MW级风力发电机组关键部件振动分析与故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能作为现今重要的新型清洁能源,在我国得到了大力开发,但是在大型风电设备的故障诊断和动态监测中逐渐暴露出来许多问题。对于风力发电机组的大型化,干扰强,特征信号微弱,湍流、流固耦合等作用的影响,使得传统的检测方法受到限制,不足以完成对风力发电机组的故障监测。
     作为风力发电机组中增速系统的齿轮箱是其重要部件之一。目前,齿轮箱的动力学分析通常集中于行星轮系上,行星轮系也是风力发电机组齿轮箱中的重要部件。本文建立了行星齿轮结合平行轴的斜齿圆柱齿轮和轴系组成的整个齿轮箱的动力学模型,分析风电齿轮箱的振动激励及振动特征,根据动力学模型建立了数学表达式。采用子空间迭代法求解了系统的模态,并用实验案例证明了算法的可行性。也证明了风力发电机组中的各主要部件在稳定运行时,振动特征有其典型特性和限制,当部件内部出现故障,其振动的振幅形式及频谱成分会发生某些变化,不同的缺陷和故障对应着不同的振动方式,振动信号能客观的反映风力发电系统齿轮箱的运行状态,因此利用振动信号对风力发电机组的齿轮箱进行监测和诊断,是发现故障的重要技术手段。传统的故障诊断方法缺乏严格的理论推理和数据证明。本文提出神经网络方法对风力发电机组齿轮箱故障诊断进行研究,使得风力发电机组齿轮箱输入轴轴承的故障诊断有较为明确的诊断结果。
     本文探索了声发射技术在风力发电机组部件故障诊断中的应用。在振动信号分析的基础上提出了声信号的采集和处理,由于声发射信号有别于振动信号,声发射检测方法的应用为故障诊断和特征识别提供了新的手段和途径。利用振声信号有针对性地提取故障的特征,发挥各自优势推进了风力发电机组的实时监测技术的发展。
     现阶段针对风力发电机组叶片的故障监测研究较为少见,本文以空气动力学理论为基础,研究风场的湍流模型并进行了流场仿真计算,得到叶片根部受力较大和叶片在绕Y轴的力矩较大,而研究Z轴方向的力和力矩没有实际意义的结论。建立了叶片与流场的流固耦合模型,叶片颤振物理模型。分析了叶片颤振稳定性的判据,得出判断叶片颤振的刚度阻尼和气动阻尼的计算公式。对真实叶片进行模态分析,证实颤振的存在及出现的频率范围,为风力发电机组叶片的故障诊断奠定力学基础。提出用声发射方法研究风力发电机组叶片的故障特征。由于声发射信号的复杂性和易于受到干扰性,借助小波尺度谱来提取声发射信号特征,提出了用小波尺度谱方法处理风力发电机组叶片的裂纹故障声发射信号。通过搭建声发射设备检测风力机叶片复合材料块的试验平台,采集了扩展裂纹与萌生裂纹的声发射信号,辨识了扩展裂纹和萌生裂纹并归纳出相关判据。
Wind power is an important and clean energy, which is developed vigorously in china.But many problems of fault diagnosis and dynamic monitoring has been exposed. Becauseof the large-scale wind turbine, the interference, weak signal characteristics, the role ofturbulence, and fluid-structure interaction, traditional methods is restricted and insufficientto complete the monitoring of wind turbine failure.
     The dynamic analysis of the gearbox concentrated in the planetary gear train usually.The planetary gear train is also an important component of the wind turbine gearbox. Inthis paper, the dynamic model of the planetary gear combined with ordinary gear train andshafting is constructed. Vibration excitation and vibration characteristics of the windturbine gearbox are introduced, and mathematical expression based on the dynamic modelis built. The subspace iteration method is used to solve the system modal, then real caseprove the feasibility of algorithm. The vibration characteristics of major components in thestable operation have typical feature and limitations. When some parts have internal failure,the form of vibration signal amplitude and spectral components will change. Differentdefects and malfunctions correspond to different modes of vibration. Therefore, vibrationsignal can reflect the operating state of gearbox objectively. Traditional fault diagnosismethods lack rigorous theoretical reasoning and proving data. This paper presents thatneural network approach is used to study wind turbine gearbox fault diagnosis. It wasconducted that specific results of bearing fault diagnosis can be achieved.
