汽车承载系试验场用户关联可靠性试验方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对传统汽车试验场可靠性试验技术规范存在的问题,提出一种与用户用途关联的汽车可靠性试验方法,与现行的试验方法相比,该方法能把用户对车辆的实际使用工况与试验场强化试验结合起来,真正考虑了用户的真实用法,避免了试验盲目性。根据威布尔分布参数估计值及Miner线性累积损伤法则,计算出了用户平坦、中等不平和极端不平三种典型路面汽车承载系构件的B_(10)疲劳寿命里程,通过Monte-Carlo仿真获得了承载系构件的90%用户目标里程。应用修正的Neuber公式及Manson-Coffin应变寿命曲线方程绘制了承载系构件的双对数应变-疲劳寿命曲线。在研究车辆用户用途关联可靠性试验技术原理的基础上,应用Visual C++语言编写了汽车承载系试验场可靠性试验寿命仿真计算软件,结果表明仿真计算的寿命里程与试验场和用户使用试验结果基本吻合。利用试验场与用户的关联数学模型,优化计算出90%用户和试验场数据雨流矩阵载荷谱相同条件下的试验场强化路循环次数,制订了与用户用途关联的汽车承载系可靠性试验规范,新规范与现行的试验方法相比能快速预报承载系构件的潜在故障,缩短试验周期、降低试验成本及新产品开发费用。
Modern vehicle design must take market as guidance, the product of design life excessive or insufficient is usually uneconomical and lacks market competition. So no matter in process of the vehicle design, development or test stage, should consider customer field usage. The vehicle reliability test is one important method, which inspects and evaluates whether the vehicles are durable or not. The traditional test basis is partial to the strength test, but not the life test. They are all in order to guarantee vehicle components haven’t fracture under the worst operating condition, and also can satisfy the general project requirement. Obviously, these tests basically rely on the experience or custom, mainly depend on the extrapolation, but not base on the scientific principle. The domestic present reliability test specifications of automotive proving grounds are partial to simple, and the testing eligible products on proving ground can not guarantee satisfaction to customers, and neglected the influence of the operating order of the road categories on the structural fatigue life, so as to the failure regularity difference is obvious between the test results of proving ground and customer actual usage, separately fits the different probability distribution.In view of the above questions,the customer correlation reliability test technique was proposed, the technique considered real world customer field usage, compared with the traditional test method. Through the optimization and calculation of the correlation model between the customer and proving ground, can establish the reliability test specifications, which reflected the customer actual operating conditions, and provide a new method for vehicle reliability test.
     Combined with the Formulating Method of the Customer’s Relevant Test Specifications of the Motor Truck Load Carrying Proving Ground and Formulation of the Reliability Test Specifications of the Main Automotive Assemblies in Nong’an Automotive Proving Ground, the key research projects of the Technological Center of China FAW Group Corporation, the research is carried out in the paper. A new method for customer correlation reliability test was proposed based on automotive proving ground, and the method can combine the real customer field usage to the vehicle with the enhancement test on proving ground, and avoid the test blindness. Aiming at the data that were tested on the typical road surfaces of the customer and enhancement roads of proving ground, the rain-flow counting method was used to obtain the load distribution matrixes , according to the correlation equation, the cumulative fatigue damage and loading spectrums of the 90% customer and proving ground were optimized and calculated. Through the correlation analysis of the test data, the road surface enhancement coefficient and the reliability test specifications of proving ground were obtained. The test results indicate that the new specifications can predict the potential failures of the load carrying structures quickly, shorten the test cycles, and reduce the test cost and new product development expense, compared with the existing test method.
     1. Research of the Customers Target Mileage Correlation
     In order to make the formulated test specifications able to truly reflect the customer’s use, the on-site investigation of the actual use of the national relevant vehicles. According to the customer’s data investigated, the MLE technique is applied to evaluate the Weibull parameters of the three typical road surfaces. The determined Weibull parameters and Miner cumulative damage rule are used to calculate the customer’s total fatigue failure mileage of the load carrying structures of the even, moderately uneven and extremely uneven road surfaces. With the Monte-Carlo simulation, 90% of the customer’s target mileage of the load carrying structures is available.
