磁流变阻尼器的拟负刚度控制及实时混合试验方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变阻尼半主动控制能够取得与主动控制相当的控制效果,却不需要大量的能源输入,在很长一段时间内是结构振动控制研究的热点。拟负刚度控制方法的控制力由阻尼力和“负刚度”控制力组成,其中,阻尼力部分可由磁流变阻尼器出力中的粘滞阻尼力部分实现,“负刚度”控制力可以通过调节磁流变阻尼器的驱动电压实现。磁流变阻尼器为速度相关型控制装置且具有非常强的非线性特性,拟动力试验和地震模拟振动台试验等试验方法均很难满足检验磁流变阻尼控制系统性能的要求。作为检验磁流变阻尼控制系统性能的一种重要手段,实时混合试验方法引起了很多学者的关注。但是,对实时混合试验来说,很难在一个时间步长内实现结构响应的计算、驱动试验子结构达到预定的速度以及对试验子结构的反力进行测量和反馈。通常,实时混合试验中存在的时滞会引起试验结果的不准确甚至系统的不稳定。因此,实时混合试验时滞补偿方法的研究具有重要的意义。
     本文对采用拟负刚度控制的结构的动力特性和减振效果、多自由度结构拟负刚度控制及其控制效果、测量位移对等效力控制方法的影响及基于试验系统模型的等效力控制方法进行了研究。
     1.证明了拟负刚度阻尼减振结构和拟负刚度与粘滞阻尼混合减振结构均为齐次非线性结构,其齐次性保证了可以通过位移响应系数、传力系数及反应比谱对两种结构的动力特性及减振效果进行分析。位移响应系数、传力系数和反应比谱的分析结果表明拟负刚度控制能够延长结构的等效周期;结构周期较长时,与不同阻尼比的结构相比,拟负刚度阻尼减振结构的加速度更小而位移较大;拟负刚度与粘滞阻尼混合减振结构的位移和加速度均要小于不同阻尼比的结构。
     2.以一栋安装磁流变阻尼器的隔震结构为研究对象,对拟负刚度控制进行了数值和实时混合试验研究。证明了采用拟负刚度与粘滞阻尼混合控制的隔震结构同样为齐次非线性结构,拟负刚度与粘滞阻尼混合控制能够在不增加底部剪力的同时减小结构的位移。稳定性和时滞影响分析表明实时混合试验能够用于拟负刚度与粘滞阻尼混合控制系统性能的研究。试验结果表明:拟负刚度与粘滞阻尼混合控制对结构位移和加速度的控制效果均好于Passive-off控制;对加速度的减振效果好于Passive-on控制,而对位移的控制效果差于Passive-on控制。渤海JZ20-2NW海洋平台拟负刚度与粘滞阻尼混合控制的数值分析同样表明拟负刚度与粘滞阻尼混合控制系统具有较好的减振效果。
     3.实时混合试验等效力控制方法以力反馈控制环代替隐式积分算法的迭代计算,该控制环还可以对实时混合试验系统中的时滞进行补偿。但是,还有其他一些因素会影响到等效力控制方法的时滞补偿效果,例如采用作动器位移命令或响应计算数值子结构恢复力和拟动力、试验子结构位移中存在的测量噪声等。本文对分别采用作动器位移命令和响应计算数值子结构恢复力和拟动力、测量噪声对等效力控制方法的影响进行了分析。为了保证试验子结构恢复力、数值子结构恢复力和拟动力的同步,必须采用作动器位移响应计算数值子结构恢复力和拟动力。PID等效力控制器的比例增益较大时,作动器位移响应中的测量噪声会导致试验子结构反力中存在不可忽略的高频成分。为了减小测量噪声的影响,本文采用Kalman滤波器对测量噪声进行滤波,从而提高PID控制器比例增益的取值,改善等效力控制方法的时滞补偿效果。实时混合试验结果表明采用Kalman滤波器的等效力控制方法能够减小测量噪声对试验子结构反力的影响并有效地补偿时滞,其补偿效果与基于模型的时滞补偿方法基本相同。
     4.提出并研究了基于试验系统模型的等效力控制方法。该方法在试验系统模型的基础上,利用开环补偿或者闭环补偿方法,减小等效力命令与响应之间的时滞,使等效力响应能够更好地跟踪等效力命令,从而提高等效力控制方法的时滞补偿效果。本文分别以弹簧和磁流变阻尼器为试验子结构研究了单自由度和多自由度结构基于试验系统模型的等效力控制方法的时滞补偿效果,并与等效力控制方法的时滞补偿效果进行了比较。分析结果表明:基于试验系统模型的等效力控制方法的时滞补偿效果更好。200kN磁流变阻尼器的实时混合试验同样表明基于试验系统模型的等效力控制方法能够有效的对时滞进行补偿。
Semi-active control with magnetorheological (MR) fluid damper can obtain a similar control effect with active control without huge power input. It has been a hotspot of structural control researches for a long period. The control force of pseudo-negative stiffness control can be represented by damping force and "negative stiffness" control force. The damping force can be achieved by the viscous damping element of MR damper force, while the "negative stiffness" control force can be achieved through changing the drive voltage of MR damper. Due to the velocity-dependent and strong nonlinear properties of MR damper, it is difficult for pseudo-dynamic test and shaking table test to verify the performances of control systems with MR dampers. As an important method to evaluate the performance of the control system with MR damper, the Real-time Hybrid Testing (RHT) has got a lot of attentions. However, it is difficult to calculate the response of the structure, drive physical substructure to reach the desired velocity, and measure and feedback the restoring force of physical substructure in a single time step for RHT. Usually, time delay exists in the RHT can introduce inaccurate result even instability to the system. Therefore, it is significant to investigate the time delay compensation for RHT.