     The application of acoustic emission(AE) in wind turbine component fault diagnosisis proposed. The AE signal is different from the vibration signal. Therefore, it enrich thefault diagnosis methods and characteristics identification methods. AE signal and vibrationsignal are applied in different components in pertinences respectively. Using theiradvantages can push forward the development of wind turbine monitoring and faultdiagnosis.
     Nowadays, fault monitoring for wind turbine blades is rare. This paper presents theflow field simulation based on aerodynamic theory to study the turbulence of the windfield model.It is arrived that the force at root and torque around Y-axis are large, and forceand moment of Z-axis is little. Fluid-solid coupling model of Blade and flow field andblade flutter model are established. Blade flutter stability criterion is studied, and judgmentformula of leaves flutter stiffness damping and aerodynamic damping are obtained.Through the calculating of data of real blades, the presence and the frequency range ofblade flutter are confirmed, which lay the foundation for fault diagnosis of the wind turbineblades.Extraction early crack characteristics with strong noise and identification differentkinds of cracks in wind turbine blades are important in wind turbine fault diagnosis.Experimental platform has been constructed to test a wind turbine blade that is made ofcomposite material, and to collect the AE signal of propagation crack and initiation crack.Wavelet scalogram was used to extract crack AE signal characteristics and identify thepropagation crack and initiation crack for its superior time-frequency analysis feature. Theresults reveal that the wavelet scalogram can extract nonlinear, non-stationary faultfeatures effectively, which is better than the wavelet analysis. It is also indicated thecriterion of propagation crack and initiation crack. Finally, it has been established the newcrack identification method of wind turbine blades based on AE and wavelet scalogram.
引文
[1] Tony Burton.风能技术[M].北京:科学出版社,2009.
    [2] Amirat Y,Benbouzid MEH,Bensaker B,Wamkeue R.Condition monitoring and fault diagnosis inwind energy conversion systems[C]. Proceedings of the IEEE IEMDC, 2007: 1434~1439.
    [3]王瑞闯,林富洪.风力发电机在线监测与诊断系统研究[J].华东电力,2009 37(1):190~193.
    [4]辛龙.国内风电产业发展概况[J].科技传播,2011,2:88~93.
    [5]王晶晶,吴晓铃.风电齿轮箱的发展及技术分析[J].2008,32(6):5~8.
    [6]谢建华,崔新维.风力发电机设计成本研究现状及进展[J].新疆农机化,2006(3),37~39.
    [7] Ribrant J. Reliability Performance and Maintenance–A Survey of Failures in Wind Power Systems
    [D]. Sweden: KTH School of Electrical Engineering, 2006.
    [8] Hameed Z, Hong Y S, Cho Y M, et al. Condition Monitoring and Fault Detection of Wind Turbinesand Related Algorithms: A Review [J]. Renewable and Sustain Energy Rev, 2007, 58(1): 36~39.
    [9] G.Betta,C.Liguori, A.pietrosanto.A multi-application FFT-analyzer based on a DSP architecture.IEEE Trans. Instrum.Meas.,2001:825~832.
    [10] Giovanni Betta,Consolatina Liguori,Alfredo Paolillo.A DSP-based FFT-Analyzer for the faultdiagnosis of rotating machine based on vibration analysis.IEEE Transactions on Instrumentationand Measurement,2002,51(6):316~322.
    [11]绳晓铃,万书亭.基于VC与Matlab的风力发电机组齿轮故障诊断系统[J].机械传动, 2011,35(6): 72~75.
    [12]罗洁思,于德杰,史美丽.基于SVD和线调频小波路径追踪的转速波动齿轮箱故障诊断[J].中国机械工程,2010,21(16):1947~1951.
