多轴重型汽车刚弹耦合虚拟样机分析与匹配
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国经济的迅猛发展以及迅速增加的跨区域公路物流运输业务,人们对重型载货汽车的需求量越来越大,与此同时,当今的物流产业不仅要求将货物快捷安全的送达目的地,而且对重型载货汽车各方面动力学性能也提出了更高的要求,汽车生产厂商以及用户对此尤为关注,因此如何改善重型载货汽车的结构、提高其动力学性能已成为载货汽车制造厂商及科研单位所追求的目标。
     本文结合国家"863"高技术研究发展计划项目《重型商用车集成开发先进技术》(项目编号:2006AA110105)子项《重型汽车底盘匹配与性能优化研究》进行研究。论文以国产某重型载货汽车为研究对象,利用多体动力学方法及虚拟样机技术,在ADAMS软件环境下建立了全浮式驾驶室悬置系统、变截面少片钢板弹簧前悬架系统、中、后桥四气囊空气悬架系统、前桥钳盘式、中、后桥凸轮鼓式制动器系统、动力总成系统、转向系统以及横向稳定杆等多体动力学子系统模型。同时利用有限元方法建立了车架及驾驶室有限元模型,通过将各子系统模型进行综合进-步建立了整车刚弹耦合虚拟样机模型。
     依据国家标准《汽车平顺性随机输人行驶试验方法》(GB/T 4970-1996)、《汽车操纵稳定性试验方法》(GB/T 6323.3-94-GB/T 6323.6-94)以及《汽车制动系统结构、性能和试验方法》(GB 12676-1999)与ECE R13号法规中附录4《制动试验和制动系统性能》中的相关规定,在ADAMS软件环境下,对整车虚拟样机模型进行了仿真分析与研究,并通过相应的实车道路试验验证了模型的有效性。
     通过改变车架弹性模量的方式在不改变车架模态阵型的基础上改变了车架低阶固有振动频率,从而改变了车架的弹性。研究了车架弹性不同对整车行驶平顺性以及操纵稳定性的影响。研究结果表明,适当的提高车架的刚度可以改善重型载货汽车行驶平顺性,提高不足转向特性,降低转角脉冲输入试验中谐振峰水平值,但是会增大车箱侧倾度。
     分析了多轴汽车在制动过程中的受力情况,建立了多轴汽车制动时地面法向反作用力数学模型以及制动器制动力数学模型,推导出理想多轴制动器制动力分配空间I曲线的计算公式,并对多轴汽车在不同附着系数路面上的制动过程进行了分析。利用得出的结论得到了本文所研究重型载货汽车的空间I曲线计算公式。推导了当某一车轴抱死,其它两轴没有抱死时,在各种值路ψ面上制动时各轴地面制动力的关系面组,即f、m、r面组。
     分析了三轴汽车在不同附着系数路面上制动时可能出现的情况,从而设计出本车实际前、中、后轴制动器制动力分配线(空间β线),并验证了空间β线的合理性。将所设计的空间β线通过ADAMS/Solver求解器中的函数输入到虚拟样机模型中,进行了满载及空载条件下高附着及低附着系数路面上的整车制动性能仿真分析,仿真结果符合ECE法规中规定的要求,并且附着系数得到了很好的利用,整车制动效能得到提高。
     结合预测控制技术及模拟控制技术制定了在高附着系数路面、低附着系数路面以及对接(由低附着系数路面过度到高附着系数或相反)路面制动时的门限值控制逻辑,并利用Stateflow工具箱建立了相应的控制器模型,同时利用MATLAB/Simulink模块建立了参考车速估算模型以及气压驱动系统模型,进而建立了带有制动防抱死系统的三轴气动制动系统模型。
     利用MATLAB/Simulink及ADAMS/Car模块建立了带有ABS的重型载货汽车整车模型,同时在高附着系数路面、低附着系数路面以及对开与对接路面上进行空、满载条件下整车制动性能联合仿真分析,结果表明,所设计ABS控制器模型取得了良好的制动控制效果,提高了整车制动效能,为重型载货汽车ABS的设计和开发提供了基础。
With the rapid development of Chinese economy and gradually improving inter-regional logistics, the nation's demand for heavy-duty truck is increasing. At the same time, the modern logistics industry not only requires deliver the goods to destination efficiently and safely, but also demands high dynamics performances of all aspects of heavy-duty truck, which is closely followed with interest by automobile manufacturers. Consequently, how to improve the structure and dynamics performances of heavy-duty truck will become the pursuing target for vehicle manufacturers and research institutions
     This paper was completed based on the research of "Chassis Matching and Performance Optimization of Heavy-duty Truck", which was a subproject of National High-tech R&D Plan (863 Plan) of China"Integrated Advanced Technology of Heavy-duty Truck Development" (No.2006AA110105-6). Based on multi-body dynamic method and virtual prototype technology, a rigid-flexible coupling model of a heavy-duty truck was built in ADAMS/Car software environment, including full-floating cab mount system, taper-leaf-spring suspension system, braking system with two disc brakes and four drum brakes, air spring suspension system, steering system, powertrain system, etc., at the same time, the frame and cab were generated as elastic parts with FEA method.
