近壁面空泡的可视化实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空化是流体系统中常出现的现象,当流体内部压强或应力降低到某一临界值后,流体会发生剧烈的气化,游离出大量的气泡,人们将这种现象与沸腾相区别,称之为空化现象。空化发生后,会阻塞流道降低系统效率,造成振动和噪声,甚至使系统发生机械性或者化学性损害,这是液压系统、透平机械、水工结构中应尽力避免的有害现象。随着科技的发展,人类活动范围的不断扩大,涉及空化现象的领域也越来越多,例如:生物医学、核能、航空航天等。空化已成为人类实践活动中必须面对和深刻理解的一个基础性科学问题。
     空泡临近壁面溃灭时,会在溃灭点位置产生高温、高压以及高速射流。人们利用空泡溃灭时产生的高温、高压加速化学反应的进行,或利用高速射流实现微小粒子的驱动。近壁空泡的力学行为是空泡动力学的重要组成部分,过去多以固体壁面的研究为主。近年来随着空化在生物医学领域应用的进一步深入,近弹性壁面以及管道内的空泡研究也逐步开展起来。
     本文通过理论分析、数值仿真以及实验观测相结合,对空泡近壁面行为及相关应用进行了系统的研究。利用高速观察的手段,分析了壁面距离、空泡尺寸以及弹性壁面对空泡力学行为的影响,揭示了射流变向的外部临界条件以及壁面与空泡的耦合关系。定量分析了近壁面双空泡的射流行为,揭示空泡间以及空泡与壁面之间的相互作用规律。开展了管道内空泡动力学行为的应用研究,建立了管道内的空泡射流的能量传递模型,并在管道粒子移除实验中进行了验证。
     论文的主要内容如下:
     第一章绪论,介绍了单空泡以及多空泡动力学的研究现状,以及空泡在生物医学领域内的最新应用,对高速观测技术在流体领域的应用做了相应的阐述。
     第二章空泡动力学及数值计算基础,对球形空泡动力学进行了阐述,对用全边界元法对空泡近弹性壁面进行了数值仿真进行了介绍,这可能是模拟瞬态空泡动力学的最有效的仿真方法。建立了基于雷利公式的单空泡动力学模型,对球形空泡的自由溃灭进行了数值模拟,研究了粘性对空泡溃灭的影响;建立受限空间下的单空泡模型,研究受限空间尺寸对空泡溃灭的影响。
     第三章空泡实验系统,构建了空泡实验系统;采用空泡产生装置对单空泡的自由溃灭进行了实验研究,并与数值仿真进行了对比;开展了双空泡在自由域条件下的验证性实验,与前人的实验结果进行了对比。
     第四章近壁空泡行为,研究了空泡与生物弹性壁面的相互作用行为,分析了壁面距离对空泡力学行为的影响,给出了空泡距离与弹性壁面的变形量之间的定量关系.研究了空泡与壁面距离丫及空泡间距离γb对空泡射流的影响,给出了射流变向的临界条件.研究了管道弹性对空泡行为的影响,观察空泡溃灭时管道内的伴随空化现象.建立空泡在刚性管内的溃灭的数学模型进行仿真研究,并与实验结果进行了对比。研究了管径对空泡溃灭的影响,给出了管道壁面的变形量与管径的定量的关系。
     第五章空泡射流及其应用,利用空泡溃灭的微泵效应,实现了管道内的液体输送,利用高速摄像手段,揭示空泡射流作用下液滴形成的动态过程,分析了平板距离对液滴输送速度的影响;利用空泡射流效应,开展了管道端部以及管道内的粒子移除实验,定量分析了空泡与粒子距离对粒子速度的影响,建立了管道内的空泡射流的能量传递模型,揭示了粘度与粒子速度的数学关系,将仿真与实验结果进行了对比.
     第六章结论与展望,概括了论文的主要研究工作,对论文的创新性进行了总结.
Cavitation is a common phenomenon in the fluid system. When the internal pressure or stress in the fluid reduces to a critical value, violent gastification appear in the fluid and a large number bubble can flow. It could be called the caviation phenomenon as distinguished from boiling phenomenon. Caviation was followed flow blockage with the reduction of the system efficiency. Vibration and noise will appear and even cause the mechanical or chemical damage in the system. It should be avoided in the hydraulic system, turbine machinery and hydro-structure. With the development of the technology and expansion of the human activities, the area of cavitation is increasing such as biomedical, nuclear energy and aerospace. Cavitation has become a basic scientific problem in the human practice activities which is needed to face and further understandings.
