用户名: 密码: 验证码:
高硅氧/酚醛复合材料的烧蚀机理及热—力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着长时间飞行器需求的不断增长,对长时间中低热流环境下的热防护材料需求也越来越迫切。作为树脂基防热材料的一种,高硅氧/酚醛复合材料具有较低的密度和热导率、优良的吸热能力、耐烧蚀性能和热稳定性等特点,且成本低廉、工艺周期短、高温性能优异。该类型材料既能适用于长时间飞行、中等焓值、中低热流的防热要求,又能耐长时间烧蚀和高气流剪切,且具有较好的隔热性能,因而被广泛应用于长时间飞行器的烧蚀热防护。在高温环境下,高硅氧/酚醛复合材料会发生复杂的物理-化学变化和烧蚀-相变过程,包括酚醛树脂的热解反应、热解气体的扩散流动、孔隙压力、热阻塞效应、热膨胀现象、边界移动等过程。另外,气动加热会使防热材料及其结构产生热变形,且在气动力和气动热载荷作用下防热材料的强度和承载能力也会有明显的衰减。因此,有必要研究高硅氧/酚醛复合材料在长时间中低热流环境下的烧蚀防热机理,预报材料的烧蚀性能及高温热力学性能,对该类型复合材料防热层的结构设计、完整性及可靠性评价有重要的意义。
     本文系统研究了高硅氧/酚醛复合材料在烧蚀环境下的质量损失机理及吸热机理,基于表面烧蚀理论和气体边界层理论,建立了防热材料的表面烧蚀性能预报方法,根据质量守恒和能量守恒原理,建立了聚合物基复合材料热-力学行为的多场耦合模型,给出了防热材料的高温刚度和强度性能预报方法,并设计相关实验验证了预报模型的正确性。
     首先对高硅氧/酚醛复合材料进行静态/动态烧蚀实验,通过热失重率和吸放热曲线研究材料在不同温度与加温速率下的热解反应,利用一阶Arrhenius方程,建立了防热材料的热解动力学模型。通过对烧蚀过程中材料表面的烧蚀现象及热暴露后试样切片的微观结构进行观测,揭示了高硅氧/酚醛复合材料在高温环境下的烧蚀/防隔热机理。考虑硅基复合材料烧蚀表面的熔融液态层,预报了给定气动热环境下高硅氧/酚醛复合材料的表面烧蚀后退速率、壁面温度等烧蚀性能,预报结果与氧乙炔焰烧蚀实验结果比较吻合较好。结合表面烧蚀理论和边界层气体动力学关系,推导了材料的热容吸热、树脂热解吸热、表面材料的热辐射、热阻塞效应、熔融SiO2的蒸发吸热对材料总吸热能力的贡献权重,讨论了树脂含量、热传导系数、比热容等对防热材料烧蚀性能的影响。
     其次考虑热解过程中热解气体聚集和流动造成的孔隙压力变化及材料内部的热-质传递过程,利用有限差分方法建立了高硅氧/酚醛复合材料在单侧辐射热流作用下的一维热响应模型。在模型中充分考虑了热膨胀引起的边界移动和热阻塞效应,预报了防热材料在体积烧蚀过程中的温度分布、孔隙压力分布、组分相体积含量变化、热解反应进行程度和气体质量流率。以外界自然光为光源,设计了太阳光辐射加热实验,测量了单侧热流载荷下高硅氧/酚醛复合材料试样不同厚度位置处的温度变化曲线,实验结果与计算结果吻合较好,验证了热响应模型的正确性。
     聚合物基复合材料的热化学分解过程是一个热-力-化学多场耦合问题。根据质量守恒和能量守恒原理,充分考虑温度/扩散/变形的耦合作用,建立了多孔弹性体高温环境下热-力学行为的多物理场耦合分析模型。应用Bubnov-Galerkin有限元方法将高硅氧/酚醛复合材料热-力学响应的控制微分方程改写为单元代数方程组。利用高斯消去法求解最终整合的整体代数方程组,预报了材料在热流载荷下的高温变形、热应变和热应力。基于数字图像相关技术,设计了非接触式高温变形测量实验,获得了试样测量表面的全场变形和应变。应变测量结果和计算结果吻合较好,验证了多场耦合分析模型的准确性。
     最后考虑聚合物基复合材料因热软化效应及基体热解反应引起的力学性能衰减,根据Mori-Tanaka方法和Eshelby等效夹杂理论,建立了高硅氧/酚醛复合材料高温刚度性能的细观力学预报方法。由高温压缩实验获得了防热材料的压缩强度随温度的变化关系曲线。基于热响应分析,给出了高硅氧/酚醛复合材料的高温压缩强度计算公式,预报了防热材料在单侧辐射热流和静态压缩载荷作用下强度性能随温度及加热时间的衰减规律。
With increasing of demand of long time space vehicles, thermal protectionmaterials which used in long time low-medium heat flux environment have been paidmore and more attention. As a kind of resin-matrix thermal protective material,silica/phenolic composites have many advantages, such as low density and thermalconductivity, good endothermic ability, ablation resistant performance and thermalstability, as well as short processing cycle, cheap cost and excellent high-temperatureproperties. This kind of material can not only meet the thermal protectiverequirements of long time flying, medium level enthalpy and low-medium heat flux,but also resist long time ablation and shearing action of high-velocity gas flow.Additionally, there are good heat-insulating properties of silica/phenolic composites.For this reason, they are widely used in the ablation and thermal protection of longtime flight vehicles. The complex physico-chemical changes, ablation and phasetransition processes of silica/phenolic composite can take place when exposed to hightemperature. That is generally associated with pyrolysis reaction of phenolic resin,diffusion and flow of decomposition gases, pore pressure, thermal blockade effect,thermal expansion phenomenon and moving boundary. Furthermore, aerodynamicheating can cause thermal deformation of the thermal protective material and itsstructure. Strength and loading capacity of the material significantly degrade whensubjected to aerodynamic mechanical and thermal loading. Therefore, it is necessaryto study the ablation and thermal protective mechanism of silica/phenolic compositeunder long time low-medium heat flux environment and predict ablation propertiesand high-temperature thermomechanical behavior, and which is significant forstructure design, evaluation of integrity and reliability of heat shield for this kind ofcomposite.
