可降解多孔型丝素蛋白/羟基磷灰石/BMP-2修复兔桡骨骨缺损
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]探讨可降解多孔型丝素蛋白/羟基磷灰石/BMP-2(SF/HA/BMP-2)复合人工骨的成骨作用及作为骨替代材料的可行性,期望为临床治疗骨缺损提供新的人工骨材料。
     [方法]将可降解多空型SF/HA与具有诱导成骨作用的BMP-2复合,构建具有成骨诱导作用的人工骨。将54只新西兰大白兔麻醉生效后,充分显露左侧桡骨中段,造成15mm节段骨缺损。实验组植入SF/HA/BMP-2复合物,实验对照组植入SF/HA材料,空白对照组骨缺损区不植入任何材料。于术后第4、8及12周行X线摄片检查,观察骨缺损修复及骨塑形情况。参照Lane-Sandhu X线评分标准对各组桡骨缺损的骨修复程度评分。标本大体观察并行HE染色及Masson染色组织学观察,比较各组动物的骨修复情况。
     [结果]实验组、实验对照组及空白对照组的放射学及组织学检查显示,新骨生成有统计学差异(P<0.05),实验组优于实验对照组优于空白对照组;大体观察及放射学检查证实:实验组兔桡骨缺损完全愈合;实验组对照组缺损处少部分骨愈合;空白对照组缺损基本无骨修复作用,由纤维组织充填。
     [结论]SF/HA/BMP-2降解速率适宜,能较快被骨组织取代,有较好的骨缺损修复能力,基本达到现代骨组织工程学的要求。
Objective:To evaluate the bone formation of the biodegradable porous silk fibroin/ hydroxyapatite/bone morphogenetic protein-2 (SF/HA/BMP-2) to heal a segmental bone defect, and to investigate the feasibility of SF/HA/BMP-2 as a bone substitute material. The article hopefully provide a new artificial bone material for clinical bone defects.
     Methods:The biodegradable porous SF/HA/BMP-2 was combined with BMP-2 which has induction of bone formation.54 rabbits were randomly divided into 3 groups. A segmental bone defect (15 mm in length) was created at a left radial in each rabbit. SF/HA/BMP-2 was implanted into the bone defects in the experimental group through open operation, SF/HA was implanted into the bone defects in the experimental control group, and nothin implanted into in the blank control group. The curative effect was evaluated by radiographic examination, histology analysis and eyes observation in each group at post-operative 4,8 and 12 week, respectively.
     Result:The rate and quality of new bone formation were significantly different in the experimental group, the experimental control group and the blank control group (P<0.05). The segmental bone defects were complete union in the experimental groups, while the defects were partial union in the experimental control groups. In the defects in blank groups, there were no formation of new bone after operation and bone defects were finally filled with fibrous tissue.
     Conclusion:SF/HA/BMP-2 has a suitable degradation rate and can be replaced by normal bone tissue appropriately. It has a better ability to repair bone defects, and can meet the requirements of modern bone tissue engineering.
引文
1 李玉宝.骨修复纳米生物材料及其发展前景.中国国际新材料产业研讨会,生物医用材料专业论坛,2004:4-11.
    2 张亚平,高家诚,王勇.人工关节材料的研究与展望.世界科技研究与发展,2000,22:47-48.
    3 United States Markets for Orthopedic Biomaterials. Toronto, ON:Millennium, Research Group; 2005.
    4 Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes:an update. Injury,2005, 36 (Supplement 1):S20-S27.
    5 Lewandrowski K, Gresser JD, Wise DL, et al. Bioresorbable bone graft substitutes of different osteoconductivities:a histologic evaluation of osteointegration of poly (propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials,2000, 21:757-764.
    6 Smartt JM, Karmacharya J, Gannon, et al. Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement:assessment of biocompatibility, osteoconductivity, and remodeling capacity. Plast Reconstr Surg, 2005,115:1642-1650.
    7 Flalkov JA, Holy CE, Shoichet MS, et al. In vivo bone enginering in a rabbit femur. J Cranioface Surg,2003,14:324-332.
    8 Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg,2005,13:77-86.
    9 Zijderveld SA, ten Bruggenkate CM, van Den Bergh JP, Schulten EA. Fractures of the iliac crest after split-thickness bone grafting for preprosthetic surgery:report of 3 cases and review of the literature. J Oral Maxillofac Surg,2004,62:781-786.
    10 Mankin HJ. The changes in major limb reconstruction as a result of the development of allografts. Chir Organi Mov,2003,88:101-113.