     In this study, the dynamic characteristics and control effects of structures with pseudo-negative stiffness dampers, pseudo-negative stiffness control and its control effect for MDOF structure, influence of measured displacement on Equivalent Force Control (EFC) method and model-based EFC method were studied.
     1. It has been proved that structures with pseudo-negative stiffness dampers and pseudo-negative stiffness and viscous dampers are nonlinear homogeneity structures. The homogeneity ensures that dynamic characteristics and control effects can be analyzed through transmissibility, deformation response factor and response ratio spentrum. The analyses of transmissibility, deformation response factor and response ratio spectrum show that pseudo-negative stiffness control can extend the equivalent period of structure. For structures with longer periods, acceleration of structure with pseudo-negative stiffness dampers is smaller than that of structures with different damping ratios, while the displacement is larger. Both of displacement and acceleration of structure with pseudo-negative stiffness and viscous dampers are smaller than that of structures with different damping ratios.
     2. Pseudo-negative stiffness control with a five-story isolated structure incorporating MR damper was studied through analytical and RHT methods. It is proved that isolated structure with pseudo-negative stiffness and viscous dampers is also nonlinear homogeneity structure. Pseudo-negative stiffness and viscous damper control can reduce displacement without increasing the base shear. The analyses of stability and influence of time delay show that RHT technique is sufficient for the study of the performance of pseudo-negative stiffness and viscous damper control system. The test results show that control effects of displacement and acceleration with pseudo-negative stiffness and viscous damper controller are better than that of passive-off controller. The pseudo-negative stiffness and viscous damper controller can reduce the acceleration more than passive-on controller while control effect of displacement is worse than passive-on controller. The numerical analysis of Bohai JZ20-2NW offshore platform with pseudo-negative stiffness and viscous dampers also show that the pseudo-negative stiffness and viscous damper control system has good control effect.
     3. The EFC method has been developed for RHT to replace the numerical iteration for implicit integration with a force-feedback control loop. With this control loop, the EFC method can also compensate the time delay in RHT. However, some other factors may influence the delay compensation effect of EFC method, such as calculating restoring force of numerical substructure and pseudo-dynamic force using actuator displacement command or response, measured noise in the displacement of physical substructure. This study analyzes the influence of calculating restoring force of numerical substructure and pseudo-dynamic force using actuator displacement command and response, respectively, and the influence of measured noise on EFC method. To ensure the synchronization of restoring forces of numerical substructure and physical substructure and psudo-dynamic force, actuator displacement response have to be used to calculate restoring force of numerical substructure and pseudo-dynamic force. With a higher proportional gain of PID equivalent force (EF) controller, measured noise on actuator displacement response can introduce component with high frequency, which can not be disregarded, into the restoring force of physical substructure. To reduce the influence of the measured noise, a Kalman filter was employed to filter the noise in this study. A higher proportional gain of PID controller can be obtained with the Kalman filter, which improves the effect of time delay compensation of EFC method. The results of RHTs demonstrate that EFC method with Kalman filter can reduce the influence of measured noise on resoring force of physical substructure and effectively compensate the time delay, and its effect is similar with that of model-based compensation method.