     The mass loss mechanism and endothermic mechanism in ablation environmentwere studied in detail in this dissertation. Based on the surface ablation theory andboundary layer aerodynamics theory, a prediction method of surface ablationproperties was established. According to mass and energy conservation principles, amulti-physics field coupling model was proposed to predict the thermomechanicalbehavior of polymer composites. Prediction methods of high temperature stiffness and strength for thermal protective materials were presented. The above-mentionedprediction models were validated by relevant experiments.
     Firstly, the static and dynamic ablation experiments of silica/phenolic compositewere conducted. Based on thermo-gravimetric and endothermic (exothermic) curves,the pyrolysis reaction of the material with different temperature and heated rates werestudied. A thermal decomposition kinetics model was presented using one-orderArrhenius equation. According to the ablation feature on material surface andmorphology of post-heated specimen segment, the ablation and thermal protectivemechanism of silica/phenolic composite were analyzed. Considering the fused liquidlayer on ablation surface of silica-reinforced composites, surface ablation recessionrate and wall temperature were predicted under given aerodynamics thermalenvironment. The predicted results were in good agreement with the oxyacetyleneexperimental results. The proportions of the endothermic mechanisms including heatabsorption of heat capacity of ablator, thermal decomposition of the resin, heatradiation of surface material, thermal blockade effect and evaporation of fused silicafiber in the total heat absorption were derived by combining with surface ablationtheory and boundary layer aerodynamics relationships. Moreover, the effects of resincontent, thermal conductivity and specific heat on ablation properties of thermalprotective materials were discussed.
     Secondly, considering variation of the pore pressure and heat-mass transferprocesses within the materials, a one-dimensional thermal response model wasdeveloped using finite difference method when silica/phenolic composite wasexposed to one-sided radiant heat flux. The moving boundary caused by thermalexpansion and the thermal blockade effect were also considered in the model. Thetemperature distribution, pore pressure distribution, variation of volume content ofphase components, degree of decomposition and mass flux of gases of the thermalprotective material during volume ablation process were predicted. The sunlight wasused as the light source and the solar radiation heating experiment was carried out.The time-dependent temperature progressions at different material depths ofsilica/phenolic composite specimen were measured when exposed to one-sided heatflux. The experimental temperature profiles were in good agreement with thecalculated results. Furthermore, the accuracy of the thermal response model wasassessed.
     Thermochemical decomposition process of polymer composites can be regardedas a thermal-mechanical-chemical multi-physics field coupling problem. Based onmass and energy conservation principles, a multi-physics field coupling analysismodel was proposed to predict the thermomechanical behavior of porous elastomersunder high temperatures. The coupling actions of temperature, diffusion anddeformation were taken into account in the model. The governing differentialequations of thermomechanical response of silica/phenolic composite were modifiedusing the Bubnov-Galerkin finite element method to obtain the generalized effectiveelement stiffness equation. Finally, the global stiffness equations were assembled,and solved by the Gaussian elimination method. The high temperature deformation,thermal strain and thermal stress of the material were predicted when subjected toheat flux. Additionally, non-contact high temperature deformation measurementexperiment was conducted by applying digital image correlation technique and fullfield deformation and strain on measured surface of the specimen were obtained. Theexperimental strain results were in good agreement with the calculated values.Consequently, the accuracy of the multi-physics field coupling analysis model wasevaluated.
     Finally, the degradation in mechanical properties caused by the thermalsoftening effect and thermal decomposition of matrix material were studied. UsingMori-Tanaka method and Eshelby equivalent inclusion theory, a mesomechanicalmethod was proposed to predict high-temperature stiffness properties ofsilica/phenolic composite. Relationships between compression strength andtemperature of thermal protective material were obtained using high-temperaturecompression experiment. Based on thermal response analysis, the calculationformulas of high temperature compression strength for silica/phenolic compositewere presented. Degradation in strength properties with temperature and heated timewere predicted when the material subjected to one-sided radiant heat flux and staticcompression loading.
引文
[1]姜贵庆,刘连元.高速气流传热与烧蚀热防护[M].北京:国防工业出版社,2003:52-66.
    [2]欧阳水吾,郑国铭.高硅氧增强塑料的烧蚀理论及试验结果[J].宇航学报.1981,(1):14-22.
    [3]张宗强,匡松连,尚龙,华小玲.树脂基复合材料长时间烧蚀防热的应用研究[J].宇航材料工艺.2007,(6):29-31.
    [4] Loomis M P, Prabhu D K, Gorbunov S, et al. Results and Analysis of LargeScale Article Testing in the Ames60MW Interaction Heating Arc JetFacility[C]//48th AIAA Aerospace Sciences Meeting Including the NewHorizons Forum and Aerospace Exposition. Florida: Orlando,2010-445.
    [5] Tran H K, Johnson C E, Raskyt D J, Hui F C L. Phenolic Impregnated CarbonAblators (PICA) for Discovery Class Missions[C]//31st AIAA ThermophysicsConference. Louisiana: New Orleans,1996-1911.
    [6] Milos F S, Chen Y K. Ablation and Thermal Response Property ModelValidation for Phenolic Impregnated Carbon Ablator[J]. Journal of Spacecraftand Rockets.2010,47(5):786-805.
    [7] Cozmuta I, Wright M J, Laub B. Defining Ablative Thermal Protection SystemMargins for Planetary Entry Vehicles[C]//42nd AIAA ThermophysicsConference. Hawaii: Honolulu,2011-3757.
    [8]郭梅梅,匡松连,尚龙,华小玲.树脂基复合材料的分解防热效率[J].宇航材料工艺.2012,42(2):58-60.
    [9]孙冰,林小树,刘小勇,蔡国飙.硅基材料烧蚀模型研究[J].宇航学报.2003,24(3):282-287.
    [10]张志成,潘海林,刘初平等.高超声速气动热和热防护[M].北京:国防工业出版社,2003:222-248.
    [11]易法军,梁军,孟松鹤,杜善义.防热复合材料的烧蚀机理与模型研究[J].固体火箭技术.2000,23(3):48-56.
