轻型客车关键橡胶隔振件性能匹配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的快速发展和人们生活水平的提高,汽车NVH(Noise, Vibration and Harshness)性能越来越受重视。汽车的振动缩短汽车产品的使用寿命,汽车的噪声污染环境,影响人们的身心健康。在汽车的各大总成和部件之间使用橡胶隔振件可以有效地降低汽车的振动与噪声。动力总成悬置、排气管悬吊和车身悬置可以衰减由发动机和路面等激励引起的振动,减少振动向车内的传递。将动力总成悬置、排气管悬吊和车身悬置这三种橡胶隔振件进行合理匹配,可以大大地提高汽车的乘坐舒适性。因此,本文基于整车模型对动力总成悬置、排气管悬吊和车身悬置进行匹配研究。
     本文运用多体动力学理论和有限元方法,采用CAE仿真分析和试验相结合的方式建立包含动力总成悬置、排气管悬吊和车身悬置三种橡胶隔振件的整车刚弹耦合模型,然后在整车模型下分别从单种橡胶隔振件的匹配和三种橡胶隔振件的集成优化匹配两个角度对橡胶隔振件进行匹配研究。在研究的过程中紧密结合工程实际,严格控制橡胶隔振件的压剪比,并考虑橡胶隔振件刚度的不确定性,对橡胶隔振系统进行了鲁棒性优化。
     在进行动力总成悬置研究时,分别基于传统的动力总成悬置系统六自由度模型和整车模型下的动力总成悬置系统模型进行优化,结果表明在整车模型下对动力总成悬置系统进行优化可以获得更优的优化结果。动力总成悬置系统的优化有多种不同的优化目标,本文对动力总成悬置系统六自由度模型分别采用能量解耦法和动力响应法进行优化,并将两者的优化结果代入整车模型以比较车内振动水平,结果表明动力响应法优化结果对应的车内座椅导轨振动小,且动力总成悬置支承处的动反力小。同时从试验的角度进一步研究动力总成悬置系统能量解耦对车内振动的影响,对同一样车装用不同的悬置并测试车内驾驶员座椅导轨、第二排座椅导轨、第四排座椅导轨和最后排座椅导轨的振动,测试结果表明能量解耦好的悬置方案其车内振动并未改善。动力总成悬置系统的能量解耦可以在一定程度降低车内振动,能量解耦好的悬置系统通常不是最佳的方案。为更准确地模拟样车的振动,本文在整车模型中从能量的角度对动力总成悬置系统进行优化,通过减小动力总成悬置支承处传入车架的振动功率来降低车内振动。
     排气管悬吊的匹配方面,对排气系统进行计算模态分析和试验模态分析,用排气系统试验模态分析结果校准有限元模型。对试验校正后的有限元模型进行排气管悬吊位置优化,选取平均驱动自由度位移较小的位置作为排气管悬吊点,减小排气系统振动向车架的传递。排气管悬吊的刚度影响着排气系统的动力学性能,通过优化悬吊刚度来改变排气系统的固有频率,使排气系统固有频率远离发动机怠速激励频率及发动机经济转速下的激励频率,从而降低车内振动。同时对排气管悬吊进行试验测试与分析,在包含排气系统柔性体的整车环境下以传递到车架的振动加速度为目标,对排气管悬吊进行优化设计,优化过程中排气系统四个悬吊点只采用两种规格的悬吊以节省企业成本。
     车身悬置的研究方面,通过对样车车内驾驶员座椅导轨、第二排座椅导轨、第四排座椅导轨和最后排座椅导轨进行振动测试,发现车内各测点的振动与发动机、传动轴和车轮的激振有关。本文从优化车身悬置刚度入手,研究车身悬置的各向刚度对车内振动测点的贡献度。建立既有弹性连接又有刚性连接的车身悬置系统模型,对车身悬置系统进行优化设计,在确定车身悬置的设计变量上下限时兼顾汽车操纵稳定性的要求。
     橡胶隔振件的集成优化设计方面,考虑动力总成悬置、排气管悬吊以及车身悬置之间的相互影响,同时对它们进行优化设计。在优化设计之前,对各橡胶隔振件进行正交试验分析,确定各橡胶隔振件的灵敏度,然后在动力总成悬置系统、排气管悬吊以及车身悬置系统的各自隔振性能达到最优的前提下,以车内振动响应为优化目标对其进行集成优化设计。通常橡胶隔振件的刚度在设计值的±10%范围内波动,本文对橡胶隔振系统进行鲁棒性设计,并对鲁棒性优化过程进行改进,提高了鲁棒性优化效率。
     在汽车研发过程中,采用试验与仿真相结合的方法可以加快研发进程,建立整车模型可以更准确地进行汽车振动性能的预测与优化。匹配汽车橡胶隔振件时,应从橡胶隔振件的安装空间、加工工艺性和生产成本等多方面进行考虑,不能顾此失彼。本文以动力总成悬置支承处振动输入功率为优化目标,在整车环境下对动力总成悬置系统进行优化,该方法能有效地降低车内振动,与传统的优化目标具有良好的一致性。本文建立了既有弹性连接又有刚性连接的车身悬置系统模型,为其它结构类似的车身悬置系统模型的建立提供参考。汽车橡胶隔振系统相互影响,本文对其进行集成优化设计,然后从工程实际出发对其进行了鲁棒性优化。在橡胶隔振件的设计阶段考虑其刚度的不确定性,可以有效地提高优化目标的稳定性,使设计的产品更好地达到预期的性能目标。
Coincident with the development of automotive industry and people's living standards, the NVH (Noise, Vibration and Harshness) performance of automobile is more and more popular. Vibration reduces the service life of automotive and and its noise pollutes the environment, which is bad for people's physical and moral integrity. The vibration isolators between the assemblies and components could reduce vehicle vibration and noise effectively. Powertrain mount, exhaust pipe hanger and body mount can attenuate the vibration and shock arising from engine and road, and decrease the vibration transmission to frame. A reasonable match of these isolators may enhance the ride comfort greatly. Therfore, it's necessary to study the match of powertrain mount, exhaust pipe hanger and body mount.