     4. The model-based EFC method was proposed and studied. This method reduces the time delay between the EF command and EF response using the open-loop or closed-loop compensations based on the model of experimental system. Then, the EF response can track the EF command well which can improves time delay compensation effect of EFC method. Time delay compensation effects of SDOF and MDOF model-based EFC methods were studied with spring and MR damper specimens and compared with that of EFC method, respectively. The results show that the time delay compensation effect of model-based EFC method is better than that of EFC method. The test results of RHTs with a 200kN MR damper specimen also show that the model-based EFC method can effectively compensate the time delay.
引文
[1]Yao J T P. Concept of Structure Control[J]. Journal of Structure Division (ASCE), 1972,98(7):1567-1574.
    [2]Soong T T, Spencer B F. Supplemental Energy Dissipation:State-of-the-art and State-of-the-practice[J]. Engineering Structures,2002,24(3):243-259.
    [3]Spencer B F, Nagarajaiah S. State of the Art of Structural Control[J]. Journal of Structural Engineering (ASCE),2003,129(7):845-856.
    [4]邱法维.结构抗震实验方法进展[J].土木工程学报,2004,37(10):19-27.
    [5]Williams M S, Blakeborough A. Laboratory Testing of Structures under Dynamic Loads:an Introductory Review[J]. Phil. Trans. R. Soc. Lond. A,2001, 359(1786):1651-1669.
    [6]Lu X L, Zou Y, Lu W S, Zhao B. Shaking Table Model Test on Shanghai World Financial Center Tower[J]. Earthquake Engineering and Structural Dynamics, 2007,36(4):439-457.
    [7]Nakashima M, Kato H, Takaoka E. Development of Real-time Pseudodynamic Testing[J]. Earthquake Engineering and Structural Dynamics,1992,21(1):79-92.
    [8]Li H, Ou J P. A Design Approach for Semi-active and Smart Base-isolated Buildings[J]. Structural Control and Health Monitoring,2006,13:660-681.
    [9]Spencer B F, Sain M K. Controlling Buildings:a New Frontier in Feedback[J]. IEEE Control Systems Magazine,1997,17(6):19-35.
    [10]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003:1-363.
    [11]Kobori T, Takahashi M, Nasu T. Experimental Study on Active Variable Stiffness System-Active Seismic Response Controlled Structure[C]. Proceedings of the Fourth World Congress Council on Tall Buildings & Urban Habitat, Hong Kong, 1990:561-572.
    [12]Kobori T, Takahashi M, Nasu T, Niwa N, Ogasawara K. Seismic Response Controlled Structure with Active Stiffness System[J]. Earthquake Engineering and Structural Dynamics,1993,22(11):925-941.
    [13]Nsdu T, Kobori T, Takahashi M, Niwa N, Ogasawara K. Active Variable Stiffness System with Non-resonant Control [J]. Earthquake Engineering and Structural Dynamics,2001,30(11):1597-1614.
    [14]Sakamoto M, Kobori T. Research, Development and Practical Applications on Structural Response Control of Buildings[J]. Smart Materials and Structures, 1995,4(1A):A58-A74.
    [15]Kamagata S, Kobori T. Autonomous Adaptive Control of Active Variable Stiffness System for Seismic Ground Motion[C]. First World Conference on Structure Control, Los Angeles, California, USA, August 3-5,1994, TA4:33-42.
    [16]冷冬梅JZ20-2NW平台隔振结构的磁流变半主动控制[D].哈尔滨:哈尔滨工业大学学位论文,2005:22-47.
    [17]Yang J N, Wu J C, Li Z. Control of Seismic-excited Buildings using Active Variable Stiffness Systems[J]. Engineering Structures,1996,18(8):589-596.
    [18]Kori J G, Jangid R S. Semi-active Stiffness Dampers for Seismic Control of Structures[J]. Advances in Structural Engineering,2007,10(5):501-524.
    [19]Leavitt J, Jabbari F, Bobrow J E. Optimal Performance of Variable Stiffness Devices for Structural Control [J]. Journal of Dynamic Systems, Measurement and Control (ASME),2007,129:171-177.
    [20]Yang J N, Kim J H, Agrawal A K. Resetting Semiactive Stiffness Damper for Seismic Response Control[J]. Journal of Structural Engineering (ASCE),2000, 126(12):1427-1433.
    [21]Erramouspe J, Kiousis P D, Christenson R, Vincent T. A Resetting Stiffness Dynamic Controller and its Bench-scale Implementation[J]. Engineering Structures,2007,29:2602-2610.