    [12] Adams M C. Recent Advances in Ablation[J]. Journal of American RocketSociety.1959,29(9):621-625.
    [13] Bethe H A, Adams M C. A Theory for the Ablation of Glassy Materials[J].Journal of the Aero/Space Sciences.1959,26(6):321-328,350.
    [14] Hidalgo H. Ablation of Glassy Material around Blunt Bodies of Revolution[J].Journal of American Rocket Society.1960,30(9):806-814.
    [15] Beecher N, Rosensweig R E. Ablation Mechanisms in Plastics with InorganicReinforcement[J]. Journal of the Aero/Space Sciences.1961,31(4):532-539.
    [16] Blumenthal J L, Santy M J. Kinetic Studies of High-Temperature Carbon-SilicaReactions in Charred Silica-Reinforced Phenolic Resins[J]. AIAA Journal.1966,4(6):1053-1057.
    [17] Cagliostro D E, Goldstein H, Parker J A. Silica Reinforcement and CharReactions in the Apollo Heat Shield[J]. Journal of Spacecraft and Rockets.1972,9(5):346-350.
    [18] Rosensweig R E, Beecher N. Theory for the Ablation of Fiberglas-ReinforcedPhenolic Resin [J]. AIAA Journal.1963,1(8):1802-1809.
    [19] Hidalgo H. Comparison between Theory and Flight Ablation Data[J]. AIAAJournal.1963,1(1):41-44.
    [20] Steverding B. A Theory for the Ablation of Non-Newtonian Liquids near theStagnation Point[J]. AIAA Journal.1965,3(7):1245-1249.
    [21] Sutton K, Falanga R A. Stagnation Region Radiative Heating with Steady-stateAblation during Venus Entry[J]. Journal of Spacecraft and Rockets.1973,10(2):155-157.
    [22] Arai N. Transient Ablation of Teflon in Intense Radiative and ConvectiveEnvironments[J]. AIAA Journal.1979,17(6):634-640.
    [23] Johnston C O, Gnoffo P A. Influence of Ablation on Radiative Heating for EarthEntry[J]. Journal of Spacecraft and Rockets.2009,46(3):481-491.
    [24] Graves K W. Ablation in a High Shear Environment[J]. AIAA Journal.1966,4(5):853-857.
    [25] Wong J L, Jovanovic V, Tang I. Effects of Shear on Ablation Characteristics ofCharring Low-temperature Ablatives[C]//34th AIAA ThermophysicsConference. Colorado: Denver,2000-2436.
    [26] Welsh W E. Shape and Surface Roughness Effects on Turbulent NosetipAblation[J]. AIAA Journal.1983,8(11):1983-1989.
    [27] Grabow R M, White C O. Surface Roughness Effects on Nosetip AblationCharacteristics[C]//7th AIAA Fluid and Plasma Dynamics Conference.California: Palo Alto,1974-513.
    [28] Prasad A. Effect of Temperature-Dependent Heat Capacity on AerodynamicAblation of Melting Bodies[J]. AIAA Journal.1978,16(9):1004-1007.
    [29] Auerbach I. Effect of Fiber Fraction on Ablation Properties in Short FiberGraphite Composites[C]//17th Aerospace Sciences Meeting. Louisiana: NewOrleans,1979-0374.
    [30]黄志澄,程永鑫等.航天空气动力学[M].北京:宇航出版社,1994:365-408.
    [31]何洪庆,冯喜平.火箭喷管硅基内衬的液体层烧蚀模型[J].西北工业大学学报.1989,7(1):1-10.
    [32]唐金兰,何洪庆.硅基内衬喷管扩张段烧蚀和温度场的耦合计算方法[J].推进技术.1981,(3):19-25.
    [33]魏叔如.玻璃纤维增强塑料烧蚀理论[J].空气动力学学报.1983,(4):30-40.
    [34]邢连群.低密度硅基材料烧蚀机理分析与工程计算[J].航天器工程.2001,10(2):8-16.
    [35]俞继军,姜贵庆,李仲平.高粘度SiO2材料烧蚀传热机理及试验验证[J].空气动力学学报.2008,26(4):462-465.
    [36] Hsieh C, Seader J D. Similarity Analysis for the Surface Ablation ofSilica-Reinforced Composites[J]. Journal of Spacecraft and Rockets.1973,10(12):797-803.
    [37] Hsieh C, Seader J D. Surface Ablation of Silica-Reinforced Composites[J].AIAA Journal.1973,11(8):1181-1187.
    [38] Hsieh C. Surface Ablation of Silica-Reinforced Composites[D]. Salt Lake City:University of Utah,1973.
    [39] Ren F, Sunt H S, Liu L Y. Theoretical Analysis for Mechanical Erosion ofCarbon-base Materials in Ablation[J]. Journal of Thermophysics and HeatTransfer.1996,10(4):593-597.
    [40] Palaninathan R, Bindu S. Modeling of Mechanical Ablation in ThermalProtection Systems[J]. Journal of Spacecraft and Rockets.2005,42(6):971-979.
    [41]姜贵庆.有加质和化学反应热传导的积分计算[J].宇航学报.1980,(1):50-60.
    [42] Hsiao J S, Chung B T F. A Heat Balance Integral Approach for Two-dimensional Heat Transfer in Solids with Ablation[C]//AIAA22nd AerospaceSciences Meeting. Nevada: Reno,1984-0394.
    [43] Chung B T F, Hsiao J S. Heat Transfer with Ablation in a Finite Slab Subjectedto Time-variant Heat Fluxes[J]. AIAA Journal.1985,23(1):145-150.
    [44] Hogan R E, Blackwell B F, Cochran R J. Numerical Solution of Two-dimensional Ablation Problems Using the Finite Control Volume Method withUnstructured Grids[C]//6th AIAA/ASME Joint Thermophysics and HeatTransfer Conference. Colorado: Colorado Springs,1994-2085.
    [45] Hogan R E, Blackwell B F, Cochran R J. Application of Moving Grid ControlVolume Finite Element Method to Ablation Problems[J]. Journal ofThermophysics and Heat Transfer.1996,10(2):312-319.