     The multi-body dynamics and finite element methods was utilized to establish the rigid-elastic coupling model of full vehicle including powertrain mount, exhaust pipe hanger and body mount in this dissertation, which was validated by the experiment test. Then the match of rubber isolators in the full vehicle model was study from the following aspects: single type isolators'match and integration design of all isolators. During the research process, the isolators' stiffness ratio of compression to shear was controlled closely combining with engineering practice while the robust optimization of the rubber isolators was carried out for the uncertainty of the isolators'stiffness.
     In the study of powrtrain mount, the powertrain mount system was optimized based on the traditional six DOF model of powertrain mount system and the mount system under the full vehicle model respectively, and the results demonstrate that the latter could obtain a better effect. There are many different objectives for powertrain mount optimization, the kinetic energy decoupling method and dynamic response method was taken simultaneously to optimize the traditional powertrain mount system in the thesis. Both of the optimized results were simulated in the full vehicle model to compare the vehicle interior vibration. It's concluded that the mount of dynamic response method causes a smaller vibration in the driver's seat rail and the dynamic reaction force in the powertrain mount is better. To have a further research on the the relationship between the vehicle interior vibration and the kinetic energy of powertrain mount system, the vibrations of driver's seat rail, the second seat rail, the fourth seat rail and the last seat rail in the same automotive with different mounts were tested and the results demonstrate that the powertrain mount system with good decoupling level has a worse vibration. The kinetic energy of powertrain mount system can to some extent reduce the vehicle vibration, but it's usually not the best solution. For a more accurate data of vehicle vibration, the powertrain mount system in a full vehicle model was optimized from the standpoint of energy to cut down the vibration power of the powertrain resulting from the mount supporting position to the frame.