     2. Research of the Customer Correlation Reliability Test Project
     With the analysis of the model stress and limit elements of the load carrying structures and experience, the critical dangerous positions of the structures. ADAMS and limit element fatigue software are used to carry out the fatigue analysis of the weigh beam and determine its weak position. According to the stress centralization principle of the electric resistance strain gage, stress, displacement and acceleration sensors of the loading structures are laid out. Considering the demand of the measuring precision, the engine suspension is designed and modified again to make it play the roles of suspension and sensor simultaneously.
     3. Research of the Correlation Test Model of Automotive Load Carrying System between Proving Ground and Customers Usage
     In application of the least square method and combination with the fatigue cumulative damage and Basquin relation, the linear fitting of the fatigue life discrete data is made and the mathematical model of the S-N curve is obtained. The Goodman experience fatigue formula is used to equivalently transform the non-zero average stress to the zero average stress. The modified Neuber method and Manson-Coffin strain life curve equation are used to transform the nominal strain-time course to the local strain-time course and draw the double-log strain-fatigue life curve of the load carrying structures.
     4. Analysis and Disposal of the Customer Correlation Reliability test Data between Proving Ground and Customers Usage
     According to the principle of the customer’s use correlation reliability test technology, the rain-flow matrix equivalent loading spectrum method is used to build the customer’s use and proving ground correlation mathematical model, treat the test data of the customer and the proving ground and optimally calculate the proving ground strengthened road cycle indexes of the rain-flow matrix loading spectrum of 90% of the customer’s and proving ground data. In line with the problems existing in the technical specifications of the traditional reliability test, according to the road loading spectrum correlation mathematical model of the customer and proving ground, the automotive load carrying reliability test specifications related to the customer’s use are scientifically formulated, which provides the new test method for the determination of the new automotive products and reliability test.
     5. Simulation Analysis and Test Validation of the Customer Correlation Reliability Test Method
     The special test clamp is used to carry out the loading calibration of the key examined load carrying structures (front and rear axles, front and rear suspensions and weigh beams of the cabin). According to the equivalent life method of the fatigue test, the mathematical model of the acceleration coefficient of the key structures. The calculating procedure of the acceleration coefficient is used and the S-N curve is combined to calculate all the strengthened roads and the acceleration coefficient of the combined comprehensive road. The Visual C++ language is applied to formulate the automotive load carrying proving ground reliability life mileage evaluation software. The life evaluation software is used to evaluate the actual used life mileage of the automotive proving ground and the customer. The results show that the life mileage evaluated by the simulation evaluation software is basically consistent with the test results of use of the proving ground and the customer.
引文
[1]王秉刚.汽车可靠性工程方法[M].北京:机械工业出版社,1991.
    [2]浦维达.汽车可靠性工程[M].北京:机械工业出版社,1998.
    [3]张义民.汽车零部件可靠性设计[M].北京:北京理工大学出版社,2000.
    [4]霍炜.可靠性数据的统计与国产汽车可靠性评价[D].长春:吉林工业大学硕士学位论文, 1999.
    [5]周玉明.汽车可靠性设计概论[M].重庆:重庆大学出版社,1988.
    [6]明平顺,李晓霞.汽车可靠性理论[M].北京:机械工业出版社,2003.
    [7]何国伟.可靠性试验技术[M].北京:国防工业出版社,1995.
    [8]明平顺.汽车零件疲劳强度可靠性设计方法[J].武汉汽车工业大学学报,1998,20 (2):15-17.
    [9]江建民,等译.可靠设计和可靠性试验[J].国外汽车,1979(2):3-10.
    [10] Robert W. Hanse. Application of reliability growth model during light truck design and development[C]//SAE Paper 780240.