    [46] Chen Y K, Milos F S. Two-Dimensional Implicit Thermal Response andAblation Program for Charring Materials on Hypersonic Space Vehicles[C]//38th AIAA Aerospace Sciences Meeting and Exhibit. Nevada: Reno,2000-0206.
    [47] Chen Y K, Milos F S. Three-Dimensional Thermal Response and AblationSystem[C]//38th AIAA Thermophysics Conference. Ontario: Toronto,2005-5064.
    [48] Dec J A, Braun R D. Ablative Thermal Response Analysis Using the FiniteElement Method[C]//47th AIAA Aerospace Sciences Meeting Including theNew Horizons Forum and Aerospace Exposition. Florida: Orlando,2009-259.
    [49] Mitchell S L, Myers T G. Heat Balance Integral Method for One-DimensionalFinite Ablation[J]. Journal of Thermophysics and Heat Transfer.2008,22(3):508-514.
    [50] Ayasoufi A, Rahmani R K, Cheng G, et al. Numerical Simulation of Ablation forReentry Vehicles[C]//9th AIAA/ASME Joint Thermophysics and Heat TransferConference. California: San Francisco,2006-2908.
    [51] Hogge M, Gerrekens P. Two-Dimensional Deforming Finite Element Methodsfor Surface Ablation[J]. AIAA Journal.1985,23(3):465-472.
    [52] Hunter L W, Kuttler J R. Enthalpy Method for Ablation-Type Moving BoundaryProblems[J]. Journal of Thermophysics.1991,5(2):240-242.
    [53]曹树声,姜贵庆,王淑华.有热解的轴对称烧蚀体传热有限元计算[J].空气动力学学报.1991,9(2):218-225.
    [54]王思民,周旭,何洪庆.高硅氧酚醛喷管扩张段的温度场计算与测定[J].推进技术.1990,(5):23-30.
    [55]徐善玮,侯晓,张宏安.固体火箭发动机内绝热层烧蚀质量损失计算[J].固体火箭技术.2003,26(2):28-31.
    [56] Martin A, Boyd I D. Implicit Implementation of Material Response and MovingMeshes for Hypersonic Re-entry Ablation[C]//47th AIAA Aerospace SciencesMeeting Including The New Horizons Forum and Aerospace Exposition.Florida: Orlando,2009-670.
    [57] Bahramian A R, Kokabi M, Famili M H N, et al. Ablation and ThermalDegradation Behaviour of a Composite Based on Resol Type Phenolic Resin:Process Modeling and Experimental[J]. Polymer.2006,47(10):3661-3673.
    [58] Sakai T, Tomita M, Suzuki T, et al. Post-Test Specimen Analysis of FiberReinforced Plastic Using Arcjet[C]//10th AIAA/ASME Joint Thermo-physicsand Heat Transfer Conference. Illinois: Chicago,2010-4657.
    [59] Lachaud J, Cozmuta I, Mansour N N. Multiscale Approach to AblationModeling of Phenolic Impregnated Carbon Ablators[J]. Journal of Spacecraftand Rockets.2010,47(6):910-921.
    [60] Asaro R J, Lattimer B, Ramroth W. Structural Response of FRP Compositesduring Fire[J]. Composite Structures.2009,87(4):382-393.
    [61] Matsuura Y, Hirai K. A Challenge of Predicting Thermo-Mechanical Behaviorof Ablating Sifrp with Finite Element Analysis[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Tennessee: Nashville,2010-6975.
    [62] Henderson J B. An Analytical and Experimental Study of the Pyrolysis ofComposite Ablative Materials[D]. Stillwater: Oklahoma state university,1980.
    [63] Henderson J B, Tant M R, Moore G R, Wiebelt J A. Determination of KineticParameters for the Thermal Decomposition of Phenolic Ablative Materials by aMultiple Heating Rate Method[J]. Thermochimica Acta.1981,44:253-264.
    [64] Henderson J B, Wiebelt J A, Tant M R, Moore G R. A Method for theDetermination of the Specific Heat and Heat of Decomposition of CompositeMaterials[J]. Thermochimica Acta.1982,57:161-171.
    [65] Henderson J B, Verma Y P, Tant M R, Moore G R.Measurement of the ThermalConductivity of Polymer Composites to High Temperatures Using the LineSource Technique[J]. Polymer Composites.1983,4(4):219-224.
    [66] Henderson J B, Tant M R. A Study of the Kinetics of High-temperatureCarbon-Silica Reactions in an Ablative Polymer Composite[J]. PolymerComposites.1983,4(4):233-237.
    [67] Henderson J B, Wiebelt J A, Tant M R. A Model for the Thermal Response ofPolymer Composite Materials with Experimental Verification[J]. Journal ofComposite Materials.1985,19(6):579-595.
    [68] Tant M R, Henderson J B, Boyer C T. Measurement and Modelling of theThermochemical Expansion of Polymer Composites. Composites.1985,16(2):121-126.
    [69] Henderson J B, Hagen S C. A Radiant Heat Flux Apparatus for Measuring theThermal Response of Polymeric Materials to High Temperatures[J]. PolymerComposites.1985,6(2):110-114.
    [70] Henderson J B, Tant M R, Doherty M P, et al. Characterization of theHigh-Temperature Behaviour of a Glass-Filled Polymer Composite. Composites.1987,18(3):205-215.
    [71] Henderson J B, Wiecek T E. A Mathematical Model to Predict the ThermalResponse of Decomposing, Expanding Polymer Composites[J]. Journal ofComposite Materials.1987,21(4):373-393.
    [72] Henderson J B, Wiecek T E. A Numerical Study of the Thermally-inducedResponse of Decomposing, Expanding Polymer Composites[J]. Heat and MassTransfer.1988,22(5):275-284.
    [73] Florio J A, Henderson J B, Test F L, Hariharan R. Study of the Effects of theAssumption of Local-thermal Equilibrium on the Overall Thermally-InducedResponse of a Decomposing, Glass-Filled Polymer Composite[J]. InternationalJournal of Heat and Mass Transfer.1991,34(1):135-147.
    [74] Gibson A G, Wu Y S, Chandler H W, Wilcox J A D. A Model for the ThermalPerformance of Thick Composites Laminates in Hydrocarbon Fires[J]. Oil andGas Science and Technology.1995,50(1):69-74.