     As for the match of exhaust pipe hanger, calculating modal analysis and experiment modal analysis of the exhaust system were carried out. The result of the experiment modal analysis was utilized to validate the finite element model of exhaust system, and then hanger position of the exhaust pipe was optimized to find the location with minimum ADDOFD (average driving degree of freedom displacement) in the calibrated model, which could decrease the exhaust system vibration transmission to the frame. The stiffness of exhaust pipe hanger affects the dynamic performance of exhaust system. Altering the stiffness of the hanger could change the natural frequencies of exhaust system which should keep far away from the engine excitation frequency of idle speed and economy speed to reduce the vehicle vibration. Meanwhile the hanger vibration of the exhaust pipe was tested and analyzed. Then exhaust pipe hangers were optimized in a full vehicle model which contained the flexible exhaust system, the vibration acceleration acted as the objective, and at the same time only two types of hanger were used in the four hanger location to save the enterprise cost.
     With reference to the study of body mount, the vibration of driver's seat rail, the second seat rail, the fourth seat rail and the last seat rail was tested, and the results show that the vehicle interior vibration is related with engine, drive shaft and wheel. In the dissertation, the contribution of stiffness of each body mount to the vehicle interior vibration was studied and the body mount system model with elastic connection and bolt connection was established. When determining the the design variables limit of body mount, vehicle handling and stability was taken into consideration and then the body mount system was optimized.
     In respect of integrated design for rubber isolators, the interaction of powertrain mount, exhaust pipe hanger and body mount was taken into account, and all the isolators were optimized at one time. Before the optimization, the orthogonal experimental design of all the isolators was taken to determine the sensitivity of each isolator. Then on the premise that powertrain mount, exhaust pipe hanger and body mount had achieved optimal performance of vibration isolation respectively, the stiffnesses of rubber isolators were optimized integratively with vehicle vibration served as the optimization objective. As a rule actual stiffness of the isolators fluctuate around the target stiffness in a plus or minus 10% range, therefore robust optimization was performed for the isolator and the solution process of optimization was improved to heighten the efficiency of roubust optimization in the dissertation.
     In the process of vehicle research and development, it can accelerate the development to combine the simulation method with experiment mehtod and establishing a full vehicle model could predict the vibration performance of the automotive more accurately. When matching the rubber isolators of the automotive, comprehensive factors should be taken into account, such as isolators'installation space, machining technics, production cost and so on. The powertrain mount system under the full vehicle model was optimized with the input vibration power at the location of the powertrain mount acted as the objective, and this method could reduce the vehicle vibration effectively, which has good correlations with the traditional objective in the thesis. The body mount system model with elastic connection and bolt connection was established, which could give a reference to other similar body mount system. Rubber isolation of the automobile has a mutual influence, and the integrated design of them was studied. In addition, the robust optimization was carried out according to the engineering practice. Considering the stiffness's uncertainty of rubber isolators is beneficial to the stability of objective in the design phase, which makes the products achieve the desired performance better.
引文
[1]庞剑,谌刚,何华.汽车噪声与振动—理论与应用[M].北京:北京理工大学出版社,2006.
    [2]张宇,苏清祖,汪文国.车辆噪声与控制[J].机械设计与制造工程,1999,28(2):44-45.
    [3]邢桂芬.自主开发亮剑“静”技—访长安汽车工程研究院副院长、NVH总工程师庞剑博士[N/OL]. AI 汽车制造业网,2009-9-29.http://www.ai.vogel.com.cn/ShowArticle.asp?ArticleID=24672.
    [4]Mark J. Moeller, Robert S. Thomas, Robert E. Powell. An Assessment of SEA Model Quality[C]. SAE:2001-01-1624.
    [5]Wang D, Goetchius G, Onsay T. Validation of a SEA Model for a Minivan:Use of Ideal and Structure-Borne Sources[C]. SAE:1999-01-1697.
    [6]Dubbaka K R, Zweng F J, Haq S U. Application of Noise Path Target Setting Using the Technique of Transfer Path Analysis[C]. SAE:2003-01-1402.
    [7]Haste F, Nachimuthu A. Calculating Partial Contribution Using Component Sensitivity Values:A Different Approach to Transfer Path Analysis[C]. SAE:1999-01-1693.
    [8]Koners G. Panel Noise Contribution Analysis:An Experimental Method for Determining the Noise Contributions of Panels to an Interior Noise[C]. SAE:2003-01-1410.