    [11] Rider R L,Landgraf R W. Reliability analysis of an automobile wheel assembly[C]//SAE Paper930406.
    [12] Marphy R W. Endurance Testing of Heavy Duty Vehicles[C]//SAE Paper 820001.
    [13] Bavaria H J. Reliability maintainability safety and human factor(RMSH) consideration in automobile industry[C]//SAE Paper 780053.
    [14] Thomas Ruder,Klaus Dressler,Bernhard Grinder. Optimal Configuration of Test Schedules[M],2000 JSAE Spring Convention,Yokohama,Japan. 2000.
    [15]李运胜.论汽车试验场的建设与发展[J].公路交通科技,2000,17(6):6-8.
    [16]郭虎,陈文华,樊晓燕,等.汽车试验场可靠性试验强化系数的研究[J].机械工程学报,2004,40(90):74-76.
    [17]杨万凯,刘承胤.汽车可靠性理论[M].北京:人民交通出版社,1986.
    [18]郭虎.汽车试验场可靠性强化试验强化系数的研究[D].浙江大学硕士学位论文,2003.
    [19]虞明,等.随机不平路面上的汽车强化试验研究[J].汽车工程,1993(1):47-51.
    [20] H.H.亚岑科.载货汽车的振动、强度和强化试验[M].北京:机械工业出版社,1982.
    [21]虞明.随机路面汽车加速可靠性试验的研究[D].装甲兵工程学院硕士学位论文,1990.
    [22]姜同敏.可靠性强化试验[J].环境技术,2000(1):4-5.
    [23] Lev M.Klyatis. The Strategy of Accelerated Reliability Testing Development for CarComponents[C]//SAE Technical Paper 2000-01-1195.
    [24]汤向东.我国汽车道路试验场现状及发展分析[J].汽车与配件,2003(8):19-21.
    [25]程超.空气悬架牵引车刚弹耦合虚拟样机建模分析与试验[D].吉林大学博士学位论文,2006.
    [26] Hari N.Agrawal. Durability analysis of full automotive body structures[C]//SAE Paper 930568.
    [27] Conla A,Topper T H. Fatigue Service Histories:Techniques for Data Collection and History Reconstruction[C]//SAE Paper 820093.
    [28] Ensor D F.关联用户用途的试车技术[J].中国机械工程,1998,9(11):24-26.
    [29]高树新,于光,等.美国通用汽车公司试验场的产品可靠性试验[J].汽车研究与开发,1998,(4):39-40.
    [30]董立甲.载货汽车用户相关可靠性的研究与应用[D].吉林大学工程硕士学位论文,2006.
    [31]杨晓尉.滚动轴承疲劳寿命威布尔分布三参数的研究[D].合肥工业大学硕士论文,2003.
    [32]蒋仁言.威布尔模型族特性、参数估计和应用[M].北京:科学出版社,1998.
    [33]费鹤良.威布尔分布和正态分布参数估计方法综述[J].数理统计与应用概率,1986,1(2):118-122.
    [34]张建中,费鹤良,王玲玲.威布尔分布参数估计方法的精度比较[J].应用数学学报,1982,(50):396-409.
    [35]徐灏.机械强度的可靠性设计[M].北京:机械工业出版社,1984.
    [36]王少萍.工程可靠性[M].北京:北京航空航天大学出版社,2000.
    [37] Kawamura A,Naka S j ima,Nakatsu T j i. Prediction for Truck Endurance from the Basis of Road Profile Measurements[C]//SAE Technical Paper 982788.
    [38]严晓东,马翔,郑荣跃,吴亮.三参数威布尔分布参数估计方法比较[J].宁波大学学报(理工版),2005,18(3):303-304.
    [39]陈北东,黎斌,廖开贵,魏秦文,刘竞成.基于蒙特卡罗改进算法的非线性可靠度研究[J].钴采工艺,2007,30(5):86-88.
    [40]吴碧磊.重型汽车动力学性能仿真研究与优化设计[D].吉林大学博士学位论文,2008.
