. Wu Q, Tan ZP, Liu HD, Gao L, Wu SJ, Luo JW, Zhang WZ, Zhao TL, Yu JF, Xu X H. Chemical characterization of Auricularia auricular polysaccharides and its pharmacological effect on heart antioxidant enzyme activities and left ventricular function in aged mice. Int J Biol Macromol,2010,46(3):284-288.
    161. Xiao Y, Liu W, Lu YY, Gong WB, Bian YB. Applying target region amplification polymorphism markers for analyzing genetic diversity of Lentinula edodes in China. J Basic Microb,2010,50:475-483.
    162. Ye YM, Zhang JW, Ning GG, Bao MZ. A comparative analysis of the genetic diversity between inbred lines of Zinnia elegans using morphological traits and RAPD and ISSR markers. Sci Hortic-Amsterdam,2008,118:1-7.
    163. Yu JW, Yu SX, Lu CR, Wang W, Fan SL, Song MZ, Lin ZX, Zhang XL, Zhang JF. High-density Linkage Map of Cultivated Allotetraploid Cotton Based on SSR, TRAP, SRAP and AFLP Markers. J Integr Plant Biol,2007,49:716-724.
    164. Yue B, Vick BA, Cai X, Hu J. Genetic mapping for the Rf1 (fertility restoration) gene in sunflower (Helianthus annuus L.) by SSR and TRAP markers. Plant Breeding,2010,129:24-28.
    165. Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DN A fingerprinting. European Pattern Application,1993,112-117.
    166. Zhang JX, Huang CY, Ng TB, Wang HX. Genetic polymorphism of ferula mushroom growing on Ferula sinkiangensis. Appl Microbiol Biotechnol,2006,71: 304-309.
    167. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994, 20:176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700