    [9]黎志勤,黎苏.汽车排气系统噪声与消声器设计[M].北京:中国环境科学出版社,1991.
    [10]陈达亮.发动机整车匹配中的振动噪声识别与控制研究[D].天津:天津大学机械工程学院,2008.
    [11]何健,沈国华,王铁刚.汽车NVH特性概述[J].客车技术与研究,2007(5):15-17.
    [12]靳顷.减隔震橡胶制品的研发与应用[J].中国橡胶,2009,25(5):33-34.
    [13]史文库.轿车动力总成液压悬置隔振性能及对整车舒适性影响的研究[D].长春:吉林工业大学汽车工程系,1996.
    [14]Yunhe Yu, Nagi G.. Naganathan, Rao V.Dukkipati. A Literature Review of Automotive Vehicle Engine Mounting System[J]. U.S.A.,Mechanism and Machine Theory,2001,36 (1):123-142.
    [15]梁天也.主动控制式发动机悬置研究[D].长春:吉林大学汽车工程学院,2008.
    [16]Richard A. Muzechuk. Hydraulic Mounts Improved Engine Isolation[C].SAE:840410.
    [17]Rahmat S, etal. Open-Loop versus Closed-Loop Control for Hydraulic Engine Mounts[C].SAE:880075.
    [18]Takao Ushijima, Kazuya Takano and hiroshi Kojima. High Performance Hydraulic Mount for Improving Vehicle Noise and Vibration[C].SAE:880073.
    [19]Walter Anderson, Shuo Wang,etc. Comparison of a Hydraulic Engine Mount to a Magnetorheological Engine Mount[C].SAE:2010-01-1910.
    [20]Takao Ushijima and Syoichi Kumakawa. Active Engine Mount with Piezo-actuator for Vibration Control[C].SAE:930201.
    [21]Hajime lgami and Michael Thompson. Automotive Powertrain Mounting System Design Optimization[C].SAE:2008-01-0879.
    [22]靳晓雄,张立军,江浩.汽车振动分析[M].上海:同济大学出版社,2002.
    [23]H. Hata, H. Tanaka. Experimental Method to Derive Optimum Egine Mount System for Idle Shake[C]. SAE:870961.
    [24]Jae-Yeol Park and Rajendra Singh. Effect of Engine Mount Damping on the Torque Roll Axis Decoupling[C].SAE:2007-01-2418.
    [25]S.R. Johnson, J.W. Subhedar. Computer Optimization of Engine Mounting Systems[C]. SAE:790974.
    [26]John Bretl. Optimization of Engine Mounting Systems to Minimize Vehicle Vibration[C]. SAE:931322.
    [27]N. Suresh, S. Shankar, V. Bokil, Development of Idealistic Hydromount Characteristics to Minimize Engine Induced Vibrations Using Unconstrained Minimizationn[C]. SAE:941741.
    [28]Kannan Marudachalam,Nilesh Choudhari,Chandramouli P,Vamsi Krishna Balla. Analytical Prediction and Measurement of Engine Mount Forces[C].SAE:2007-32-0105.
    [29]Nobutaka Tsujiuchi, Takayuki Koizumi and Koji Yamazaki. Vibration Analysis of Engine Supported by Hydraulic Mounts[C].SAE:2003-01-1465.
    [30]D. S. Sachdeva, R. Hadi. Effect of Engine Mounting Strategy on Vehicle NVH[C]. SAE:2003-01-1467.
    [31]J.H. Kim,S.G. Jho, H.J. Yim, Influence of chassis flexibility on dynamic behavior of engine mount systems, SAE942269.
    [32]J. H. Kim, S. G. Jho, H. J. Yim. Influence of Chassis Flexibility on Dynamic Behavior of Engine Mount Systems[C]. SAE:942269.
    [33]Yijung Chen, Tau Tyan and Omar Faruque. Dynamic Testing and CAE Modeling of Engine Mounts and their Application in Vehicle Crash Analysis[C].SAE:2003-01-0257.
    [34]Hee-Woo Yoon,Jung-Hwan Bang and Jae-Hyun Park.Development of Engine Mount System for Low Frequency Vibration Improvement[C].SAE:2008-01-0885.