    11 Enncking WF, Campanacci DA. Retrieved human allografts:a clinical-pathological study. J Bone Joint Surg (Am),2001,83:971-986.
    12 Boone DW. Complications of iliac crest graft and bone grafting alternatives in foot and ankle surgery. Foot Ankle Clin,2003,8:1-14.
    13吴王喜,周磊.骨组织工程生物活性支架研究进展.中华创伤骨科杂志,2006,8:165-168.
    14 Li S, De Wijn JR, Li J, et al. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng,2003,90:535-548.
    15曹谊林,周广东.21世纪组织工程面临的机遇与挑战.中华医学杂志,2005,85:2523-2525.
    16 S'anchez-Salcedo S, Nieto A, Vallet-Regf M. Hydroxyapatite/β-tricalcium phosphate/ agarose macroporous scaffolds for bone tissue engineering. Chemical Engineering Journal,2008,137:62-71.
    17 Wang G, Yang H, Li M, et al. Silk fibroin/hydroxyapatite (SF/HA) co-cultured with rabbit bone marrow stromal cells (BMSCs) for the healing of a segmental bone defect. J Bone Joint Surg [Br],2010,2010;92-B:320-325.
    18王根林,杨惠林,蔡鑫,李明忠,卢神州,朱雪松,陈晓庆,干旻峰.丝素蛋白/羟基磷灰石细胞相容性及异位成骨作用.中华实验外科杂志2009,26(6):696-698.
    19施咏毅,王根林,杨惠林,等.多孔型丝素蛋白/羟基磷灰石复合脂肪间充质干细胞修复兔股骨骨缺损.中国组织工程研究与临床康复,2010,14(8):1341-1344.
    20 Jin QM, Takita H, Kohgo T, et al. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation [J]. J Biomed Mater Res,2000,52: 491-499.
    21 Hoh S, Kikuchi M, Takakuda K, et al. The biocompatibillity and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2 [J]. Biomed Mater Res,2001,54:445-453.
    1. Smartt JM, Karmacharya J, Gannon, et al. Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement:assessment of biocompatibility, osteoconductivity, and remodeling capacity. Plast Reconstr Surg, 2005,115:1642-1650.
    2. DeCoster TA, Gehlert RJ, Mikola EA, Pirela-Cruz MA. Management of posttraumatic segmental bone defects. J Am Acad Orthop Surg.2004,12:28-38.
    3. Mankin HJ. The changes in major limb reconstruction as a result of the development of allografts. Chir Organi Mov,2003,88:101-113.
    4. Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg,2005,13:77-86.
    5. Zijderveld SA, ten Bruggenkate CM, van Den Bergh JP, Schulten EA. Fractures of the iliac crest after split-thickness bone grafting for preprosthetic surgery:report of 3 cases and review of the literature. J Oral Maxillofac Surg,2004,62:781-786.
    6. Lewandrowski K, Gresser JD, Wise DL, et al. Bioresorbable bone graft substitutes of different osteoconductivities:a histologic evaluation of osteointegration of poly (propylene glycol-co-fumaric acid)-based cement implants in rats[J]. Biomaterials,2000,21:757-764.
    7. 曹谊林,周广东.21世纪组织工程面临的机遇与挑战.中华医学杂志,2005,85:2523-2525.
    8. Lane JM, Sandhu HS, Current approaches to experimental bone grafting. Orthop Clin of North Am,1987,18:213-224.
    9. 郭建刚,赵然,侯桂英.等.骨组织成分与Masson三色染色反应的关系分析.中医正骨,2001,13:5-6.
    10.王俊艳,梁玉.试用Masson染色评价骨组织的成熟程度.解剖科学进展,2004,10:17-18.
    11.吴王喜,周磊.骨组织工程生物活性支架研究进展.中华创伤骨科杂志,2006,8:165-168.
    12. Li S, De Wijn JR, Li J, et al. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng,2003,90:535-548.
    13. Flalkov JA, Holy CE, Shoichet MS, et al. In vivo bone enginering in a rabbit femur. J Cranioface Surg,2003,14:324-332.
    14. Enncking WF, Campanacci DA. Retrieved human allografts:a clinical-pathological study. J Bone Joint Surg (Am),2001,83:971-986.
    15. Boone DW. Complications of iliac crest graft and bone grafting alternatives in foot and ankle surgery. Foot Ankle Clin,2003,8:1-14.
    16. Lin AS, Barrows TH, Cartmell SH, et al. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials,2003,24: 481-489.
    17. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials,2003,24:2161-2167.
    18. Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop,2002, (395):44-52.