    [22]Lu L Y, Lin G L. Improvement of Near-fault Seismic Isolation using a Resettable Variable Stiffness Damper[J]. Engineering Structures,2009,31:2097-2114.
    [23]刘季,李敏霞.变刚度半主动结构振动控制[J].振动工程学报,1999,12(2):166-172.
    [24]李敏霞,刘季.非线性阻尼变刚度半主动结构振动控制[J].振动工程学报,1998,11(3):333-339.
    [25]李敏霞,刘季.变刚度半主动结构振动控制的试验研究[J].地震工程与工程振动,1998,18(4):90-95.
    [26]孙树民.柔性底层结构的主动变刚度/阻尼抗震控制[J].华南理工大学学报(自然科学版),2001,29(2):80-82.
    [27]王伟,耿淑伟,王焕定.主动连续变刚度结构体系(ACVS)控制方法研究[J].建筑结构学报,2003,24(1):69-73.
    [28]杨润林,闫维明,周锡元.结构连续变刚度控制有效性分析[J].振动与冲击,2008,27(3):22-25.
    [29]吴波,刘汾涛,魏德敏.变刚度半主动控制结构的抗震设计方法[J].振动工程学报,2003,16(3):306-310.
    [30]楼梦麟,吴京宁.结构主动变刚度控制中的若干问题[J].同济大学学报,2001,29(4):379-383.
    [31]Li H, Chen W L, Ou J P. Semiactive Variable Stiffness Control for Parametric Vibration of Cables[J]. Earthquake Engineering and Engineering Vibration,2006, 5(2):215-222.
    [32]谭平,闫维明,周福霖.主动变刚度—阻尼系统预测最优控制的理论与试验研究[J].地震工程与工程振动,2007,27(4):139-146.
    [33]Iemura H, Pradono M H. Passive and Semi-active Seismic Response Control of a Cable-stayed Bridge [J]. Journal of Structural Control,2002,9(3):189-204.
    [34]Li H, Liu M, Ou J P. Negative Stiffness Characteristics of Active and Semi-Active Control Systems for Stay Cables[J]. Structural Control and Health Monitoring,2008,15(2):120-142.
    [35]Iemura H, Igarashi A, Toyooka A, Kouchiyama O, Higuchi M. Innovative damping technologies for seismic response control of urban flexible structures-Theory and development of negative stiffness dampers[C]. The International on Advances in Urban Safety, Nanjing, China, October 15-16,2007:1-8.
    [36]Iemura H, Pradono M H. Application of Pseudo-negative Stiffness Control to the Benchmark Cable-stayed Bridge[J]. Journal of Structural Control,2003,10(3-4):187-203.
    [37]Iemura H, Pradono M H. Advances in the Development of Pseudo-negative-stiffness Dampers for Seismic Response Control[J]. Structural Control and Health Monitoring,2009,16(7-8):784-799.
    [38]Hrovat D, Barak P, Robins M. Semi-active Versus Passive or Active Tuned Mass Dampers for Structural Control [J]. Journal of Engineering Mechanics (ASCE), 1983,109(3):691-701.
    [39]Dyke S J, Spencer B F, Sain M K, Carlson J D. Seismic Response Reduction using Magnetorheological Dampers [C]. Proceedings of the IFAC World Congress, San Francisco, California, USA, June 30-July 5,1996:145-150.
    [40]Ou J P, Li H. Analysis of Capability for Semi-Active or Passive Damping Systems to Achieve the Performance of Active Control Systems[J]. Structural Control and Health Monitoring,2010,17(7):778-794.
    [41]Patten W N, Sun J H, Li G J, Kuehn J, Song G. Field Test of an Intelligent Stiffener for Bridges at the 1-35 Walnut Creek Bridge[J]. Earthquake Engineering and Structural Dynamics,1999,28(2):109-126.
    [42]Kurata N, Kobori T, Takahashi M, Niwa N, Midorikawa H. Actual Seismic Response Controlled Building with Semi-active Damper System[J]. Earthquake Engineering and Structural Dynamics,1999,28(11):1427-1447.
    [43]杨润林,闫维明,周锡元.结构半主动控制研究中存在的若干问题[J].建筑结构学报,2007,28(4):64-75.
    [44]Nagarajaiah S, Narasimhan S. Seismic Control of Smart Isolated Buildings with New Semiactive Variable Damper[J]. Earthquake Engineering and Structural Dynamics,2007,36(6):729-749.
    [45]孙作玉,隋丽丽.变阻尼半主动结构控制振动台试验[J].地震工程与工程振动,2000,20(4):106-111.