    [35]Hiroshi Sugimura,Yasushi Donoue,Masayuki Takei and Hiroo Yamaoka.Prediction of Low Frequency Vibration Caused by Power Train Using Multi-Body Dynamics[C].SAE:2009-01-2193.
    [36]Pengfei Chen,Yunqing Zhang, Gang Qin and Jinglai Wu. Interval Analysis Method of a Powertrain Mounting System with Uncertain Parameters[C].SAE:2010-01-0905.
    [37]Jiansheng Weng. Robust Optimization Design of the Power-train Mounting System of the Light Truck[C].SAE:2007-01-0556.
    [38]E. Courteille, F. Mortier, L.Leotoing and E. Rangneau. Multi-Objective Robust Design Optimization of an Engine Mounting System[C].SAE:2005-01-2412.
    [39]Mohammad Moetakef and Bruce Bonhard. Statistical Analysis of Rigid Body Modes of Engine Mounting System Due to Mount Rates Variability[C].SAE:2006-01-3466.
    [40]徐石安.汽车发动机弹性支承隔振的解耦方法[J].汽车工程,1995,17(4):198-204.
    [41]孙蓓蓓,张启军,孙庆鸿等.汽车发动机悬置系统解耦方法研究[J].振动工程学报,1994,7(3):240-245.
    [42]阎红玉,徐石安.发动机—悬置系统的能量法解耦及优化设计[J].汽车工程,1993,15(6):321-328.
    [43]钱振为,徐石安,陈立明.汽车发动机悬置系统结构动态参数的选择与子系统之间的匹配[J].汽车工程,1988,4:56-64.
    [44]吕振华,范让林,冯振东.液压悬置隔振特性计算分析与实验研究[J].中国机械工程,1997,8(1):55-58.
    [45]史文库,林逸,吕振华等.CA7221轿车动力总成液力悬置隔振性能及其对整车舒适性影响的试验研究[J].汽车技术,1996,3:32-35.
    [46]史文库,林逸.发动机悬置支承在弹性基础上的隔振特性分析[J].汽车技术,1998,(7):18-20.
    [47]石琴,陈无畏,张雷.车身弹性对动力总成悬置系统隔振特性的影响[J].农业机械学报,2006,37(1):12-15.
    [48]程序,张建润,王志新.汽车发动机悬置系统动力设计[J].东南大学学报,1995,25(2):109-111.
    [49]史文库,林逸,吕振华等.动力总成悬置元件特性对整车振动的影响[J].汽车工程,1997,19(2):103-107.
    [50]樊兴华,陈金玉,黄席越.发动机悬置系统多目标优化设计[J].重庆大学学报,2001,24(2) : 41-44.
    [51]贾克斌,翁建生.汽车动力总成悬置系统的优化设计和鲁棒性分析[J].重庆工学院学报(自然科学),2009,23(2):1-6.
    [52]吴杰,上官文斌,唐静,宋志顺,黄振磊.动力总成悬置系统解耦布置的鲁棒性分析[J].振动与冲击,2009,28(9):15-20.
    [53]Jian Pang, Phillip Kurrle, Mohamad Qatu, Robert Rebandt, Roberta Malkowski. Attribute Analysis and Criteria for Automotive Exhaust Systems[C].SAE:2003-01-0221.
    [54]Jeroen Deweer, Tom Van Langehove, Scott Grinker. Identification of the Best Modal Parameters and Strategies for FE Model Updating[C].SAE:2001-01-1439.
    [55]Heiner Storck, Hartono Sumali, Ya Pu. Experimental Modal Analysis of Automotive Exhaust Structures[C]. SAE:2001-01-0662.
    [56]Shih-Fu Ling, Tso-Chien Pan, Geok-Hian Lim. Vibration Isolation of Exhaust Pipe under Vehicle Chassis [J]. International Journal of Vehicle Design,1994,15:131-142.
    [57]Kendra Eads, Kamyar Haghighi. Finite Element Optimization of an Exhaust System[C]. SAE:2000-01-0117.