     In accordance with National Standard GB/T 4970-1996, "Method of random input running test automotive ride comfort", GB/T6323.3-94~GB/T6323.6-94, "Controllability and stability test procedure for automobiles", GB 12676-1999, "Structure, performance and test methods of automotive braking system" and ECE R13, some simulation calculations of heavy-duty truck were implemented in ADAMS/Car and the validity of rigid-flexible coupling model was verified by comparing the simulation results with experiment data.
     The frame flexibility was increased and decreased through modifying the elastic modulus of frame. It was studied how the ride comfort and controllability and stability of heavy-duty truck were influenced by different frame flexibility. The result shows that increasing frame stiffness properly is very helpful to improve ride comfort and under-steer characteristic, and is able to reduce the value of resonant peak level, but the roll angle will increase with large frame flexibility.
     Based on the analysis of force of vehicle with multi-axles during brake, the mathematical models of axle loads and brake forces were established, and then the ideal braking forces distribution curve with multi-axles (space curve I) was deduced, in addition, the braking process that the multi-axles vehicle traveled on different adhesive road surface was analyzed and discussed. According to the conclusions above, the loaded and unloaded space curve I of heavy-duty truck built in this paper were acquired. Meantime, the surface groups of braking force relationship on different adhesive road surface under condition of one of axles locked(f、m、r surface group) were obtained.
     Actual loaded and unloaded braking force distribution curves (space curveβ) of heavy-duty truck were designed and devised and their validity were verified by analysising the braking process on different adhesive road surface. In addition, space curveβwere programmed in virtual prototyping software with ADAMS/Solver functions, and then some simulation were performed in ADAMS/Car software environment to analyze heavy-duty truck braking performance on high and low adhesive road surface under different load conditions. The simulation results met the requirements of ECE regulations, and the percentage of utilization of maximum tractive force of each axle was improved.
     Logic threshold control strategies were developed that the heavy-duty truck brakes on high and low adhesive road surface and the road surface with adhesion coefficients ranged from low to high and high to low, and the corresponding controller model was established in MATLAB/Stateflow. Simultaneously, reference speed estimation model and brake chamber model were built in MATLAB/Simulink, and then three-axles pneumatic brake system model of heavy-duty truck with ABS was accomplished.
     A rigid-flexible coupling model of a heavy-duty truck with ABS was completed in the virtual environment with ADAMS/Car and MATLAB/Smulink, and the Co-simulation calculations were implemented under different road surface conditions. The results demonstrated that braking efficiency was improved with ABS, and this controller provides a basis for further guide in ABS product R&D stage.
引文
[1]邓泽英.全球重型载货汽车工业的发展[N].中国邮政报,2002-5.
    [2]闫亮.中国重型汽车公司发展战略研究[D].武汉理工大学,2006.4.
    [3]一鸣.重卡发展趋势前瞻[N].时代汽车,2010-1.
    [4]薛文祥.看中国重卡市场发展趋势[N].生意社,2010-5-7.
    [5]刘录秀.国外重型汽车电子技术发展动态[J].汽车与配件,2004,28:29-33.
    [6]喻凡等.汽车空气悬架的现状及发展趋势[J].汽车技术,2001,8:6-9.