    19. Proussaefs P, Lozada J, Valencia G, et al. Histologicevaluation of a hydroxyapatite onlay bone graft retrieved after 9 years:a clinical report. J Prosthet Dent,2002,87: 481-484.
    20.刘永成,邵正中,孙玉宇,等.蚕丝蛋白的结构和功能.高分子通报,1998,3:17-23.
    21. Minoura N, Tsukada M, Nagura M. Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials,1990,11:430-434.
    22.张世明,刘向阳,李明忠,等.丝素膜代人工硬脑膜的相容性研究.中华神经外科杂志,2004,20:303-306.
    23. Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials.,2003,24:357-365.
    24. Panilaitis B, Altman GH, Chen J, et al. Macrophage responses to silk. Biomaterials, 2003,24:3079-3085.
    25. Chiarini A, Petrini P, Bozzini S, et al. Silk fibroin/poly (carbonate)-urethane as a substrate for cell growth:in vitro interactions with human cells. Biomaterials,2003, 24:789-799.
    26. Kim KH, Jeong L, Park HN, et al. Biological efficacy of silk fibroin nano fiber membranes for guided bone regeneration. Journal of Biotechnology,2005,120: 327-339.
    27. Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials,2005,26:147-155.
    28. Meinela L, Fajardod R, Hofmanna S, et al. Silk implants for the healing of critical size bone defects. Bone,2005,37:688-698.
    29. Guo L, Guo X, Leng Y, et al. Nanoindentation study of interfaces between calcium phosphate and bone in an animal spinal fusion model. J Biomed Mater Res,2001,54: 554-559.
    30. Ma PX, Zhang RY, Xiao GZ, et al. Engineering new bone tissue in vitro on highly porous poly (alpha-hydroxylacids)/hydroxyapatite composite scaffolds. J Biomed Mater Res,2001,54:284-293.
    31. Kong XD, Cui FZ, Wang XM, Zhang M. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth,2004,270:197-202.
    32. Wang L, Ning GL, Senna M. Microstructure and gelation behavior of hydroxyapatite-based nanocomposite sol containing chemically modified silk fibroin. Colloids and Surfaces A:Physicochen. Eng Aspects,2005,254:159-164.
    33. Wang G, Yang H, Li M, et al. Silk fibroin/hydroxyapatite (SF/HA) co-cultured with rabbit bone marrow stromal cells (BMSCs) for the healing of a segmental bone defect. J Bone Joint Surg [Br],2010,2010;92-B:320-325.
    34.王根林,杨惠林,蔡鑫,李明忠,卢神州,朱雪松,陈晓庆,干旻峰.丝素蛋白/羟基磷灰石细胞相容性及异位成骨作用.中华实验外科杂志2009,26(6):696-698.
    35.施咏毅,王根林,杨惠林,等.多孔型丝素蛋白/羟基磷灰石复合脂肪间充质干细胞修复兔股骨骨缺损.中国组织工程研究与临床康复,2010,14(8):1341-1344.
    36. Jin QM, Takita H, Kohgo T, et al. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation [J]. J Biomed Mater Res,2000, 52:491-499.
    37. Hoh S, Kikuchi M, Takakuda K, et al. The biocompatibillity and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2 [J]. Biomed Mater Res,2001,54:445-453.
    38.李玉宝.骨修复纳米生物材料及其发展前景.中国国际新材料产业研讨会,生物医用材料专业论坛,2004:4-11.
    39.张亚平,高家诚,王勇.人工关节材料的研究与展望.世界科技研究与发展,2000,22:47-48.
    40. United States Markets for Orthopedic Biomaterials. Toronto, ON:Millennium, Research Group; 2005.
    41. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes:an update. Injury,2005, 36 (Supplement 1):S20-S27.
    42. Lewandrowski K, Gresser JD, Wise DL, et al. Bioresorbable bone graft substitutes of different osteoconductivities:a histologic evaluation of osteointegration of poly (propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials,2000, 21:757-764.
    43. Flalkov JA, Holy CE, Shoichet MS, et al. In vivo bone enginering in a rabbit femur. J Cranioface Surg,2003,14:324-332.
    44.冯振洲,陈峥嵘,夏庆,等.骨基质明胶与羟基磷灰石修复兔桡骨缺损模型的对照研究.复旦学报:医学版,2005,32:222-224.
    45.卫爱林,刘世清,彭昊,等.磷酸三钙-透明质酸-Ⅰ型胶原-骨髓基质细胞复合修复骨缺损的实验研究.中国修复重建外科杂志,2005,19:468-472.