    [58]Donald J. Nefske, Shung H. Sung and Douglas A. Feldmaier. Correlation of a Beam-type Exhaust System Finite-element Model for Vibration Analysis [C]. SAE:2003-01-1597.
    [59]Chang-Myung Lee, Sung-Tae Park and Sang-Ho Kim. Development of Simple Numerical Method of the Exhaust System to Find Optimized Design Values[C].SAE:1999-01-1666.
    [60]Ya Pu, Hartono Sumali, Christophe L. Gaillard. Modeling of Nonlinear Elastomeric Mounts.Part 1:Dynamic Testing and Parameter Identification[C].SAE:2001-01-0042.
    [61]Ya Pu, Hartono Sumali, Christophe L. Gaillard. Modeling of Nonlinear Elastomeric Mounts.Part 2:Comparing Numerical Model and Test Results[C].SAE:2001-01-0043.
    [62]Slawomir Dzierek. Experiment-based Modeling of Cylindrical Rubber Bushings for the Simulation of Wheel Suspension Dynamic Behavior[C]. SAE:2000-01-0095.
    [63]Xitian Fang, Mehmet Ciray, Yin Chen. Dynamic Simulation and Correlation for Automotive Exhaust Systems[C].SAE:2001-01-1437.
    [64]Cheng Cao,Tana Tjhung,Julie Yi Zhu,Mark Villaire and Sudhakar Medepalli.In Vehicle Exhaust Mount Load Measurement and Calculation[C].SAE:2006-01-1258.
    [65]Ali G. Goktan, Argun Yetkin. A Mathematical Model for Exhaust system Vibrations Caused by Road Surface Inputs[C].SAE:2001-01-1006.
    [66]Jian Pang, Mohamad Qatu. Exhaust System Robustness Analysis Due to Flex Decoupler Stiffness Variation[C].SAE:2003-01-1649.
    [67]邢素芳,王现荣,王超,郭占敏.发动机排气系统振动分析[J].河北工业大学学报,2005,34(5):109-111.
    [68]吴永桥,鄢奉林.汽车排气总管的静力分析和模态分析[J].武汉汽车工业大学学报,2000,22(3):10-13.
    [69]杨万里,陈燕,邓小龙.乘用车排气系统模态分析数值模型研究[J].三峡大学学报(自然科学版),2005,27(4):345-347.
    [70]黄志,范让林,段小成,上官文斌.汽车排气系统吊耳及设计原则[J].噪声与振动控制,2009, (4):110-113.
    [71]章联萍.客车排气系统设计[J].客车技术与研究,2005,(2):23-24.
    [72]杨胜.客车排气系统设计[J].客车技术与研究,2009,(6):26-28.
    [73]李松波.车辆排气系统振动建模与动力学特性研究[D].上海:上海交通大学机械与动力工程学院,2008.
    [74]董理.汽油机紧耦合式排气歧管振动特性研究[D].哈尔滨:哈尔滨工程大学动力与能源工程学院,2008.
    [75]赵海澜,顾彦.汽车排气系统悬挂点优化[J].计算机辅助工程,2006,15 (Suppl):230-231.
    [76]杨卫农,戴关林.汽车排气系统噪音与振动的控制[J].轻型汽车技术,2007,215(216):34-36.
    [77]胡师金.沙漠车驾驶室悬置的合理配置[J].石油物探装备,1995,5(3):16-20.
    [78]Ozaki Tetsuo,Matsumoto Seiji. Booming Noise Reduction on Body/frame Structured SUV by Aalytical Model Control[J]. Proceedings of SPIE-The International Society for Optical Engineering,2002,47531:283-289.
    [79]Ping Lee, Jeff Vogt and Shizhong Han. Application of Hydraulic Body Mounts to Reduce the Freeway Hop Shake of Pickup Trucks[C].SAE:2009-01-2126.
    [80]Bhaskar Avutapalli, Satya Vallurupalli and Hamid Keshtkar. Stochastic Analysis of a Body-on-Frame Vehicle to Achieve Reliable and Robust Shake Performance[C]. SAE:2003-01-0873.