    [7]朱德库等.空气弹簧及其控制系统[M].山东科学技术出版社,1989.
    [8]Fang Chang, Zhenhua Lu. Air Suspension Performance Analysis Using Nonlinear Geometrical Parameters Model[J]. SAE Technical PaPer.2007-01-4270.
    [9]盛太莲.2004年专用汽车市场回顾及2005年展望[J].专用汽车,2005,2:15-17.
    [10]郑建荣ADAMS虚拟样机技术入门与提高[M].北京:机械工业出版社,2002.
    [11]王国强等.虚拟样机技术及其在ADAMS上的实践[M].西北工业大学出版社,2002.
    [12]张越今,汽车多体动力学及计算机仿真[M].吉林科学技术出版社,1998.
    [13]ADAMS/Car User Manual, Version12.0, Mechanical Dynamics, Inc.
    [14]李军.ADAMS实例教程[M].北京:北京理工大学出版社,2002.
    [15]高晓杰,蒋励,张立军.联合仿真技术在汽车稳定控制程序开发中的应用[J].计算机仿真,2009,23(9):264-267.
    [16]何亚银.基于ADAMS和MATLAB的动力学联合仿真[J].现代机械,2007,5:60-62.
    [17]孙秀军,王效岳,杨燕.联合仿真技术及ADAMS/Controls[J].机械工程与自动化,2007,1:62-67.
    [18]Getting Started Using ADAMS/Controls, Mechanical Dynamics, Inc.
    [19]M.米奇克.汽车动力学[M].北京:机械工业出版社,1980.
    [20]杨坤,李静,郭立书.汽车电子机械制动系统设计与仿真[J].农业机械学报,2009,39(8):24-27.
    [21]周淑辉,李幼德,李静.汽车电子控制转向技术的发展趋势[J].汽车电器,2006,11:1-5.
    [22]李静,李幼德,赵健.汽车电子控制系统快速开发[J].汽车工程,2005,27(4):471-475.
    [23]李佩林,李志春,李强.汽车舒适性评价方法的研究[J].农机化研究,2004,6:103-104.
    [24]王国权,余群,吕伟.8自由度乘坐动力学模型及时域仿真[J].中国农业大学学报,2002,7(2):99-103.
    [25]支龙等.汽车半主动悬架的ADAMS和MATLAB联合仿真[J].自动化仪表,2004(6).
    [26]贝绍轶,赵景波,刘勺华.汽车半主动悬架系统平顺性联合仿真分析[J].噪声与振动控制,2010,6:87-90.
    [27]王晓莲.基于ADAMS和MATLAB的汽车主动悬架联合仿真研究[D].吉林大学,2009.6.
    [28]宋发宝,马力,张宇龙.整车刚柔多体全浮式驾驶室悬置隔振仿真[J].农业机械学报,2008,39(8):41-43.
    [29]Evans R. Properties of tyres affecting riding, steering and handling[J]. SAE, Vol136, No.2,1935:41-49.
    [30]刘红军ADAMS在汽车操纵稳定性中的应用研究[J].武汉理工大学学报信息与管理工程,2003(4).
    [31]林逸.多刚体系统动力学在汽车独立悬架运动分析中的应用[J].汽车工程,1990,(1):37-42.
    [32]张越今.多休动力学在轿车动力学仿真及优化研究中的应用[D].清华大学,1997.5.
    [33]赵又群,郭孔辉.驾驶员统计特性对人-车闭环系统响应的影响与汽车主动安全性评价[J].汽车工程,1999,21(2):87-92.
    [34]Zhao Youqun, Zhang Guiyu, Guo Konghui. Handling Safety Simulation of Driver-Vehicle Closed-Loop System with Evolutionary Random Road Input [J].Vehicle System Dynamics,2000,33(3):169~181.
    [35]尹念东,王树凤,余群.汽车操纵稳定性虚拟试验[J].汽车工程,2001(23).
    [36]Yin Niandong, Yu Qun. Study of Virtual Experiment on Handling Stability of Driver-Vehicle-Environment Closed Loop System Based on Virtual Reality Technology [C]. Proceeding of the 6th APISVS Conference, Bangkok, Thailand,2001.
