某型卫星姿态控制系统设计及仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星在空间的运动可以分为轨道运动和姿态运动,姿态运动是卫星姿态控制所研究的问题,卫星的姿态控制又可以分为姿态确定、姿态控制规律设计和执行机构三部分,姿态确定系统的精度是影响姿态控制的决定性因素,姿态控制规律的好坏也必将影响到姿态控制的精度,本文以某在研惯性定向卫星为研究对象进行姿态确定和姿态控制研究,主要完成了以下几个方面的工作:
     采用欧拉角和四元数建立了惯性定向卫星姿态运动学方程,根据刚体动量矩定理,建立了惯性定向刚体卫星姿态动力学方程。
     应用扩展卡尔曼滤波技术,推导了基于陀螺和星敏感器的姿态估计算法。主要包括,建立星敏感器和陀螺的数学模型,阐述了扩展卡尔曼滤波算法的原理,利用惯性定向卫星姿态运动学方程建立了以陀螺偏差和误差四元数为状态的姿态估计模型,对卫星的姿态进行了估计。
     在姿态确定的基础上,设计了以下三种控制规律:基于线性化姿态动力学模型的欧拉角反馈控制器;基于非线性姿态动力学,利用李亚普诺夫方法设计的四元数反馈控制器和欧拉角反馈控制器,利用稳定性理论证明了所设计的控制器都能使系统稳定。为进行姿态控制仿真分析,在Matlab 6.5环境下设计了姿态确定和姿态控制系统仿真软件,仿真结果显示这三种姿态控制器都能使卫星姿态达到预期目标。
     在上述研究结果的基础上,利用Visual C++编译环境,设计了可独立运行的三轴稳定卫星姿态控制系统仿真软件,该软件具有可视化、模块化、使用简便的特点,并且运行效果良好。
The locomotion of satellite is usually divided into two parts, one is orbit movement, the other is attitude movement. Satellite attitude control researches the attitude movement. Satellite attitude control is divided into attitude determination, execution institution and design of attitude control low, the precision of attitude control is depended both on attitude determination and attitude control low. Under the background of a inertial directional satellite being developed, attitude determination and attitude control low have been studied in the thesis. The main contents are as follows:
     The attitude kinematics model of the inertia directional satellite is developed employing Euler-angle representations and quaternion representations. According to the low of angular momentum, the attitude dynamics model of rigid satellite is derived.
     Attitude estimation algorithm based on gyroscope and star tracker is designed using the extended Kalman Filter (EKF). Measure model of gyroscope and star tracker are established, the principle of EKF is introduced, and the attitude estimation algorithm of the inertia directional satellite is established by using gyroscope bias and error quaternion as state.
     Three attitude control low is designed after the research of attitude determination. First, linear dynamics model is developed and a PID controller is designed using Euler-angle feedback. Secondly, a quaternion feedback controller is designed employing Lyapunov method based on the nonlinear dynamics model, thirdly, a Euler-angle feedback controller is designed employing Lyapunov method based on the nonlinear dynamics model, too. The second and third controllers are proved to be asymptotically Stable. A simulation software of attitude determination and attitude control is designed in the environment of Matlab 6.5. Simulation result shows that these three controllers can satisfy the control aim.
     The last, according to the above research, satellite attitude control system simulation software is developed in the environment of Visual C++. The software is characterized by modularization, visualization and simple use. Simulation result of this software is good.
引文
1 G..Wahba. A Least Squares Estimate of Spacecraft Attitude, Problem 65.1.SIAM Review.1965,7(3):409
    2 M.D.Shuster. Approximate Algorithms for Fast Optimal Attitude Computation. AIAA78-1249,AIAA Guidance and control Conference,Palo Alto,CA,1978
    3 M.D.Shuster,S.D.Oh. Three-Axis Attitude Determination from Vector Observations. Journal of Guidance and Control,1981,4(1):70-77
    4 F.L.Markley. Attitude Determination Using Vector Observations and the Singular Value Decomposition. The journal of the Astronautical Sciences, 1988,36(3):245-258
    5 F.L.Markley. Attitude Determination Using Vector Observations:A Fast Optimal Matrix Algorithm. The journal of the Astronautical Sciences, 1993,41(2):261-280
    6 F.L.Markley. L.Y.Bar-itzhack. Unconstrained optimal transformation matrix. IEEE Transaction on Aerospace and Electronic System,1998,34(1):338-340
    7 D.Chu,E.Harvie. Accuracy of the ERBS Definitive Attitude Detemination System in the Presence of Propagation Noise. Proceeding of the Flight Mechanics/Estimation Theory Symposium. NASA Goddard Space Flight Center, Greenbelt,MD.1990:97-114
    8 章仁为.卫星轨道姿态动力学与控制.北京航空航天大学出版社,1998:214-215
    9 R.E.Kalman. A New Approach to Linear Filtering and Prediction Problem. Journal of Basic Eng.1960,82:35-46
    10 邓自立,卡尔曼滤波与维纳滤波:时间序列的分析方法,哈尔滨工业大学出版社,2001:56-115