    [81]Matthew Huang. On Body Mount Crash Characteristics[C].SAE:1999-01-3186.
    [82]Jialiang Le, James Cheng, Wen-Ren harn. Simulation of Functional Stiffness for Generic Body Mount[C].SAE:982391.
    [83]Cheng Cao, Saikat Ghosh, Rajesh Rao and Sudhakar Medepalli. Truck Body Mount Load Prediction from Wheel Force Transducer Measurements[C].SAE:2005-01-1404.
    [84]Yijung Chen, Tau Tyan and Omar Faruque. Dynamic Testing and CAE Modeling of Body Mount-An Application in the Frontal Impact Analysis of a Body-on-Frame Vehicle[C].SAE:2003-01-0256.
    [85]Mingshan Li, Yijung Chen, Tau Tyan, Matt Niesluchowski and James Cheng.Testing and Modeling of Mounts for Improved Safety Design and Crashworthiness Analysis[C].SAE:2005-01-0749.
    [86]J. Michael Chang, Mohammad Ali, Ryan Craig, Tau Tyan, Marwan El-bkaily and James Cheng. Important Modeling Practices in CAE Simulation for Vehicle Pitch and Drop[C].SAE:2006-01-0124.
    [87]J. Michael Chang, Mohammed Rahman, Mohammad Ali, Tau Tyan, Marwan EI-Bkaily and James Cheng. Modeling and Design for Vehicle Pitch and Drop of Body-on-Frame Vehicles[C].SAE:2005-01-0356.
    [88]Stephen Kang, Matthew Huang, James Peng, Herbert Yang and Paul Culbertson. Use of Body Mount Stiffness and Damping in CAE Crash Modeling[C].SAE:2000-01-0120.
    [89]A. M. A. Soliman. Improvement of Truck Ride Comfort Via Cab Suspension[C]. S AE:2008-04-14.
    [90]Alexander Gross and Roy Van Wynsberghe. Development of a 4-point-Air Cab Suspension System for Conventional Heavy Trucks[C].SAE:2001-01-2708.
    [91]B S Manjunatha and Thulasiram Vajrala. Durability Analysis of a Truck Cab[C].SAE:2005-26-328.
    [92]Santosh S Gosavi. In Lab Truck Cab and Cab Suspension Durability Validation[C]. SAE:2006-01-1245.
    [93]Mehdi Ahmadian and Paul S.Patricio. Effect of Panhard Rod Cab Suspensions on Heavy Truck Ride Measurements[C].SAE:2004-01-2710.
    [94]Florin M. Marcu, Mehdi Ahmadian,Steve C. Southward and Stefan B. Jansson. A Methodology for Laboratory Testing of Truck Cab Suspensions[C].SAE:2009-01-2862.
    [95]徐中明,张志飞,贺岩松,藤冈健彦.重型卡车驾驶室乘坐舒适性研究[J].中国机械工程,2004,15(7):1584-1586.
    [96]王楷焱.商用车驾驶室悬置系统动力学仿真优化与试验研究[D].长春:吉林大学汽车工程学院,2008.
    [97]曾斌.基于某军用越野车车身悬置系统的研究[D].上海:上海交通大学机械与动力工程学院,2007.
    [98]李光.基于频率响应函数的商用车驾驶室悬置系统优化[D].武汉:华中科技大学,2007.
    [99]周旋.商用车驾驶室悬置隔振结构分析与安全性研究[D].武汉:武汉理工大学汽车工程学院,2007.
    [100]程道然.商用车驾驶室悬置系统非线性阻尼系数的匹配[J].机械设计与制造,2008,9:225-227.
    [101]于昌阳,马力,朱祝英,李鹏飞.基于DOE技术的商用车驾驶室悬置隔振设计[J].拖拉机与农用运输车,2006,33(6):15-16.
    [102]杨乐.半挂汽车列车全浮式驾驶室悬置系统优化设计研究[D].武汉:武汉理工大学汽车工程学院,2009.
    [103]周水清,何天明,邹伯宏.汽车驾驶室悬置系统振动仿真分析[J].武汉理工大学学报(信息与管理工程版),2005,27(1):131-134.