    [37]林逸.多刚体系统动力学在汽车独立悬架运动分析中的应用[J].汽车工程,1990,(1):41-49.
    [38]吴碧磊.重型汽车动力学性能仿真研究与优化设计[D].吉林大学,2008.4.
    [39]时培成.基于虚拟样机技术的汽车整车操纵稳定性研究[D].合肥工业大学,2005.
    [40]梅奋永.基于虚拟样机技术的汽车整车操纵稳定性仿真研究[D].合肥工业大学,2005.
    [41]时培成,李震.汽车多体系统动力学稳定性控制联合仿真[J].河南科技大学学报(自然科学版),2007,28(3):21-24.
    [42]邓亚东.基于Adams与Matlab的汽车电动助力转向系统的联合仿真[D].武汉理工大学,2009.8.
    [43]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999.
    [44]胡雄文,霍恒昌.汽车防抱制动系统的建模与仿真[D].大连理工大学,2002.
    [45]刘志强,沈国贤,杨小卫等.大型全地面汽车起重机制动系统仿真计算[J].江苏理工大学学报,1998,19(4):66-71.
    [46]宋明,刘昭度,梁鹏霄.汽车制动防抱死系统的ADAMS/SIMULINK联合仿真[J].计算机仿真,2005,21:163-166.
    [47]张兴旺.虚拟环境下汽车制动性能的仿真研究[D].武汉理工大学,2007.
    [48]范立刚.基于ADAMS的汽车ABS系统半物理仿真[D].西安理工大学,2006.
    [49]R.罗森伯,程迺巽,郭坤译.离散系统分析动力学[M].北京:人民教育出版社,1981.
    [50]J.维滕伯格著,谢传锋译.多刚体系统动力学[M].北京:北京航空学院出版社,1986.
    [51]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996.
    [52]AD AMS/FEA REFERENCE MANUAL VERSION 8.0, MDI,1994.
    [53]How to use ADAMS/Flex, Mechanical Dynamics, Inc.,1999.
    [54]Craig R.R., Bampton.动力学分析的子结构耦合[J].1968 AIAA Journal, Vol6, No.7:1313-1319.
    [55]DADA Flex Manual, Version 9.5, CADSI,1999.
    [56]ADAMS/Car User Manual, Version12.0, Mechanical Dynamics, Inc.
    [57]陈军.MSC. ADAMS技术与工程分析实例[M].中国水利水电出版社,2008.
    [58]徐陈夏,陈剑.汽车平顺性仿真分析与悬架参数优化[D].合肥工业大学,2009.
    [59]孙经来,王登峰.重型商用车操纵稳定性分析及参数匹配[D].吉林大学,2010.
    [60]程超,王登峰.空气悬架牵引车刚弹耦合虚拟样机建模分析与试验[D].吉林大学,2006.
    [61]郎锡泽,王登峰.空气悬架商用载货汽车设计匹配与仿真分析[D].吉林大学,2006.
    [62]王新宇,宋传学.重型卡车驾驶室悬置仿真分析与优化[D].吉林大学,2007.
    [63]余志生.汽车理论[M].机械工业出版社,2000.
    [64]石博强,申炎华,宁晓斌等.ADAMS基础与工程范例教程[M].中国铁道出版社,2007.
    [65]陈家瑞,汽车构造[M].机械工业出版社,2005.
    [66]王智深,李刚炎.汽车气动制动系统制动性能及其控制电磁阀动态特性的研究[D].武汉理工大学,2009.
    [67]张健,雷雨成,卫修敬.领从蹄式鼓式制动器制动力矩计算方法研究[J].长沙交通学院学报,2001,17(3):31-35.
    [68]王宣锋,张京明.鼓式制动器动力学性能的研究[D].哈尔滨工业大学,2006.
    [69]Xuanfeng Wang, Yingchun Liang. Research on Dynamic Performance of Drum Brake [J]. SAE Technical PaPer.2007-01-3673.
    [70]Tong Y. Yi. Vehicle Dynamic Simulations Based on Flexible and Rigid Multibody Models[J]. SAE technical paper series,2000-01-0114.