    11 S.M.Joshi. On Attitude Estimation Schemes for Fine-pointing Control. IEEE Transaction on Aerospace and Electronic System,1978,14(2):258-265
    12 E.J.Leffrets,F.L.Markley.M.D.Shuster. Kalman Filtering for Spacecraft Attitude Estimation. Journal of Guidance and Control & Dynamics, 1982,5(5):417-429
    13 F.L. Markley, N.Berman. Deterministic EKF-like Estimator for a Spacecraft Attitude Estimation .American Control Conference.1994,(1):247-251
    14 M.D.Shuster. The Quaternion in Kalman filtering.AAS-93-553.1993:25-37
    15 L.Y.Bar-itzhack,Y.oshman. Attitude Determination from Vector Observation: Quaternion Estimation. IEEE Transaction on Aerospace and Electronic System,1985,21(1):128-135
    16 F.L. Markley,R.G.Reynolds.Analytic Steady-State Accuracy of a Spacecraft Attitude Estimator. Journal of Guidance ,Control and Dynamics, 1981,4(1):70-77
    17 周荻.非线性滤波理论在制导和跟踪中的应用.哈尔滨工业大学博士学位论文.1996:40-46
    18 秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西北工业大学出版社.1998:167-189
    19 J.N.Nielsen,H.Maden. Applying the EKF to stochastic differential equations with level effects.Automatica.2001(37):107-112
    20 Mook.D.j,Junkins J.L. Minimum Model Error Estimation for Poorly Modeled Dynamics System. Journal of Guidance and Control and Dynamics. 1988,3(4):367-375
    21 姜雪原.卫星姿态确定及敏感器误差修正的滤波算法研究.哈尔滨工业大学博士论文.2006:6,3-8
    22 屠善澄等.卫星姿态动力学与控制(1).宇航出版社,1999:3-8,20-30
    23 屠善澄等.卫星姿态动力学与控制(2).宇航出版社,1999:167
    24 Singh.S.N, Bossart.T.C. Exact feedback linearization and control of space station using CMG. IEEE Trans On Automatic Control,1993,38(1):184-187
    25 Chen.Y.P, Lo.S.C. Sliding-mode controller design for spacecraft attitude tracking maneuvers. IEEE Trans on Aerospace and Electronic Systems, 1993,29:1328-1333
    26 Cheon.Y.J, Keum.J.H, Sim.E.S. Sliding mode control of spacecraft with actuator dynamics. Int Confon Control, Automation and Systems. 2001:642-646
    27 Ahmed.J, Coppola.V.T, Bernstein.D.S. Asymptotic tracking of spacecraft attitude motion with inertia matrix identification. Proceedings of the 36th IEEE Conference on Decision and Control.1997:2471-2476
    28 Lam.Q.M, Morgan.R.N. Spacecraft control law design using Lyapunov-based adaptive controllers. The 1st IEEE Conference on Control Applications. 1992:348-350
    29 Zuyev.A.L. Application of control Lyapunov functions technique for partialstabilization. Proceedings of the 2001 IEEE. Int Conf on Control Applications. 2001: 509--513
    30 Lin.Y.Y, Lin.G.L. Non-linear control with Lyapunov stability applied to spacecraft with flexible structures. Syst and Cont Eng, 2001,215(2) :131-141
    31 侯建文.FY-1C 卫星姿态控制系统.上海航天.2001,2:33-35
    32 廖晖.对地定向三轴稳定卫星姿态确定和控制系统研究.西北工业大学博士学位论文.2000:3-6
    33 高云国.现代小卫星及其相关技术.光学精密工程 1999,7(5):16-21
    34 林来兴.现代小卫星与纳卫星技术发展.国际太空.2002,9:27-30
    35 D.Mortari, T.C.Pollock,J.L.Junkins. Towards the Most Accurate Attitude Determination System Using Star Trackers. AAS-98-159.1998:839-850
    36 F.Cubalchini. Real-Time Attitude Estimation Bias Correction for Scanning Surveillance Sensors. Proceedings The First IEEE Regional Conference on Aerospace Control Systems. 1993:391-394
    37 H.L.Fisher, M.D.Shuster,T.E.Strikwerda.Atttude Determination for the Star Tracking Mission AAS-89-365.1989:139-150
    38 胡恒章. 航天器控制. 宇航出版社. 1997:143-144
    39 黄圳圭. 航天器姿态动力学. 国防科技大学出版. 1997:238-261
    40 J.L.Crassidis. Sigma-point Kalman Filter for Integrated GPS and Inertial Navigation. AIAA Guidance,Navigation ,and Control Conference, 2005,AIAA-2005-6052
    41 陈雪芹,耿云海.一种利用星敏感器对陀螺进行在轨标定的算法.系统工程与电子技术.2005,27(12):2112-2116
    42 陈刚,刘昆.多敏感器信息融合技术在卫星姿态确定中的应用.航天控制2005,23(3):35-39
    43 张延顺,王海,陈嘉斌等.卫星三轴姿态确定系统的光纤陀螺/星敏感器组合技术研究.中国惯性技术学报.2003,11(2):1-4
    44 顾冬晴,王岩,周文君,秦永元.多敏感器卫星姿态确定系统的联邦滤波器设计.中国空间科学技术.2004,3:7-13
    45 周山,王战军,孙艳华,黄汛.陀螺/星敏感器组合技术在卫星姿态确定系统中的应用.情报指挥控制系统与仿真技术.2005,27(2):93-96
    46 张青春,李勇,刘良栋.卫星多敏感器组合姿态确定系统中的信息融合方法研究.宇航学报.2005,26(5):314-320
    47 朱庆华.李英波.基于陀螺和四元数的 EKF 卫星姿态确定算法.上海航天.2005, 4:1-5
    48 朱庆华.李英波.基于星敏感器四元数的卫星角速度预测滤波算法.上海航天.2005, 5:14-18
    49 Todd E. Humphreys. Attitude Determination for Small Satellites with Modest Pointing Constraints. Logan:Utah State University, 2003
    50 J.Sadlak. Comparison of Kalman filter and Optimal Smoother Estimates of Spacecraft Attitude. N-94-35638.1994:431-445
    51 钱能. C++程序设计教程.清华大学出版社.1999:4-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700