    [46]李惠,袁雪松,吴波.粘滞流体变阻尼半主动控制器对结构抗震控制的试验研究[J].振动工程学报,2002,15(1):25-30.
    [47]杨润林,周锡元,闫维明,宋波,刘锡荟.结构半主动变阻尼控制性能评估[J].振动与冲击,2007,26(3):37-41.
    [48]Symans M D, Constantinou M C. Semi-active Control Systems for Seismic Protection of Structures:a State-of-the-art Review[J]. Engineering Structures, 1999,21(6):469-487.
    [49]http://www.lord.com/
    [50]Yang G Q. Large-Scale Magnetorheological Fluid Damper for Vibration Mitigation:Modeling, Testing and Control[D]. Indiana:Doctoral Thesis of University of Notre Dame,2001:150-169.
    [51]李宏男,杨浩,李秀领.磁流变阻尼器参数化动力学模型研究进展[J].大连理工大学学报,2004,44(4):616-624.
    [52]Stanway R, Sprostion J L, Stevens N G. Non-linear Modelling of an Electro-rheological Vibration Dapmer[J]. Journal of Electrostatics.1987,20(2):167-184.
    [53]Pang L, Kamath G M, Wereley N M. Dynamic Characterization and Analysis of Magnetorheological Damper Behavior[C]. Proceedings of SPIE 3327, San Diego, CA, USA, March 2,1998:284-302.
    [54]翁建生,胡海岩,张庙康.磁流变阻尼器的实验建模[J].振动工程学报,2000,13(4):616-621.
    [55]Gsmota D R, Filisko F E. Dynamic Mechanical Studies of Electrorheological Materials:Moderate Frequencies[J]. Jounal of Rheology,1991,35(399):399-425.
    [56]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150.
    [57]Spencer B F, Dyke S J, Sain M K, Carlson J D. Phenomenological Model of a Magnetorheological Damper[J]. Journal of Engineering Mechanics (ASCE), 1997,123:230-238.
    [58]关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定[J].振动与冲击,2001,20(1):5-8.
    [59]Sandu C, Southward S, Richards R. Comparison of Linear, Nonlinear, Hysteretic, and Probabilistic Models for Magnetorheological Fluid Dampers[J]. Journal of Dyanmic Systems, Measurement, and Control (ASME),2010,132(6):1-9.
    [60]Dyke S J, Spencer B F, Sain M K, Carlson J D. Experimental Verification of Semi-Active Structural Control Strategies using Acceleration Feedback[C]. Proceedings of the 3rd International Conference on Motion and Vibration Control, Chiba, Japan, September 1-6,1996,Ⅲ:291-296.
    [61]Dyke S J, Spencer B F. Seismic Response Control using Multiple MR dampers[C]. Proceedings of the 2nd International Workshop on Structural Control, Hong Kong, China,1996:163-173.
    [62]Yi F, Dyke S J, Caicedo J M, Carlson J D. Experimental Verification of Multiinput Seismic Control Strategies for Smart Dampers[J]. Journal of Engineering Mechanics,2001,127(11):1152-1164.
    [63]Yoshida O, Dyke S J, Giacosa L M, Truman K Z. Experimental Verification of Torsional Response Control of Asymmetric Buildings using MR Dampers[J]. Earthquake Engineering and Structural Dynamics,2003,32(13):2085-2105.
    [64]Bharti S D, Dumne S M, Shrimali M K. Seismic Response Analysis of Adjacent Buildings Connected with MR dampers[J]. Engineering Structures,2010, 32(8):2122-2133.
    [65]Chang C M, Park K S, Mullenix A, Spencer B F. Semiactive Control Strategy for a Phase Ⅱ Smart Base Isolated Benchmark Building[J]. Structural Control and Health Monitoring,2008,15(5):673-696.
    [66]Ali S F, Ramaswamy A. Optimal Dynamic Inversion-based Semi-active Control of Benchmark Bridge using MR Dampers[J]. Structural Control and Health Monitoring,2009,16(5):564-585.
    [67]周云,徐龙河,李忠献.磁流体阻尼器半主动控制结构的地震反应分析[J].土木工程学报,2001,34(5):10-14.
    [68]孙清,史庆轩,张可,文建波,王学明,周进雄,张陵.半主动变阻尼结构的 振动台试验研究[J].建筑结构学报,2003,24(6):11-17.
    [69]涂建维,瞿伟廉.设置磁流变阻尼器的高层钢框架支撑体系的地震反应研究[J].工程抗震与加固改造,2006,28(2):73-77.