    [41]肖刚,李天柁.系统可靠性分析中的蒙特卡罗方法[M].北京:科学出版社,2003.
    [42]徐钟济.蒙特卡洛方法[M].上海:上海科学技术出版社,1985.
    [43] Jerry Z. Wang,Mark W. Muddiman,Glen R. Moore.Structural Correlation of Automotive Proving Grounds to China Customer Field Usage[C]. The 7th International Fatigue Congress Vol. 4, Beijing, P.R. China, 1999.
    [44]门玉琢,李显生,于海波.与用户相关的汽车可靠性试验新方法[J].机械工程学报,2008,44(2):223-229.
    [45] Muddiman M W, Moore G R. Structural correlation of automotive proving ground to China customer field usage[R]. USA:UltiTech Corporation,2003.
    [46] Campean F. Vehicle foresigh customer correlation of engine components tests using life prediction modeling[C]//SAE 2002 World Congress. Michigan:Society of Automotive Engineers,2002:108-113.
    [47] Lev M. Klyatis. Principles of Truck Accelerated Reliability Testing[C]//SAE Technical Paper 1999-01-1086.
    [48]王占奎.汽车结构部件极值载荷的研究[J].江苏工学院研究生学报,1991,(10):11-19.
    [49] John C.Conover,Henry R.Jackal,Wayne J. Cupola. Simulation of Field Loading in Fatigue Testing[C]//SAE Paper 660102.
    [50]樊晓燕,童忠钫.机械零部件疲劳载荷谱编制[J].机电工程,1994,(2):25-26.
    [51]张基全.载荷谱的数据采集与处理技术[J].工程机械,1996,(6):19-20.
    [52]平安,王德俊,徐灏.载荷谱强化等损伤寿命折算新方法[J].机械强度,1993,5(2):39-41.
    [53]孟繁沛,李令芳.载荷谱的当量化计算[J].航空学报,1990,11(8):330-333.
    [54]明平顺.汽车路面载荷历程计数法的一种新思路[J].武汉汽车工业大学学报,1999,21(1):56-59.
    [55]王占奎,鲁三才. EQ140汽车后桥的极值载荷分析及在疲劳试验中的应用[J].汽车工程,1996,18(3):177-179.
    [56]骊明,张乐年,鲁三才.汽车疲劳试验研究中的极值载荷[J].机械强度,1990,12(4):16-19.
    [57]周家泽,管昌生.机械零件随机疲劳载荷的统计分析方法[J].襄樊职业技术学院学报,2004,2(4):4-7.
    [58]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [59]徐灏.疲劳强度设计[M].北京:机械工业出版社,1981.
    [60]赵少汴,王忠保.疲劳设计[M].北京:机械工业出版社,1992.
    [61]程育仁,缪龙秀,等.疲劳强度[M].北京:中国铁道出版社,1990.
    [62] S.戈康达.金属疲劳与断裂[M].上海:上海科学技术出版社,1983.
    [63]曾春华,邹十践.疲劳分析方法及应用[M].北京:国防工业出版社,1991.
    [64] Bannantine J A,Comer J J,Handrock J L. Fundamentals of metal fatigue analysis[M]. New Jersey:Prentice Hall, Englewood Cliffs, 2004:168-183.
    [65] Zhang W,Miller K J. A Study of Cumulative Fatigue Damage under Variable Loading-mode Conditions[J]. Fatigue Fract. Engng Mater. Struct. 1996,19(2):230-235.
    [66]王栓柱.金属疲劳[M].福州:福建科学技术出版社,1986.
    [67]赵少汴.抗疲劳设计[M].北京:机械工业出版社,1994.
    [68] Jang Moo Lee,Kenneth G. McConnell. Random Load Simulation in aboratory Fatigue Testing[C]//SAE Paper 780101.
    [69] Svensson T. Fatigue Damage Calculations on Block Load Sequences[J]. Fatigue Fract.Engng Mater.Struct,1996,19(3):251-264.