    [71]Luis GMaqueda, Ahmed A.Shabana. Multibody System/Finite Element Simulation of Belt Drives and Rubber Tracked Vehicles[J]. SAE technical paper series, 2008-01-2668.
    [72]马天飞,王登峰,梁和平.利用MSC. Adams/Car建立轿车的刚弹耦合模型[J].计算机辅助工程,2006,9:238-240.
    [73]GB/T 4970-1996,汽车平顺性随机输入行驶试验方法[S].
    [74]张永林.用谐波叠加法重构随机道路不平顺高程的时域模型[J].农业工程学报,2003,19(6):32-35.
    [75]GB 7031-86《汽车振动输入-路面平度表示方法》[S].
    [76]GB/T 6323.3-1994《汽车操纵稳定性试验方法-转向瞬态响应试验》[S].
    [77]GB/T 6323.4-1994《汽车操纵稳定性试验方法-转向回正性能试验》[S].
    [78]GB/T 6323.5-1994《汽车操纵稳定性试验方法-转向轻便性试验》[S].
    [79]GB/T 6323.6-1994《汽车操纵稳定性试验方法-稳态回转试验》[S].
    [80]QC/T 480-1999《汽车操纵稳定性指标限值与评价方法》[S].
    [81]GB 12676-1999《汽车制动系统结构、性能和试验方法》[S].
    [82]ECE R13附录4《制动试验和制动系统性能》[S].
    [83]Steve van Herk, Antonia Terzi and Wubbo Ockels. Analysis of Lateral Dynamics and Ride Performance of the Superbus[J]. SAE International,2008-01-0586.
    [84]杨荣山,袁仲荣,黄向东.汽车操纵稳定性及平顺性的协同优化研究[J].汽车工程,2009,31(11):1053-1055.
    [85]杨启梁.汽车制动系统的电子控制[J].使用维修,2004,10:30-33.
    [86]贾杨成,马恒永.虚拟样机技术在汽车制动仿真方面应用研究[D].合肥工业大学,2004.
    [87]杨坤,李静,李幼德.基于汽车电子机械制动系统的EBD/ABS研究[J].系统仿真学报,2009,21(6):1785-1788.
    [88]徐能伟,宋景芬.汽车制动防抱死与电子制动力分配的探讨[J].公路与汽运,2004,2:4-6.
    [89]胡学英.基于ABS硬件系统的汽车EBD控制策略[J].太原大学学报,2007,8(3):129-130.
    [90]张海山.反对称矩阵的若干性质[J].甘肃教育学院学报(自然科学版),2003,17(3):14-17.
    [91]王铎,程靳.理论力学[M].高等教育出版社,2002.
    [92]ECER13附录10《制动力在汽车各轴之间的分配和对牵引车与挂车匹配的要求》[S].
    [93]孟嗣宗,崔艳萍.现代汽车防抱死制动系统和驱动力控制系统[M].北京理工大学出版社,1997.
    [94]刘文婷,徐延海.基于ADAMS的汽车ABS整车控制技术研究[D].西华大学,2007.
    [95]李朝禄.汽车制动防抱死装置(ABS)构造与原理[M].机械工业出版社,2005.
    [96]侯光钮.汽车防抱死制动系统的控制技术研究[D].南京:东南大学,2005.
    [97]宋进源.汽车防抱制动系统建模与控制仿真研究[D].广西:广西大学,2007.
    [98]程军.汽车防抱死制动系统的理论与实践[M].北京理工大学出版社,1998.
    [99]程军,袁金光.载重汽车制动气室建模的研究[J].理论研究,1-5.
    [100]李建藩.气压传动系统动力学[M].华南理工大学出版社,1991.
    [101]刘国福,张屺,王跃科.车防抱制动系统车速估计方法的初步研究[J].汽车工程,2004,26(6):723-725.
    [102]张威.Stateflow逻辑系统建模[M].西安电子科技大学出版社,2007.
    [103]谭刚平,赵龙庆,杨承.基于MATLAB/Simulink防抱死系统仿真研究[D].西南林学院,2007.
    [104]GB 13594-2003《机动车和挂车防抱死制动性能和试验方法》[S].
    [105]ECE R13附录13《对装备防抱死系统汽车的试验要求》[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700