    [70]Li H N, Chang Z G. Semi-active Control for Eccentric Structures with MR Damper Based on Hybrid Intelligent Algorithm[J]. The Structural Design of Tall and Special Buildings,2008,17(1):167-180.
    [71]Guo A X, Li Z J, Li H, Ou J P. Experimental and Analytical Study on Pounding Reduction of Base-Isolated Highway Bridges using MR Dampers[J]. Earthquake Engineering and Structural Dynamics,2009,38(11):1307-1333.
    [72]王修勇,陈政清,倪一清.斜拉桥拉索风雨振观测及其控制[J].土木工程学报,2003,36(6):53-59.
    [73]李惠,刘敏,欧进萍,关新春.斜拉索磁流变智能阻尼控制系统分析与设计[J].中国公路学报,2005,18(4):37-41.
    [74]孙树民,梁启智.隔震独桩平台地震反应的半主动磁流变阻尼器控制研究[J].振动与冲击,2001,20(3):61-64.
    [75]管友海,黄维平.MR阻尼器在海洋平台半主动振动控制中的应用[J].中国海洋平台,2002,17(3):25-28.
    [76]杨飏,欧进萍.导管架式海洋平台结构磁流变阻尼隔震的振动台试验[J].地震工程与工程振动,2005,25(4):141-148.
    [77]张纪刚.海洋平台结构振动的被动与半主动混合阻尼控制[D].哈尔滨:哈尔滨工业大学学位论文,2005:82-131.
    [78]付进喜JZ20-2NW海洋平台隔振结构阻尼减振被动控制[D].哈尔滨:哈尔滨工业大学学位论文,2005:27-57.
    [79]刘红菊.磁流变阻尼器的动态模型及以加速度为目标的优化控制[D].哈尔滨:哈尔滨工业大学学位论文,2007:48-61.
    [80]Hakuno M, Shidowara M, Hara T. Dynamic Destructive Test of a Cantilever Beam, Controlled by an Analog-Computer[J]. Transactions of the Japan Society of Civil Engineering,1969:1-9. (in Japanese)
    [81]许国山.实时子结构试验的等效力控制方法[D].哈尔滨:哈尔滨工业大学学位论文,2009:1-45.
    [82]唐岱新,朱本全,王凤来,安成虎,张前国,李庆刚,薛宏伟.底层大开间框剪结构1/3比例模型房屋子结构拟动力试验研究[J].建筑结构,2001,31(4):20-22.
    [83]王凤来,陈再现,王焕定,潘景龙.底部框支配筋砌块短肢砌体剪力墙结构 抗震性能试验研究[J].土木工程学报,2009,42(11):71-78.
    [84]Pan P, Nakashima M, Tomofuji H. Online Test using Displacement-Force Mixed Control[J]. Earthquake Engineering and Structural Dynamics,2005,34(8):869-888.
    [85]李妍.防屈曲支撑的抗震性能及子结构试验方法[D].哈尔滨:哈尔滨工业大学学位论文,2007:82-124.
    [86]王倩颖.实时子结构实验方法及其应用[D].哈尔滨:哈尔滨工业大学学位论文,2007:44-141.
    [87]田石柱,刘季.结构模型的AMD主动控制实验[J].地震工程与工程振动,1999,19(4):90-94.
    [88]欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究[J].高技术通讯,2002,10:85-90.
    [89]Lu X L, Zou Y, Lu W S, Zhao B. Shaking Table Model Test on Shanghai Financial Center Tower[J]. Earthquake Engineering and Structural Dynamics, 2007,36(4):439-457.
    [90]Chang C M, Spencer B F. Active Base Isolation of Buildings Subjected to Seismic Excitations[J]. Earthquake Engineering and Structural Dynamics,2010, 39(13):1493-1512.
    [91]Ji X D, Fenves G L, Kajiwara K, Nakashima M N. Seismic Damage Detection of a Full-Scale Shaking Table Test Structure[J]. Journal of Structural Engineering (ASCE),2011,137(1):14-21.
    [92]Wu B, Bao H E, Ou J P, Tian S Z. Stability and Accuracy Analysis of Central Difference Method for Real-time Substructure Testing[J]. Earthquake Engineering and Structural Dynamics,2005,34(7):705-718.
    [93]Wu B, Deng L X, Yang X D. Stability of Central Difference Method for Dynamic Real-time Substructure Testing[J]. Earthquake Engineering and Structural Dynamics.2009,38(14):1649-1663.