    46. Hench LL. Biomaterials. Science,1980,208(4446):826-837.
    47. Jones JR, Ahir S, Hench LL. Large-scale production of 3 D bioactire glass macmpomus scafolds for tissue engineering. J Sol Gel Sci & Tech,2004,29:179-188.
    48. Bauer TW, Muschler GF. Bone graft material:An overview of the basic science. Clin Orthop,2000, (371):10-27.
    49. Wei J, Li YB. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. Eur Polymer J,2004,40:509-515.
    50. Higashi S, Yamamuro T. Polymer-hydroxyapatite composite for biodegradable bone fillers. Biomaterials,1986, (7):183-187.
    51.易诚青,杜靖远,郑启新.转化生长因子-β1转基因生物衍生型移植体修复骨缺损.中华实验外科杂志,2006,23:157-159.
    52. ZeUin G, Gritli A, Linde A. Healing of mandibular defects with different biodegradable and non-biodegrable membranes:an experimental study in rats. Biomaterials,1995,16:601-609.
    53.黄岚峰,刘建国,徐莘香.利用可生物降解共聚膜引导骨再生.中国修复重建外 科杂志,1999,13:321-325.
    54.孙梁,胡蕴玉,熊卓,等.三种快速成型制作的聚酯/钙磷盐人工骨修复兔桡骨缺损的实验研究.中华外科杂志,2005,43:535-539.
    1 Guo L, Guo X, Leng Y, et al. Nanoindentation study of interfaces between calcium phosphate and bone in an animal spinal fusion model [J]. J Biomed Mater Res,2001, 54:554-559.
    2 Jin QM, Takita H, Kohgo T, et al. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation [J]. J Biomed Mater Res,2000,52: 491-499.
    3 Agrillo U, Mastronardi L, Puzzilli F. Anterior cervical fusion with carbon fiber cage containing coralline hydroxyapatite:observations in 45 consecutive cases of soft-disc herniation [J]. J Neurosurg,2002,96:273-276.
    4 Lind M. Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation [J]. Acta Orthop Scand,1998,283 (Suppl):32-37.
    5 李爱民,孙康宁,尹衍升,等.生物材料的发展应用评价与展望[J].山东大学学报,2002,6,287-293.
    6 Imai S, Higashijima K, Ishida A, et al. Determination of the position and orientation of artificial knee implants using markers embedded in a bone:preliminary in vitro experiments [J]. Medical Engineering & Physics,2003,25:419-424.
    7 KOji H, Naohide T, Takafumi Y, et al. Prospects for bone fixation-development of new cerclage fixation techniques [J]. Materials Science and Engineering,2001,17, 27-32.
    8 Karen JL, SCott P, Jane FK. Biomaterial developments for bone tissue engineering [J]. Biomaterials,2000,21:23-47.
    9 Sous M, Bareille R, Rouais F, et al. Cellular biocompatiblity and compression of macro porous β-tricalcium phosphate ceramics [J]. Biomaterials,1998,19:2147-2053.
    10 Eggli PS, Muller W, Schenk PK. Hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits:A comparative histomorphomertric and histologic study of bony ingrowth and implant substitution [J]. Clin Orthop,1988,322:127-138.
    11 Croteau S, Rauch F, Silvestri A, et al. Bone morphogenetic proteins in orthopaediics: from basic science to clinical practice [J]. Orthopaedics,1999,22:686-695.
    12 Bennett S, Connolly K, Lee DR, et al. Initial biocompatibility studies of a model degradable polymeric bone substitute that hardens insitu [J]. Bone,1996,19:101-107.
    13 Peter SJ, Miller MJ, Yasko Aw, et al. Crosslining characteristics of an injectable poly (propylene fumarate)/β-tricalciumphosphate paste and mechanical properties of the crossliked composite for use as a biodegrdable bone cement [J]. Biomed Materials, 1999,44:314-321.
    14凌翔,陈卫民.王罡.胶原/纳米磷酸三钙复合人工骨骨膜下引导成骨实验研究[J].华中科技大学学报(医学版),2002,12:700-702.
    15 Williams DF. Biomaterials and tissue engineering in reconstructive surgery [J]. Sadhana Acad Proc Eng Sci,2003,28:563-574.
    16 Kurashina K, Kurita H, Wu Q, etal. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits [J]. Biomaterials,2002,23: 407-412.
    17 Zhou D, Yang W, Yin G, et al. In vitro characterizations of PLLA/β-TCP porous matrix materials and rMSC-PLLA-β-TCP composite scaffolds [J]. J Mater Sci Technol, 2004,20:248-252.
    18 Otsuka M, Mtsuda Y, Suwa Y, et al. Effect of particle size of metastase calcium phosphate on mechanical strength of a novel self-setting bioactive calcium phosphate cement [J]. J Biomed Mater Res,1995,29:25-32.