    [70]高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986.
    [71]高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社,2000.
    [72] Gilberto F.M. Souza,Edison Goncalve. Fatigue Reliability Analysis of Mechanical Parts[C]//SAE Technical Paper 952235E.
    [73] Nagpal R,Kuo E Y. A Time-Domain Fatigue Life Prediction Method for Vehicle Body Structures[C]//SAE Technical Paper 960567.
    [74]赵少汴.常用累积损伤理论疲劳寿命估算精度的试验研究[J].机械强度,2000,22(3):112-116
    [75]丁群,郑晓阳,谢基龙.谱载荷下疲劳寿命的累积破坏率法研究[J].力学与实践,2000(24):23-24.
    [76]凌树森.可靠性在机械强度设计和寿命估计中的应用[M].北京:宇航出版社,1988.
    [77]唐雪松,郑健龙,蒋持平.传统疲劳经验公式的损伤力学解释[J].长沙交通学院学报,2000,16(2):100-102.
    [78] Sture Holm,Jacques de Mare. A Simple Model for Fatigue Life[C]. IEEE TRANSACTIONS ON RELIABILITY,1988,37(3):48-50.
    [79]石来德.机械的有限寿命设计与试验[M].上海:同济大学出版社,1990.
    [80]于海波,李幼德,门玉琢.一种和用户数据相关的汽车加速疲劳试验新技术[J].机械强度,2008,30(3):461-466.
    [81]李鹏.汽车试验场道路强化系数的研究[D].吉林大学硕士学位论文,2008.
    [82]孙志礼,等.疲劳可靠寿命预测的应力-寿命模型[J],机械科学与技术,1998,17(2):217-219.
    [83] Smith K.V. Cumulative Damage Approach to Durability Route Design[C]//SAE Paper 791033.
    [84]杨占春,崔胜民,赵桂范.用改进的史密斯公式预测汽车车轮疲劳寿命[J].哈尔滨工业大学学报,2000,32(6):100-102.
    [85] Ensor D F. Vehicle testing as synthesis of road usage[J]. Truck Technology International,1989,45(8):1586-1589.
    [86] Ensor D F,Blackmore P A. Progress Towards an Integrated System for Fatigue Durability Management Seventh Australasian MSC Users Conference[C]. Sydney:October 1993.
    [87] Cawte R. Using Test Feedback to Improve the Accuracy of FE Results for Fatigue Predictions E-I-S Simulation[C]. Test and Measurement Conference October 2001.
    [88] Ensor D F. Customer Usage Profiling and Accelerated Development[J]. Journal of the Engineering Integrity Society,1999,6(6):892-898.
    [89] Ensor D F. Developing an Accelerated Durability Schedule on MIRA Proving Ground Equivalent to 95% Usage in China E-I-S Simulation[C]. Test and Measurement Conference October 2001.
    [90] Ensor D F. Damage Intensity Concept Technical Paper[C]. Compumod Users Conference Melbourne Australia 1999.
    [91] Lalanne C. Fatigue Damage [J]. Mechanical Vibration and Shock,2002,4(6):157-161.
    [92] Cormen T H. The simplex algorithm Introduction to Algorithms[M].USA:MIT Press 2001.
    [93] Draper N R,Smith H W. Applied Regression Analysis[J]. Series in Probability and Statistics,1998,26(9):2361-2366.
    [94]李晨阳,道路相关及加速耐久性行驶试验规范开发[J].上海汽车,2006(06):29-32.
    [95]李永乐.概率论及数理统计[M].长沙:国防科技大学出版社,1998.
    [96]罗南星.测量误差及数据处理[M].北京:计量出版社,1984.
    [97]鲍晓峰.汽车试验与检测[M].北京:机械工业出版社,1995.
    [98]仇维礼.数据处理和误差分析[M].北京:知识出版社,1986.
    [99]郭应时,袁伟.汽车试验学[M].北京:人民交通出版社,2006.