    [75] Gibson A G, Wright P N H, Wu Y S, Mouritz A P, et al. Models for the ResidualMechanical Properties of Polymer Composites after Fire[J]. Plastics Rubber andComposites.2003,32(2):81-90.
    [76] Gibson A G, Wright P N H, Wu Y S, Mouritz AP, et al. Integrity of PolymerComposites During and after Fire[J]. Journal of Composite Materials.2004,38(15):1283-1308.
    [77] Gibson A G, Wu Y S, Evans J T, Mouritz A P. Laminate Theory Analysis ofComposites under Load in Fire[J]. Journal of Composite Materials.2006,40(7):639-658.
    [78] Gibson A G, Wright P N H, Wu Y S, Mouritz A P, et al. Fire Integrity ofPolymer Composites Using the Two Layer Model[C]//In: Proceeding of theInternational SAMPE Technical Conference. California: Long Beach,2004:1349-1363.
    [79] Davies J M, Dewhurst D W. The Fire Performance of GRE Pipes in Empty andDry, Stagnant Water Filled, and Flowing Water Filled Conditions[C]//In:Proceeding of the International Conference on Composites in Fire. Newcastle:Tyne,1999:69-84.
    [80] Dodds N, Gibson A G, Dewhurst D, Davies J M. Fire Behaviour of CompositeLaminates[J]. Composites: Part A.2000,31(7):689-702.
    [81] Looyeh M R E, Bettess P. A Finite Element Model for the Fire-Performance ofGRP Panels Including Variable Thermal Properties[J]. Finite Elements inAnalysis and Design.1998,30(4):313-324.
    [82] Looyeh M R E, Rados K, Bettess P. Thermomechanical Responses of SandwichPanels to Fire[J]. Finite Elements in Analysis and Design.2001,37(11):913-927.
    [83] Lua J, O’Brien J. Fire Simulation of Woven Fabric Composites withTemperatures and Mass Dependent Thermal-mechanical Properties[C]//3rdInternational Conference on Composites in Fire. Newcastle: Tyne,2003.
    [84] Samanta A, Looyeh M R E, Jihan S, McConnachie J. Thermo-mechanicalAssessment of Polymer Composites Subjected to Fire[R]. Aberdeen:Engineering and Physical Science Research Council and the Robert GordonUniversity,2004.
    [85] McManus L N, Springer G S. High Temperature Thermomechanical Behavior ofCarbon-phenolic and Carbon-Carbon Composites, I. Analysis[J]. Journal ofComposite Materials.1992,26(2):206-229.
    [86] McManus L N, Springer G S. High Temperature Thermomechanical Behavior ofCarbon-phenolic and Carbon-Carbon Composites, II. Results[J]. Journal ofComposite Materials.1992,26(2):230-251.
    [87] McManus L N. High Temperature Thermomechanical Behavior of Carbon-Phenolic and Carbon-Carbon Composites[D]. Stanford: Stanford University,1990.
    [88] McManus L N, Chamis C C. Stress and Damage in Polymer Matrix CompositeMaterials Due to Material Degradation at High Temperatures[R]. NASATechnical Memorandum4682,1996.
    [89] Wu Y, Katsube N. A Constitutive Model for Thermomechanical Response ofDecomposing Composites under High Heating Rates[J]. Mechanics of Materials.1996,22(3):189-201.
    [90] Bai Y, Keller T. Modeling of Mechanical Response of FRP Composites inFire[J]. Composites: Part A.2009,409(6-7):731-738.
    [91] Kandare E, Kandola B K, Myler P, Edwards G. Thermo-mechanical Responsesof Fiber-Reinforced Epoxy Composites Exposed to High TemperatureEnvironments. Part I: Experimental Data Acquisition[J]. Journal of CompositeMaterials.2010,44(26):3093-3114.
    [92] Kandare E, Kandola B K, McCarthy E D, et al. Fiber-Reinforced EpoxyComposites Exposed to High Temperature Environments. Part II: ModelingMechanical Property Degradation[J]. Journal of Composite Materials.2010,45(14):1511-1521.
    [93] Sullivan R M, Salamon N J. A Finite Element Method for the ThermochemicalDecomposition of Polymeric Materials, I. Theory[J]. International Journal ofEngineering Science.1992,30(4):431-441.
    [94] Sullivan R M, Salamon N J. A Finite Element Method for the ThermochemicalDecomposition of Polymeric Materials, II. Carbon Phenolic Composites[J].International Journal of Engineering Science.1992,30(7):939-951.
    [95] Sullivan R M. A Coupled Solution Method for Predicting the ThermostructuralResponse of Decomposing, Expanding Polymeric Composites[J]. Journal ofComposite Materials.1993,27(4):408-434.
    [96] Matsuura Y, Hirai K, Kamita T, et al. A Challenge of ModelingThermo-Mechanical Response of Silica-Phenolic Composites under HighHeating Rates[C]//49th AIAA Aerospace Sciences Meeting. Florida: Orland,2011-139.
    [97] Asaro R J, Lattimer B, Ramroth W. Structural Response of FRP CompositesDuring Fire[J]. Composite Structures.2009,87(4):382-393.
    [98] Gibson A G, Torres M E O, Browne T N A, et al. High Temperature and FireBehaviour of Continuous Glass Fibre/Polypropylene Laminates[J]. Composites:Part A.2010,41(9):1219-1231.
    [99] Feih S, Mouritz A P, Mathys Z, Gibson A G. Tensile Strength Modeling of GlassFiber-polymer Composites in Fire[J]. Journal of Composite Materials.2007,41(19):2387-2410.
    [100]Shokrieh M M, Abdolvand H. Three-dimensional Modeling and ExperimentalValidation of Heat Transfer in Polymer Matrix Composites Exposed to Fire[J].Journal of Composite Materials.2011,45(19):1953-1965.
    [101]Dimitrienko Y I. Thermal Stress and Heat-mass Transfer in Ablating CompositeMaterials[J]. International Journal of Heat and Mass Transfer.1995,38(1):139-146.