    [13]隋文涛,路长厚,Wilson Wang等.基于模拟退火与LSSVM的轴承故障诊断[J].振动测试与诊断.2010,30(2):119-122.
    [14]刘贵立,张国英,刘会立.模拟退火算法在旋转机械故障诊断中的应用[J].重型机械. 2001, 2:54~56.
    [15]潘昊,张华伟,高美铃.基于SA-BP算法的主减速器品质诊断研究[J].武汉理工大学学报.2011,33(16):161~164.
    [16]杨广学,王景波.改进模拟退火算法在FBG传感网络的应用[J].光电技术应用.2010,25(6):26~40.
    [17]金增,包能胜,陈庆新等.风力机系统的神经网络模型辨识[J].ACTA Energiae solarissinica.1998,19(2):208~211.
    [18]黎明,何玉林,金鑫.基于神经网络的风力机结构耦合振动预测模型[J],系统仿真学报,2009,21(2):413~417.
    [19] Han S Y,Maeng J S.Shape optimization of cut-off in a multi-blade fan/scroll system using neuralnetwork[J].International Journal of Heat and Mass Transfer,2003,46(15):2833~2839.
    [20] Poloni C,Giurgevich A,Onesti L.Hybridization of a multi-objective genetic algorithm,a neuralnetwork and classical optimizer for a complex design problem in fluid dynamics[J].ComputerMethods in Applied Mechanics and Engineering,2000,186(2-4):403~420.
    [21] Koive H N. Artificialneural networks in fault diagnosis and control[J],Control Engineering, 1995,2(1): 89~101.
    [22]李兴国,金鑫,何玉林.基于神经网络的风力机动力学分析[J].振动与冲击,2009,28(8):78~83.
    [23]琚亚平,张楚华.基于人工神经网络与遗传算法的风力机翼型优化设计方法[J].中国电机工程学报,2009,29(20):106~111.
    [24]陈金辉,赵雷振,杨宗宵等.改进的BP神经网络在故障诊断中的应用[J].河北科技大学学报,2011, 32(5): 455~459.
    [25]李增芳,何勇.基于粗糙集与BP神经网络的发动机故障诊断模型[J].农业机械学报, 2005, 36(8):118~121.
    [26] Cichocki A,Unbehauen R.Neural networks for optimization and signal processing[M].NY:Wiley and Sons Press,1993:2~10.
    [27]张彦宁,康龙云,周世琼等.小波分析应用于风力发电预测控制系统中的风速预测[J].太阳能学报,2008,29(5):520~524.
    [28] Vapnik V N,Second Edition. The nature of statistical learning theory[M]. New York:Springer-Verlag, 1999.
    [29] Vapnik V N(著),张学工(译).统计学习理论的本质[M].北京:清华大学出版社,2000.
    [30]叶杭冶,林勇刚,李伟等.基于SVR观测器风力机关键机械部件故障监测技术[J].太阳能学报,2009, 30(5): 645~649.
    [31]张新房,徐大平,柳亦兵等.大型变速风力发电机组的风速软测量[J].太阳能学报, 2006, 27(4):321~325.
    [32]林勇刚,李伟,崔宝玲.基于SVR增量学习算法的变桨距风力机系统在线辨识[J].2006,27(3):223~229.
    [33] Hameed Z,Hong Y S, Cho Y M,et al.Condition monitoring and fault detection of wind turbinesand related algorithms: A review[J].Renewable and Sustainable Energy Reviews,2009,13(1):1~39.
    [34] Achrnad Widodo,Bo-Suk Yang.Support vector machine in machine condition monitoring andfault diagnosis[J].Mechanical Systems and Signal Processing,2007,21(6):2560~2574.
    [35]刘永前,王飞,时文刚等.基于支持向量机的风电机组运行工况分类方法[J].太阳能学报, 2010,31(9): 1191~1197.
    [36]王丽君,刘晓燕.基于遗传神经网络的大型机械故障诊断[J].机械设计与制造,2009,6:155~157.
    [37]史富强.基于粗糙集神经网络的铁路滚动轴承故障诊断[J].甘肃科学学报,2010,22(2):133~136.