    [100]何秀然,谢寿生.航空发动机载荷谱雨流计数的一种改进算法[J].燃气涡轮试验与研究,1995,18(2):28-30.
    [101]高镇同.雨流-回线法及二维疲劳载荷分布假设检验[J].航空学报,1996,17(3):297-300.
    [102]赵周礼.扭矩的随机模拟方法及雨流计数算法[J].华东冶金学院学报,1995,12(3):267-271.
    [103]董乐义,罗俊.雨流计数法及其在程序中的具体实现[J].计算机技术与应用,2004,24(3):38-40.
    [104]高镇同,阎楚良.雨流法实时计数模型[J].北京航空航天大学学报,1998,24(3):623-624.
    [105]王宏伟.雨流计数法及其在疲劳寿命估算中的应用[J].矿山机械,2006,34(3):95-97.
    [106] Downing D, Socie D F. Simple rainflow counting algorithms[J]. INT.J.FATIGUE,1982(3):31-38.
    [107] Khosrovanch A K,Dowling N E. Fatigue Loading History Reconstruction Based on the Rainflow Technique[J]. International Journal of Fatigue,1990(2):20-24.
    [108]陈龙,刘星荣.改进雨流计数法在拖拉机零部件疲劳寿命估算中的应用[J].江苏工学院学报,1990,11(2):11-23.
    [109]阎楚良,卓宁生,高镇同.雨流计数实时模型[M].北京航空航天大学学报,1998,24(5):623-624.
    [110] Bernhard Grunder,Michael Speckert,Mark Pompetzki. Design of Durability Sequence Based on Rainflow Matrix Optimization[C]//SAE Technical Paper 980690.
    [111] Bishop N W M,Frank Sherratt. Fatigue life prediction from power spectral density data,Part 2:recent developments[J]. Environmental Engineering,1989,2(2):11-15.
    [112]刘义伦.不同计数法对计算疲劳寿命的影响[J].中南工业大学学报,1996,27(4):472-474.
    [113] Thomas Bruder,Klaus Dressler,Bernhard Grunder. Optimal Configuration of Test Schedules[C]. 2000 JSAE Spring Convention.Yokohama,Japan.2000.
    [114] Beamgard R S,Snodgrass K P,Stornant R F. A Field Performance Prediction Technique for Light Truck Structural Components[C]//SAE Paper 791034.
    [115]牟致忠.机械可靠性工程基础[M].北京:机械工程师进修大学出版,1989.
    [116] Bertodo R. Reliability and durability of automotive prime movers[J].Int. J. of Vehicle Design,1987,8(2):145-148.
    [117] Binroth W. Development of Reliability Prediction Models for Electronic Components in Automotive Applications[C]//SAE Technical Paper 840486.
    [118]虞明,赵济海.随机不平路面上的汽车强化试验研究[J].汽车工程,1993,15(1):43-52. 13.
    [119]龚红兵.海南汽车试验场可靠性试验强化系数的计算[J].汽车研究与开发,1997(3):43-45.
    [120]田文春.汽车试验场可靠性强化试验系数的研究[J].汽车技术,1997(2):20-22.
    [121]姜华.车辆强化试验加速系数的研究[D].中国农业大学博士学位论文,2000.
    [122]刘锋.叉车可靠性强化试验加速系数的计算研究[D].北京农业工程大学硕士学位论文,1990.
    [123] Ray W Murphy. Endurance Testing of Heavy Duty Vehicle[C]//SAE Paper 820001.
    [124] Sohn So Young. Accelerated life-tests for intermittent destructive inspection with logistic failure-distribution[C]. USA IEEE Trans Reliability 1997.
    [125]石来德,伍绍科.车辆强化试验系数的研究[J].农业机械学报,1994,25(3):12-17.
    [126]闫仕军.汽车试验场道路强化系数的研究[D].吉林大学硕士论文,2001.
    [127]吴坷,等.汽车试验场可靠性试验强化系数的研究[J].汽车工程,1996,18(2):108-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700