    [94]Zhang Y F, Sause R, Ricles J M, Naito C J. Modified Predictor-Corrector Numerical Scheme for Real-Time Pseudo Dynamic Tests using State-Space Formulation[J]. Earthquake Engineering and Structural Dynamics,2005,34(3): 271-288.
    [95]李进,王焕定,张永山,赵桂峰.高阶单步实时动力子结构试验技术研究[J].地震工程与工程振动,2005,25(1):97-101.
    [96]Jung R Y, Shing P B, Stauffer E, Thoen B. Performance of a Real-time Pseudodynamic Test System Considering Nonlinear Structural Response[J]. Earthquake Engineering and Structural Dynamics,2007,36(12):1785-1809.
    [97]Bayer V, Dorka U E, Fullekrug U, Gschwilm J. On Real-Time Pseudo-dynamic Sub-structure Testing:Algorithm, Numerical and Experimental Results[J]. Aerospace Science and Technology,2005,9(3):223-232.
    [98]Wu B, Wang Q Y, Shing P B, Ou J P. Equivalent Force Control Method for Generalized Real-time Substructure Testing with Implicit Integration[J]. Earthquake Engineering and Structural Dynamics,2006,36(9):1127-1149.
    [99]Nakashima M, Masaoka N. Real-time On-line Test for MDOF Systems[J]. Earthquake Engineering and Structural Dynamics,1999,28(4):393-420.
    [100]Iemura H, Igarashi A, Aoki T, Yamamoto Y. Real-time Substructure Hybrid Earthquake Loading System for Super-high-damping Rubber Bearings[C]. Proceedings of the First International Conference on Advances in Experimental Structural Engineering, Nagoya, Japan,2005:401-408.
    [101]Blakeborough A, Williams M S, Darby A P, Williams D M. The Development of Real-time Substructure Testing[J]. Phil. Trans. R. Soc. Lond. A,2001, 359(1786):1869-1891.
    [102]Igarashi A, Sanchez F, Iemura H, Fujii K, Toyooka A. Real-time Hybrid Testing of Laminated Rubber Dampers for Seismic Retrofit of Bridges[C].3rd International Congerence on Advances in Experimental Structural Engineering, San Francisco, California, USA, October 15-16,2009.
    [103]袁涌,熊世树,青木徹彦.基于速度控制型子结构实验的橡胶隔震支座性能研究[J].振动与冲击,2008,27(6):151-154.
    [104]Christenson R, Lin Y Z, Emmons A, Bass B. Large-Scale Experimental Verification of Semiactive Control through Real-Time Hybrid Simulation[J]. Journal of Structural Engineering (ASCE),2008,134(4):522-534.
    [105]Zapateiro M, Karimi H R, Luo N, Spencer B F. Real-time Hybrid Testing of Semiactive Control Strategies for Vibration Reduction in a Structure with MR damper[J]. Structural Control and Health Monitoring,2010,17(4):427-451.
    [106]Carrion J E. Model-based Strategies for Real-time Hybrid Testing[D]. Urbana: Doctoral Thesis of University of Illinois at Urbana-Champaign,2007:81-210.
    [107]Horiuchi T, Nakagawa M, Sugano M, Konno T. Development of a real-time hybrid experimental system with actuator delay compensation[C]. Proc.11th World Conference of Earthquake Engineering, Acapulco, Mexico, June 23-28, 1996, No.660.
    [108]Horiuchi T, Inoue M, Konno T, Namita Y. Real-time Hybrid Experimental System with Actuator Delay Compensation and its Application to a Piping System with Energy Absorber[J]. Earthquake Engineering and Structural Dynamics,1999,28(10):1121-1141.
    [109]王倩颖,吴斌,欧进萍.考虑作动器时滞及其补偿的实施子结构实验稳定性分析[J].工程力学,2007,24(2):9-14.
    [110]Darby A P, Blakeborough A, Williams M S. Real-time Substructure Tests using Hydraulic Actuator[J]. Journal of Engineering Mechanics (ASCE),1999, 125(10):1133-1139.
    [111]Carrion J E, Spencer B F. Real-Time Hybrid Testing using Model-Based Delay Compensation[C].4th International Conference on Earthquake Engineering, Taipei, October 12-13,2006, No.299.
    [112]Carrion J E, Spencer B F, Phillips B M. Real-time Hybrid Simulation for Structural Control Performance Assessment[J]. Earthquake Engineering and Engineering Vibration,2009,8(4):481-492.