    [104]王新宇.重型卡车驾驶室悬置仿真分析与优化[D].长春:吉林大学汽车工程学院,2007.
    [105]项凌.商用车驾驶室悬置系统优化设计研究[D].武汉:华中科技大学,2008.
    [106]王其东.基于多体理论的汽车悬架系统分析、设计与控制研究[D].合肥:合肥工业大学机械与汽车工程学院,2002.
    [107]仲昕.CA7220型轿车转向轮摆振问题的刚弹耦合建模及分析[D].长春:吉林工业大学汽车工程学院,1999.
    [108]苏小平.依维柯汽车多体动力学仿真分析、优化研究及工程实现[D].南京:南京理工大学,2004.
    [109]严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社,1985.
    [110]何渝生,魏克严,洪宗林,孙祥根.汽车振动学[M].北京:人民交通出版社,1990.
    [111]张永林.用谐波叠加法重构随机道路不平顺高程的时域模型[J].农业工程学报,2003,19(6):32-35.
    [112]郑建荣ADAMS-虚拟样机技术入门与提高[M].北京:机械工业出版社,2001.
    [113]程龙群.汽车动力总成橡胶悬置系统隔振性能研究[D].合肥:合肥工业大学交通运输工程学院,2009.
    [114]李军,邢俊文,覃文洁ADAMS实例教程[M].北京:北京理工大学出版社,2002.
    [115]陈军MSC.ADAMS技术与工程分析实例[M].北京:中国水利水电出版社,2008.
    [116]于殿勇,钱玉进.基于ADAMS动力学仿真参数设置的研究[J].计算机仿真,2006,23(9):103-183.
    [117]张越今.汽车多体动力学及计算机仿真[M].长春:吉林科学技术出版社,1998.
    [118]赵涛.汽车动力总成悬置系统优化设计及软件开发[D].长春:吉林大学汽车工程学院,2005.
    [119]王志亮,刘波,桑建兵,刘剑.动刚度分析在汽车车身结构设计中的应用[J].机械设计与制造,2008,(2):30~31.
    [120]冯创造.国产某轿车动力总成悬置系统隔振与优化研究[D].长春:吉林大学汽车工程学院,2008.
    [121]Seonho Cho. Configuration and Sizing Design Optimization of Powertrain Mounting Systems[J]. International Journal of Vehicle Design,2000,24 (1):34-47.
    [122]史文库,洪哲浩,赵涛.汽车动力总成悬置系统多目标优化设计及软件开发[J].吉林大学学报(工学版),2006,36(5):654-658.
    [123]刘惟信.机械最优化设计(第二版)[M].北京:清华大学出版社,1994.
    [124]付江华,史文库,沈志宏,郭福祥,方德广.基于遗传算法的汽车动力总成悬置系统优化研究[J].振动与冲击,2010,29(10):187-190.
    [125]严济宽.振动功率流的一般表达式及其测量方法[J].噪声与振动控制,1987,1:24-29.
    [126]Fabio G. Ferraz, Andre L. Cherman, Rodrigo H. Soares Davi S. Abreu. Experimental Modal Analysis on Automotive Development[C]. SAE:2003-01-3610.
    [127]曹奇英,张准,李健康,袁云良,鲍冬云.基于内积的模态相关分析[J].应用力学学报,1998,15(4):135-138.
    [128]张守元,李鹤,张义民.阶次跟踪技术及其在汽车NVH中的应用[J].轻型汽车技术,2009(4):14-17.
    [129]黄天泽,黄金陵.汽车车身结构与设计[M].北京:机械工业出版社,1992.
    [130]邱清盈,冯培恩.基于正交试验的灵敏度分析法[J].机械设计,1997,5:4-7.
    [131]徐昕,李涛,伯晓晨Matlab工具箱应用指南—控制工程篇[M].北京:电子工业出版社,2000.
    [132]R. Matthew Brach. Automotive Powerplant Isolation Strategies[C].SAE:971942.
    [133]龙岩.基于改进传递路径分析方法的动力总成悬置系统优化设计[D].长春:吉林大学汽车工程学院,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700