    [38]马清峰,潘宏侠.基于粒子群优化神经网络的传动箱故障诊断方法研究[J].中国机械工程, 2006,17增刊: 332~334.
    [39] K.Kim,A.G.Parlos. Model-based fault diagnosis of induetion motors using non-stationary signalsegmentation. Meehanieal Systems and Signal Proeessing, 2002,16(2):223~253.
    [40] I.Daubeehies.The wavelet transform time-frequeney loealization and signal analysis. IEEE Trans.Information Theory,1999, 36(5):961~1005.
    [41] Wan Lianghong, LiuYibing. Feng Dongliang. Application of wavelet Packets analysis to faultdiagnose of rolling bearings. Modern Electric Power,2004,21(l):24~26.
    [42] Isermann R. Supervision fault detection and fault-diagnosis methods. Control Eng Practice,1997,5(5):639-652.
    [43] R.N.Mahanty,P.B.Dutta GuPta. Application of RBF neural network to fault classification andlocation in transmission lines . IEE Proc-Gener.Transm.Distrib.,2004, 151:20~212.
    [44] M.Zacksenhouse, S.Braun,M.Feldman. Toward helicopter gearbox diagnostics from a smallexamples.Mechanical Systems and Signal Processing, 2000,14(4):523~543.
    [45] H.V.Ravindra. Some aspects of acoustic emission signal Proeessing[J]. Joumal of MaterialsProeessing Technology,2001, 109:242~247.
    [46] A G Dutton, M Blanch, P Vionis, et al. Acoustic Emission Monitoring from Wind Turbine Bladesundergoing Static and Fatigue Testing. Proceedings of 15th World Conference on Non-DestructiveTesting, Roma, 2000:15~21.
    [47] KAHRAMAN A. Natural modes of planetary gear trains[J]. Journal of Sound and Vibration,1994, 173(1):125~130.
    [48] KAHRAMAN A. Load sharing characteristics of planetary transmission[J]. Mechanism andMachine Theory, 1994,29(8):1151~1165.
    [49] LIN Jing,PARKER R G. Analytical characterization of the unique properties of planetary gearfree vibration[J].ASME,Journal of Vibration and Acoustics,1999,121(7):316~321.
    [50] PARKER R G,AGASHE V,VIJAYAKAR S M. Dynamic response of a planetary gear systemusing a finite element/contact mechanics model[J]. ASME,Journal of Mechanical Design,2000,122(9):304~310.
    [51] MOSHER M. Understanding vibration spectra of planetary gear systems for fault detection[C].Proceedings of ASME Design Engineering Technical Conferences, September,2003,Chicago,Illinois, USA. New York:ASME,2003:645~652.
    [52] AL-SHYYAB A,KAHRAMAN A. A non-linear dynamic model for planetary gear sets[J].Proceedings of the Institution of Mechanical Engineers,Part K:Journal of MultibodyDynamics,2007,221(4):567~576.
    [53] AMBARISHA V K,PARKER R G. Nonlinear dynamics of planetary gears using analytical andfinite element models[J]. Journal of Sound and Vibration,2007,302(8):577~595.
    [54] INALPOLAT M,KAHRAMAN A. A theoretical and experimental investigation of modulationsidebands of planetary gear sets[J]. Journal of Sound and Vibration,2009,323(4):677~696.
    [55] ERITENEL T,PARKER R G. Modal properties of three-dimensional helical planetary gears [J].Journal of Sound and Vibration,2009,325(2):397~420.
    [56] GUO Yichao,PARKER R G. Dynamic modeling and analysis of a spur planetary gear involvingtooth wedging and bearing clearance nonlinearity[J]. European Journal of Mechanics-A/Solids,2010,29(6):1022~1033.
    [57] GUO Yichao,PARKER R G. Purely rotational model and vibration modes of compoundplanetary gears[J]. Mechanism and Machine Theory,2010,45(3):365~377.
    [58] INALPOLAT M,KAHRAMAN A. A dynamic model to predict modulation sidebands of aplanetary gear set having manufacturing errors[J]. Journal of Sound and Vibration, 2010,329(4):371~393.