    [113]Phillips B M, Spencer B F. Model-based Real-time Hybrid Simulation Strategies for Large-scale Testing[C].5th World Conference on Structural Control and Monitoring, Shinjuku, Tokyo, Japan, July 12-14,2010, No.91.
    [114]Chen C, Ricles J M. Error-Based Servohydraulic Actuator Adaptive Compensation for Real-Time Hybrid Simulation[J]. Journal of Structural Engineering (ASCE),2008,136(4):432-440.
    [115]Zhao J, French C, Shield C, Posbergh T. Considerations for the Development of Real-Time Dynamic Testing using Servo-Hydraulic Actuation[J]. Earthquake Engineering and Structural Dynamics,2003,32(11):1773-1794.
    [116]Reinhorn A M, Shao X, Sivaselvan M V, Pitman M, Weinreber S. Real Time Dynamic Hybrid Testing Using Shake Tables and Force-Based Substructuring[C]. 17th Analysis and Computation Specialty Conference,2006:1-10.
    [117]Jung R, Shing P B. Performance Evaluation of a Real-time Pseudodynamic Test System[J]. Earthquake Engineering and Structural Dynamics,2006,35(7):789-810.
    [118]Ahmadizadeh M, Mosqueda G, Reinhorn A M. Compensation of Actuator Delay and Dynamics for Real-time Hybrid Structural Simulation[J]. Earthquake Engineering and Structural Dynamics,2008,37(1):21-42.
    [119]Chopra A K结构动力学:理论及其在地震工程中的应用(第2版)[M].北京:清华大学出版社,2005:65-123.
    [120]Margolis L, Goshtasbpour M. The Chatter of Semi-active On-off Suspensions and its Cure[J]. Vehicle System Dynamics,1984,13:129-144.
    [121]Liu Y, Waters T P, Brennan M J. A Comparison of Semi-active Damping Control Strategies for Vibration Isolation of Harmonic Disturbances[J]. Journal of Sound and Vibration,2005,280(1-2):21-39.
    [122]Ahmadian M, Song X. Effect of System Delays on Semiactive Suspension Performance[C]. Proceedings of the Sixth International Conference on Recent Advances in Structural Dynamics, ISVR, Southampton,1997.
    [123]李妍.弹塑性结构抗震设计的简化方法[D].哈尔滨:哈尔滨工业大学学位论文,2003:11-41.
    [124]Kelly J M, Leitmann G, Soldatos A G. Robust Control of Base-isolated Structures under Earthquake Excitation[J]. Journal of Optimization Theory and Applications, 1987,53(2):159-180.
    [125]MTS System Corporation. Model 793.10 Multipurpose Testware:User Information and Software Reference.2001.
    [126]MTS System Corporation. Model 793.00 System Software:User Information and Software Reference.2001.
    [127]http://www.mts.com/
    [128]王倩颖,吴斌,欧进萍.考虑作动器时滞及其补偿的实时子结构实验稳定性分析[J].工程力学,2007,24(2):9-14.
    [129]史鹏飞.JZ20-2NW平台磁流变阻尼半主动控制系统的分析、试验与实施[D].哈尔滨:哈尔滨工业大学学位论文,2006:9-60.
    [130]Sodhi S, Haehnel R B. Crushing Ice Forces on Structures [J]. Journal of Cold Regions Engineering (ASCE),2003,17:153-170.
    [131]Soong T T. Active Structural Control:Theory and Practice[M]. New York:John Wiley & Sons,1990:10-57.
    [132]Mei G, Ahsan K, Jeffrey C K. Model Predictive Control of Structures Under Earthquakes Using Acceleration Feedback[J]. Journal of Engineering Mechanics (ASCE),2002,128(5):574-585.
    [133]Dyke S J, Spencer B F, Sain M K, Carlson J D. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction[J]. Smart Materials and Structures,1996,5(5):565-575.
    [134]Spencer B F, et al. The MOST Experiment:Earthquake Engineering on the Grid[R/OL]. NEESgrid,2004,41:1-13[2004-05-06]. http://neesgrid.ncsa. illinois.edu/documents/TR_2004_41.pdf.
    [135]Kim S B, Spencer B F, Yun C B. Frequency Domain Identification of Multi-Input, Multi-Output Systems Considering Physical Relationships between Measured Variables[J]. Journal of Engineering Mechanics (ASCE),2005,131(5):461-472.
    [136]Guyan R J. Reduction of Stiffness and Mass Matrices[J]. AIAA Journal,1965, 3:380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700