    [102]Dimitrienko Y I. Internal Heat-mass Transfer and Stresses in Thin-walledStructures of Ablating Materials[J]. International Journal of Heat and MassTransfer.1997,40(7):1701-1711.
    [103]Dimitrienko Y I. Thermal Stresses in Ablative Composite Thin-walledStructures under Intensive Heat Flows[J]. International Journal of EngineeringScience.1997,35(1):15-31.
    [104]Dimitrienko Y I. Thermomechanical Behaviour of Composite Materials andStructures under High Temperatures:1. Materials. Composites Part A.1997,28(5):453-461.
    [105]Dimitrienko Y I. Thermomechanical Behaviour of Composite Materials andStructures under High Temperatures:2. Structures. Composites Part A.1997,28(5):463-471.
    [106]Dimitrienko Y I. A Structural Thermo-mechanical Model of Textile CompositeMaterials at High Temperatures[J]. Composites Science and Technology.1999,59(7):1041-1053.
    [107]Dimitrienko Y I. Thermomechanical Behaviour of Composites under LocalIntense Heating by Irradiation. Composites Part A.2000,31(6):591-598.
    [108]Dimitrienko Y I, Dimitrienko I D. Effect of Thermomechanical Erosion onHeterogeneous Combustion of Composite Materials in High-speed Flows[J].Combustion and Flame.2000,122(3):211-226.
    [109]Bai Y, Post N L, Lesko J J, Keller T. Experimental Investigations onTemperature-Dependent Thermo-Physical and Mechanical Properties ofPultruded GFRP Composites[J]. Thermochimica Acta.2008,469(1-2):28-35.
    [110]Bai Y, Valle′e T, Keller T. Modelling of Thermo-physical Properties for FRPComposites under Elevated and High Temperatures[J]. Composites Science andTechnology.2007,67(15-16):3098-3109.
    [111]Bai Y, Valle′e T, Keller T. Modeling of Thermal Responses for FRPComposites under Elevated and High Temperatures[J]. Composites Science andTechnology.2008,68(1):47-56.
    [112]Bai Y, Keller T. Modeling of Mechanical Response of FRP Composites inFire[J]. Composites: Part A.2009,40(6-7):731-738.
    [113]易法军,刘永清,翟鹏程,匡松连.碳/酚醛复合材料烧蚀过程热应力分析[J].哈尔滨工业大学学报.2008,40(7):1081-1084.
    [114]Luo C. Mathematical Modeling of Thermo-mechanical Damage of PolymerMatrix Composites in Fire[D]. Buffalo: State University of New York,2010.
    [115]Luo C, DesJardin P E. Thermo-mechanical Damage Modeling of a Glass-Phenolic Composite Material[J]. Composites Science and Technology.2007,67(7-8):1475-1488.
    [116]Luo C, Lua J, DesJardin P E. Thermo-mechanical Damage Modeling of PolymerMatrix Sandwich Composites in Fire[J]. Composites: Part A.2012,43(5):814-821.
    [117]吴太广.数字图像相关方法及其应用研究[D].长沙:长沙理工大学学位论文,2010.
    [118]Sirkis J S, Lim T J. Displacement and Strain-measurement with Automated GridMethods[J]. Experimental Mechanics.1991,31(4):382-388.
    [119]Goldrein H T, Palmer S J P, Huntley J M. Automated Fine Grid Technique forMeasurement of Large-strain Deformation[J]. Optics and Lasers in Engineering.1995,23(5):305-318.
    [120]Lyons J S, Liu J, Sutton M A. High-temperature Deformation MeasurementsUsing Digital-image Correlation[J]. Experimental Mechanics.1996,36(1):64-70.
    [121]Helm J D, McNeill S R, Sutton M A. Improved Three-dimensional ImageCorrelation for Surface Displacement Measurement[J]. Optical Engineering.35(7):1911-1920.
    [122]Zhang D, Luo M, Arola D D. Displacement/strain Measurements Using anOptical Microscope and Digital Image Correlation[J]. Optical Engineering.2006,45(3),033605.
    [123]杨勇,王琰蕾,李明等.高精度数字图像相关测量系统及其技术研究[J].光学学报.2006,26(2):197-201.
    [124]张蕊.数字图像相关技术及其在若干工程测试中的应用[D].华南理工大学学位论文,2011.
    [125]潘兵,吴大方,高镇同,王岳武.1200oC高温热环境下全场变形的非接触光学测量方法研究[J].强度与环境.2011,38(1):52-59.
    [126]Peters W H, Ranson W F. Digital Imaging Techniques in Experimental StressAnalysis[J]. Optical Engineering.1981,21(3):427-431.
    [127]Chu T C, Ranson W F, Sutton M A. Applications of Digital-Image-CorrelationTechniques to Experimental Mechanics[J]. Experimental Mechanics.1985,25(3):232-244.
    [128]Sutton M A, Cheng M, Peters W H, et al. Application of an Optimized DigitalCorrelation Method to Planar Deformation Analysis[J]. Image and VisionComputing.1986,4(3):143-150.
    [129]Peters W H, Ranson W F, Sutton M A, et al. Application of Digital CorrelationMethods to Rigid Body Mechanics[J]. Optical Engineering.1983,22(6):738-742.
    [130]Sutton M A, McNeill S R, Helm J D, Chao Y J. Advances in Two-dimensionaland Three-dimensional Computer Vision[J]. Photomechanics, Topics inApplied Physics.2000,77:323-372.
    [131]Schreier H W. Investigation of Two and Three-dimensional Image CorrelationTechniques with Applications in Experimental Mechanics[D]. Columbia:University of South Carolina,2003.
    [132]Pan B, Qian K, Xie H, Asundi A. Two-dimensional Digital Image Correlationfor In-Plane Displacement and Strain Measurement: A Review[J]. MeasurementScience and Technology.2009,20(6):062001.
    [133]Hild F, Roux S. Digital Image Correlation: from Displacement Measurement toIdentification of Elastic Properties: A Review[J]. Strain.2006,42(2):69-80.
    [134]潘兵,吴大方,高镇同.基于数字图像相关方法的非接触高温热变形测量系统[J].航空学报.2010,31(10):1960-1967.