    [59]袁茹,纪名刚.航空行星减速器的振动特性分析[J].航空动力学报,1995,10(4):395~398.
    [60]孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J].机械工程学报,2002,38(2):44~48.
    [61]孙智民,季林红,沈允文. 2K-H行星齿轮传动非线性动力学[J].清华大学学报,2003,43(5):636~639.
    [62]孙智民,季林红,沈允文等.齿侧间隙对星型齿轮传动扭振特性的影响研究[J].机械设计,2003,20(2):3~6.
    [63]魏大盛,王延荣.行星轮系动态特性分析[J].航空动力学报,2003,18(3):450~453.
    [64]王世宇,张策,宋轶民等.行星传动固有特性分析[J].中国机械工程,2005,16(16):1461~1465.
    [65]宋轶民,张俊,张君等. 3K-II型直齿行星齿轮传动的固有特性[J].机械工程学报,2009,45(7):23~28.
    [66]孙涛,胡海岩.基于离散傅里叶变换与谐波平衡法的行星齿轮系统非线性动力学分析[J].机械工程学报,2002,38(11):58~61.
    [67] SUN Tao,HU Haiyan. Nonlinear dynamics of a planetary gear system with multiple clearances[J].Mechanism and Machine Theory,2003,38(12):1371~1390.
    [68]杨通强.斜齿行星齿轮系统自由振动特性分析[J].机械工程学报,2005,41(7):50~55.
    [69]吴上生,段福海,胡青春.系统参数配置对多级行星齿轮传动可靠性的影响[J].机械设计,2007,24(10):43~46.
    [70]周建星,董海军.基于非线性动力学的行星传动均载性能研究[J].机械科学与技术, 2008,27(6): 808-811.
    [71]周建星,刘更,吴立言等.中心轮浮动式行星传动动态均载性能研究[J].机械科学与技术,2009,28(7):857~861.
    [72]李振平,凌云,范凤明等.行星齿轮传动的动特性优化研究[J].车辆与动力技术,2009(1):21~24.
    [73]朱恩涌,巫世晶,王晓笋等.含摩擦力的行星齿轮传动系统非线性动力学模型[J].振动与冲击,2010,29(8):217~220.
    [74]肖正明,秦大同,王建宏等.盾构机主减速器三级行星传动系统扭转动力学[J].中国机械工程,2010,21(18):2176~2182.
    [75]冯键,陈雪华.基于有限元的大型风电齿轮圈制造技术的研究[J].机械设计,2007,31(1):81~83
    [76] SAADA A,VELEX P. An Extended model for the analysis of the dynamic behavior of planetarytrains[J].ASME,Journal of Mechanical Design,1995,117(2A):241~247.
    [77] SINGH A. Application of a system level model to study the planetary load sharing behavior[J].ASME,Journal of Mechanical Design,2005,127(3):469~476.
    [78] CHAARI F,FAKHFAKH T,HADDAR M. Dynamic analysis of a planetary gear failure causedby tooth pitting and cracking[J]. Journal of Failure Analysis and Prevention,2006,6(2):73~78.
    [79] CHAARI F,FAKHFAKH T,HADDAR M. Analytical investigation on the effect of gear teethfaults on the dynamic response of a planetary gear set[J]. Noise & Vibration Worldwide, 2006,37(8): 9~15.
    [80] MARK W D,HINES J A. Stationary transducer response to planetary-gear vibration excitationwith non-uniform planet loading[J]. Mechanical Systems and Signal Processing,2009,23(4):1366~1381.
    [81] MARK W D. Stationary transducer response to planetary-gear vibration excitation II:Effects oftorque modulations[J]. Mechanical Systems and Signal Processing,2009,23(7):2253~2259.
    [82] MATHIS R,REMOND Y. Kinematic and dynamic simulation of epicyclic gear trains[J].Mechanism and Machine Theory,2009,44(2):412~424.
    [83] PARKER R G,WU Xionghua. Vibration modes of planetary gears with unequally spaced planetsand an elastic ring gear[J]. Journal of Sound and Vibration,2010,329(11):2265~2275.