    19 Ishikawa K. Estimation ideal mechanical strength and critical porosity of calcium phosphate cement [J]. J Biomed Mater Res,1995,29:1537-1543.
    20 Nilsson M, Fernandez E, Sarda S, etal. Characterization of4 novel calcium phosphate /sulphate bone cement [J]. J Biomed Mater Res,2002,61:600-607.
    21 Ohura K, Hamanishi c, Tanaka S, et al. Healing of segmental bone defect in rats induced by a Beta-TCP-MCPM cement combinated with rhBMP-2 [J]. J Biomed Mater Res,1999,44:168-175.
    22 Bigi A. Effect of added gelatin on the properties of calcium phosphate cement [J]. Biomaterials,2004,25:2893-2899.
    23 Hockin HK. Fast setting calcium phosphate-chitosan scaffold:mechanical properties and biocompatibility [J]. Biomaterials,2005,26:1337-1348.
    24 Quinten PR. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits [J]. Biomaterials,2004,25:2123-2132.
    25 Biota EJ, Klein-Nulend J, Wolke JGC, et al. Transforming growth factor-beta 1 incorporation in an alpha-tricalcium phosphate/dicalcium phosphate dihydrate/tetra calcium phosphate monoxide cement:release characteristics and physicochemical properties [J]. Biomaterials,2002,23:1261-1268.
    26 Knabe C, Diessens FC, Planell JA, et al. Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures [J]. J Biomed Mater Res,2000,52:498-508.
    27 Miyamoto Y, lshikawa K, Fukao H, et a. In vivo setting behaviour of fast-setting calcium phosphate cements [J]. Biomaterials,1995,16:855-860.
    28 Lew KU, Gresser JD, Wise DL. Osteoconductivity of an injectable and bioresorbable poly (propylene glycol-co-funm aricacid) bone cement [J]. Biomaterials,2000,21: 293-298.
    29 Niemela T, Henna N. Self-reinforced composites of bio-absorbable polymer and bioactive glass with different bioactive glass contents. Part I:Initial mechanical properties and bioactivity [J]. Acta Biomaterialia,2005, (1):1-8.
    30 Nieves O, Martin AI. Bioactive sol-gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation [J]. Biomaterials,2003, (24):3383-3393.
    31 Guo HB, Miao X. Characterization of hydroxyapatie and bioglass-316L fiber composites prepared by spark plasma sintering [J]. Materials Letters,2004, (58): 304-307.
    32 Goller G. The effect of bond coat on mechanical properties of plasma sprayed bioglass-titanium coatings [J]. Ceramics International,2004, (30):351-355.
    33 McKee MD, Wild LM, Schemitseh EH, et al. The use of an antibiotic-impregnated, osteoconducive, bio-absorbable bone substitute in the treatment of infected long bone defects:early results of a prospective trial [J]. J orthop Trauma,2002,16 (9): 622-627.
    34 Song HR, Oh CW, Kyung HS, et al. Injected Calcium sulfate for consolidation of distraction osteogenesis in rabbit tibia [J]. J Pediatr orthop B,2004,13 (3):170-175.
    35 Turner TM, Urban RM, Gitelis S, et al. Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution's experience [J]. J Bone Joint Surg (Am) 2001,83-A (Suppl 2):8-18.
    36 Peltier LF. The use of plaster of paris to fill defects in bone [J]. Clin orthop Relat Res, 1961,21:1-31.
    37 Kelly CM, Wilkins RM, Gitelis S, et al. The use of a surgical grade calcium sulfate as a bone graft substitute:results of a multicentertrial [J]. Clin Ortho Relat Res,2001, (382):42-50.
    38 Borrelli JJ, Prickett WD, Ricei WM. Treatment of nonunions and osseous defects with bone graft and calcium sulphate [J]. Clin Orthop Relat Res,2003:411:245-254.
    39 Watson TJ. The use of an injectable bone graft substitute in tibial metaphyseal fractures [J]. Orthopedics,2004,27:103-107.
    40李军范清宇范德刚/骨形成蛋白-2基因在人骨髓基质细胞中的表达及对其成骨分化的作用中华创伤骨科杂志2004,4,410-413
    41何春耒 王大平 朱伟民 熊建义 刘黎军 陆伟 徐小平 胡波 刘建全 彭亮权/骨形态发生蛋白-2基因转染兔骨髓基质干细胞及复合纳米羟基磷灰石体外构建组织工程骨的研究 中华创伤骨科杂志2010,12,2,168-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700