    [135]Lu H, Cary P D. Deformation Measurement by Digital Image Correlation:Implementation of a Second-order Displacement Gradient[J]. ExperimentalMechanics.2000,40(4):393-400.
    [136]Dimitrienko Y I. Thermomechanics of Composites under High Temperatures
    [M]. London: Kluwer Academic Publishers,1999:73-108.
    [137]梁军,易法军.防热材料高温烧蚀-相变特性的细观研究[J].复合材料学报.2002,19(2):108-112.
    [138]梁军,周振功,杜善义.树脂基材料的高温烧蚀变形[J].复合材料学报.2002,19(3):83-87.
    [139]梁军.增强纤维材料高温烧蚀-相变特性的细观研究[J].力学学报.2002,34(6):984-988.
    [140]梁军,杜善义.防热复合材料高温力学性能[J].复合材料学报.2004,21(1):73-77.
    [141]Keller T, Tracy C, Zhou A. Structural Response of Liquid-cooled GFRP SlabsSubjected to Fire. Part I: Material and Post-Fire Modeling[J]. Composites: PartA.2006,37(9):1286-1295.
    [142]Keller T, Tracy C, Zhou A. Structural Response of Liquid-cooled GFRP SlabsSubjected to Fire. Part II: Thermo-chemical and Thermo-mechanicalModeling[J]. Composites: Part A.2006,37(9):1296-1308.
    [143]Chen J K, Sun C T, Chang C I. Failure Analysis of a Graphite/Epoxy LaminateSubjected to Combined Thermal and Mechanical Loading[J]. Journal ofComposite Materials.1985,19(5):408-423.
    [144]Griffis C A, Nemes J A, Stonesfiser F R, Chang C I. Degradation in Strength ofLaminated Composites Subjected to Intense Heating and MechanicalLoading[J]. Journal of Composite Materials.1986,20(3):216-235.
    [145]Dao M, Asaro R. A Study on the Failure Prediction and Design Criteria forFiber Composites under Fire Degradation[J]. Composites: Part A.1999,30(2):123-131.
    [146]Bausano J, Boyd S, Lesko J, Case S W. Composite Life under SustainedCompression and One-sided Simulated Fire Exposure: Characterization andPrediction[C]//In: Proceedings of the International SAMPE Symposium.California: Long Beach,2004.
    [147]Halverson H, Bausano J, Case S W, Lesko J. Simulation of Response ofComposite Structures under Fire Exposure[C]//In: Proceedings of theInternational SAMPE Symposium. California: Long Beach,2004.
    [148]Springer G S. Model for Predicting the Mechanical Properties of Composites atElevated Temperatures[J]. Journal of Reinforced Plastics and Composites.1984,3(1):85-95.
    [149]Dutta P K, Hui D. Creep Rupture of a GFRP Composite at ElevatedTemperatures[J]. Computers and Structures.2000,76(1):153-161.
    [150]Mahieux C A, Reifsnider K L. Property Modelling across TransitionTemperatures in Polymers: A Robust Stiffness-Temperature Model[J]. Polymer.2001,42(7):3281-3291.
    [151]Mahieux C A. A Systematic Stiffness-Temperature Model for Polymers andApplications to the Prediction of Composite Behavior[D]. Blacksburg: VirginiaPolytechnic Institute and State University,1999.
    [152]Mahieux C A, Reifsnider K L. Property Modeling across TransitionTemperatures in Polymers: Application to Thermoplastic Systems[J]. Journal ofMaterials Science.2002,37(5):911-920.
    [153]Bai Y and Keller T. Modeling of Post-fire Stiffness of E-glass Fiber-reinforcedPolyester Composites[J]. Composites: Part A.2007,38(10):2142-2153.
    [154]Bai Y, Keller T, Valle′e T. Modeling of Stiffness of FRP Composites underElevated and High Temperatures[J]. Composites Science and Technology.2008,68(15-16):3099-3106.
    [155]Gibson A G, Wright P N H, Wu Y S, et al. Modelling Residual MechanicalProperties of Polymer Composites after Fire[J]. Plastics, Rubber andComposites.2003,32(2):81-90.
    [156]Gibson A G, Browne T N A, Feih S, Mouritz A P. Modeling Composite HighTemperature Behavior and Fire Response under Load[J]. Journal of CompositeMaterials.2012,46(16):2005-2022.
    [157]Mouritz A P, Mathys Z. Post-fire Mechanical Properties of Glass-reinforcedPolyester Composites[J]. Composites Science and Technology.2001,61(4):475-490.
    [158]Mouritz A P, Gardiner C P. Compression Properties of Fire-damaged PolymerSandwich Composite[J]. Composites: Part A.2002,33(5):609-620.
    [159]Kandola B K, Horrocks A R, Myler P, Blair D. Mechanical Performance ofHeat/Fire Damaged Novel Flame Retardant Glass-reinforced EpoxyComposites[J]. Composites: Part A.2003,34(9):863-873.
    [160]Mouritz A P. Simple Models for Determining the Mechanical Properties ofBurnt FRP Composites[J]. Materials and Engineering: A.2003,359(1-2):237-246.
    [161]Mouritz A P, Mathys Z, Gardiner C P. Thermomechanical Modelling the FireProperties of Fibre-polymer Composites[J]. Composites: Part B.2004,35(6-8):467-474.
    [162]Mouritz A P, Mathys Z, Kandare E, et al. Review of Fire Structural Modellingof Polymer Composites[J]. Composites: Part A.2009,40(12):1800-1814.
    [163]Mouritz A P, Mathys Z. Post-fire Mechanical Properties of Marine PolymerComposites[J]. Composite Structures.1999,47(1-4):643-653.
    [164]Feih S, Mathys Z, Gibson A G, Mouritz A P. Modelling the CompressionStrength of Polymer Laminates in Fir[J]. Composites: Part A2007,38(11):2354-2365.
    [165]Feih S, Mathys Z, Gibson A G, Mouritz A P. Modelling the Tension andCompression Strengths of Polymer Laminates in Fire[J]. Composites Scienceand Technology.2007,67(3-4):551-564.
    [166]Milos F S, Chen Y K. Ablation, Thermal Response, and Chemistry Program forAnalysis of Thermal Protection Systems[J]. Journal of Spacecraft and Rockets.2013,50(1):137-149.