    [84]胡青春,段福海,薛峰.设计参数对行星齿轮传动系统模态能量灵敏度的影响[J].科学技术与工程,2009,9(18):5341~5347.
    [85]唐增宝,钟毅芳.齿轮传动的振动分析与动态优化设计[M].武汉:华中理工大学出版社,1992.
    [86]赵元喜,胥永刚,高立新等.基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术.振动与冲击.2010,29(10):162~165.
    [87]王国栋,张建宇,高立新等.小波包神经网络在轴承故障模式识别中的应用[J].轴承,2007,(1):31~34.
    [88]王忠峰,汤伟,黄俊梅等.基于PLC的BP神经网络在轴承故障诊断中的研究和应用[J].化工自动化及仪表,2011,3:327~331.
    [89]孙建平,王逢瑚,胡英成.基于声发射和神经网络的木材受力损伤过程检测[J].仪器仪表学报,2011,32(2):342~347.
    [90]徐旭,曹志远.气动耦合扭转非线性振动的稳定性分析[J] .非线性动力学学报,1999, 5(9):228~234.
    [91] John A,Ekaterinaris.Numerical investigations of dynamic stall active control for incompressibleand compressible flows.Journal of Aircraft[J],2002,39(1):71~78.
    [92]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [93]王福军,计算流体动力学分析[M].北京:清华大学出版社,2004.
    [94]周盛,叶轮机气动弹性力学讨论[M],北京:国防工业出版社,1989.
    [95]虞心田,崔尔杰.分析水平轴风力机叶片气弹稳定性的简单方法[J].太阳能学报,1996,11(l):53~56.
    [96] Lobitz DW,Veers PS.Bending Load on Wind Turbine Blade[J].Wind Energy,2003,6:105-117.
    [97]耿荣生.声发射技术发展现状.无损检测.1998,20(6):151~155.
    [98] Droulliard,T.F..A History of Acoustic Emission[J],Journal of Acoustic Emission,1996,14(l):1~34
    [99] P.A.Joosse, M.J.Blanch, A.G.Dutton,D.A.Kouroussis, et al. Acoustic Emission Monitoring ofSmall Wind Turbine Blades. AIAA, 2002, 0063.
    [100] M.J.Sundaresan, M.J.Schulz, A.Ghoshal. Structural Health Monitoring Static Test of a WindTurbine Blade[J], Journal of wind engineering and industrial aerodynamics,2006,85(2000),309~324.
    [101]侯素霞,罗积军,徐军.神经网络在声发射信号模式识别中的应用.应用声学. 2003, 22(1):44~47.
    [102]易若翔,刘时风,耿荣生.人工神经网在声发射检测中的应用.无损检测.2007,24(11):488~491.
    [103]彭志科,何永勇,褚福磊.小波尺度谱在振动信号分析中的应用研究[J].机械工程学报,200238(3):122~126.
    [104]陈果,邓堰.转子故障的连续小波尺度谱特征提取新方法[J].航空动力学报,2009,24(4):793~798.
    [105]汤宝平,蒋永华,董绍江.重分配小波尺度谱的时频分布优化方法研究[J].仪器仪表学报:2010,31(6):1330~1334.
    [106]肖思文,廖传军,李学军.小波尺度谱在AE信号特征提取中的应用[J].中国工程科学:2008,10(11):69~74.
    [107]褚福磊,彭志科,冯志鹏等.机械故障诊断中的现代信号处理方法[M].北京:科学出版社,2009.
    [108] HE Yongyong,Yin Xinyun,Chu Fulei. Modal Analysis of Rubbing Acoustic Emission forRotor-Bearing System Based on Reassigned Wavelet Scalogram[J].Journal of Vibration andAcoustics,2008,130:0610091~0610098.
    [109] ZHAO Xinguang,Chen changzheng,Zhou bo. Study on monitoring damage about material ofblade in wind turbine based on acoustic emission [J]. Advanced Materials Research, 2011,201-203:2753~2758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700