    [167]Chen Y K, Milos F S, G k en T. Validation of a Three-dimensional Ablationand Thermal Response Simulation Code[C]//10th AIAA/ASME JointThermophysics and Heat Transfer Conference. Illinois: Chicago,2010-4645.
    [168]Upadhyay R, Bauman P T, Stogner R, et al. Steady-state Ablation ModelCoupling with Hypersonic Flow[C]//48th AIAA Aerospace Sciences MeetingIncluding the New Horizons Forum and Aerospace Exposition. Florida: Orlando,2010-1176.
    [169]Milos F S, Chen Y K. Two-dimensional Ablation, Thermal Response, andSizing Program for Pyrolyzing Ablators[J]. Journal of Spacecraft and Rockets.2009,46(6):1089-10991.
    [170]Amar A J, Blackwell B F, Edwards J R. Development and Verification of aOne-dimensional Ablation Code Including Pyrolysis Gas Flow[J]. Journal ofThermophysics and Heat Transfer.2009,23(1):59-71.
    [171]Bahramian A R, Kokabi M, Famili M H N, et al. Ablation and ThermalDegradation Behaviour of a Composite Based on Resol Type Phenolic Resin:Process Modeling and Experimental[J]. Polymer.2006,47(10):3661-3673.
    [172]Torre L, Kenny J M, Maffezzoli A M. Degradation Behaviour of a CompositeMaterial for Thermal Protection Systems Part I: Experimental Characterization[J]. Journal of Materials Science.1998,33(12):3137-3143.
    [173]Torre L, Kenny J M, Maffezzoli A M. Degradation Behaviour of a CompositeMaterial for Thermal Protection Systems Part II: Process Simulation[J]. Journalof Materials Science.1998,33(12):3145-3149.
    [174]Torre L, Kenny J M, Maffezzoli A M. Degradation Behaviour of a CompositeMaterial for Thermal Protection Systems Part III: Char Characterization[J].Journal of Materials Science.2000,35(18):4563-4566.
    [175]Looyeh M R E, Samanta A, Jihan S, McConnachie J. Modelling of ReinforcedPolymer Composites Subject to Thermo-mechanical Loading[J]. InternationalJournal for Numerical Methods in Engineering.2005,63(6):898-925.
    [176]华小玲,张宗强,匡松连.酚醛纤维/酚醛复合材料烧蚀防热性能研究[J].武汉理工大学学报.2009,31(21):85-88.
    [177]马伟,王苏,崔季平.酚醛树酯的热解动力学模型[J].物理化学学报.2008,24(6):1090-1094.
    [178]Trick K A, Saliba T E. Mechanisms of the Pyrolysis of Phenolic Resin in aCarbon-Phenolic Composite [J]. Carbon.1995,33(11):1509-1515.
    [179]Regnier N, Mortaigne B. Analysis by Pyrolysis/Gas Chromatograhy/MassSpectrometry of Glass Fibre/Vinyl Ester Thermal Degradation Products[J].Polymer Degradation and Stability.1995,49(3):419-428.
    [180]G k en T, Chen Y K, Skokova K A, Milos F S. Computational Analysis ofArc-jet Stagnation Tests Including Ablation and Shape Change[C]//41st AIAAThermophysics Conference. Texas: San Antonio,2009-3592.
    [181]姜贵庆,李仲平,俞继军.硅基复合材料粘性系数的参数辨识[J].空气动力学学报.2008,26(4):452-455.
    [182]Fay J A, Riddell F R, Kemp N H. Stagnation Point Heat Transfer in DissociatedAir Flow[J]. Jet Propulsion.1957,27(6):672-674.
    [183]Pugazenthi R S, Krishnamoorthy P A, Pillai L A, et al. Experimental Studies onthe Effect of Ply Orientation on the Thermal Performance of Silica PhenolicAblative Material[C]//45th AIAA Aerospace Sciences Meeting and Exhibit.Nevada: Reno,2007-418.
    [184]刘建军,苏君明,陈长乐.炭/炭复合材料烧蚀性能影响因素分析[J].炭素.2003,(2):15-19.
    [185] zisik M N, Orlande H R B. Inverse Heat Transfer: Fundamentals andApplications[M]. New York: Taylor and Francis,2000.
    [186]Biot M A. Mechanics of Deformation and Acoustic Propagation in PorousMedia[J]. Journal of Applied Physics.1962,33(4):1482-1498.
    [187]Nur A, Byerlee J D. An Exact Effective Stress Law for Elastic Deformation ofRocks With Fluids[J]. Journal of Geophysical Research-Atmospheres.1971,76(26):6414-6419.
    [188]Carroll M M. An Effective Stress Law for Anisotropic Elastic Deformations[J].Journal of Geophysical Research-Atmospheres.1979,84(B13):7510-7512.
    [189]Zienkiewicz O C, Taylor R L. The Finite Element Method: Solid Mechanics[M].Oxford: Butterworth-Heinemann,2000.
    [190]Springer G S. Model for Predicting the Mechanical Properties of Composites atElevated Temperatures[J]. Journal of Reinforced Plastics and Composite.1984,3(1):85-95.
    [191]Liu L, Holmes J W, Kardomateas G A, Burman V. Compressive Response ofComposites under Combined Fire and Compression Loading[C]//In:Proceedings of the4th Conference on Composites in Fire. Newcastle: Tyne,2005.
    [192]Zhou A, Keller T. Structural Response of FRP Elements under CombinedThermal and Mechanical Loading: Experiments and Analysis[C]//In:Proceedings of the4th Conference on Composites in Fire. Newcastle: Tyne,2005.
    [193]Li W, Yang F, Fang D. The Temperature-dependent Fracture Strength Modelfor Ultra-high Temperature Ceramics[J]. Acta Mechanica Sinica.2010,26(2):235-239.
    [194]杜善义,王彪.复合材料细观力学[M].北京:科学出版社,1998:1-58.
    [195]王超. ZrB2-SiC基超高温陶瓷复合材料失效机制的表征与评价[D].哈尔滨:哈尔滨工业大学学位论文,2009:88-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700