     High temperature, high pressure and high speed jet will generate in the collapse point while the cavitation bubble collapse near the boundary. The high temperature and high pressure induced by the cavitation bubble collapse is utilized to speed up chemical reactions or achieve the tiny particle drive. Mechanical behavior of the bubble near the wall is an important component of the bubble dynamics. Much research has focused on the rigid wall. In the recent years, along with the cavitation application in the biomedical area going much further, the research of the bubble near the elastic boundary and in the tube also gradually unfolded.
     The thesis concentrates on a systematic study on bubble behavior near the wall and related application through the theory analysis, numerical simulation and experimental observation. By means of the high speed observation, the paper analyse wall distance, bubble size and elastic wall that influence the bubble mechanical behavior and reveal the critical condition of external inducing the jet change-of-direction and the coupling relation between wall and bubble. Quantitative analysis of the two bubble jet behavior is carried on and the interation rule between the bubble and wall is revealed. The thesis develops applied research on the bubble dynamic behavior in the tube and establishes the energy transfer model of the cavitation jet in the tube, which is verified in the particle removal experiment. The outline of this thesis is as follows:
     In chapter1, Introduction, The research situation of single bubble and multiple bubbles cavitation dynamics is introduced. The research progress of the cavitation bubble in the biomedical area and the high speed camera technology in the fluid area is briefly stated.
     In chapter2, the foundation of cavitation dynamic and numerical calculation, the spherical bubble dynamic is stated. The full boundary element method is introduced which is used to simulate the interaction of the bubble with the elastic boundary and it maybe the most versatile method for transient bubble dynamic simulation. The spherical bubble collapse process is simulated with the Rayleigh model and the effect of liquid viscosity is investigated also. The single bubble model is built under the confined space condition and the influence of the confined space dimension on the bubble collapse is studied.
     In chapter3, the bubble experimental system, the bubble experimental system is structured. The single bubble is generated by the experimental setup. The bubble collapse in a free field is studied and the result is compared with the numerical result. Two bubbles interaction in the free field is investigated by the experiment which is compared with the previous experimental results.
     In chapter4, the bubble behavior near the wall, the bubble interaction with the elastic boundary is investigated. The influence on the bubble dynamic behavior of the distance between the bubble and the boundary is analyzed and the quantitative relationship between the bubble distance and the elastic boundary deformation is given. The dimensionless distance between the two bubbles γ and the dimensionless distance between the bubble and the boundary γb are defined. The γ value and γb value influence on the bubble jet behavior is investigated and the critical condition for jet chang-of-direction is present. The effect of the elastic tube on bubble behavior is studied and the accompanied cavitation phenomenon in the tube is observed in the experiment.The theory model of the bubble collapse in the tube is built and the simulation research is conducted. The model prediction results are compared with the experimental results. The effect of the tube diameter on the bubble collapse is considered and the boundary deformation amount with the tube diameter is plotted.
     In chapter5, the cavitation jet and its application, the micropump effect inducing by the bubble collapse achieve the fluid delivery. The liquid drop formation dynamic process is revealed by the high speed camera and the liquid drop formation velocity is affected by the distance between the plate and the bubble. The particle removal by the bubble-induced jet which contains the particle removal in the tube and in the tube end is investigated by the experiment method. The effect of the distance between the bubble and particle is quantitative analyzed and the energy transfer model of the cavitation jet in the tube is built. The mathematic relation between the particle velocity and liqid viscosity is revealed. The numerical result result is compared with the experimental result.
     In chapter6, conclusions and prospection, the main research work of this thesis and the innovation of the thesis are summarized.
引文
1 C. E. Brennen. Cavitation and bubble dynamics. New York, Oxford University Press,1995, 291p
    2 E. Brujan. Cavitation in Non-Newtonian fluids:With Biomedical and Bioengineering Applications. Berlin, Heidelberg:Spring-Verlag Berlin Heidelberg,2010
    3 W. Lauterborn and T. Kurz. Physics of bubble oscillations. Reports on Progress in Physics. 2010(73):106501
    4 K.S.F. Lew, E. Klaseboer and B. C. Khoo, A collapsing bubble-induced micropump:An experimental study. Sensors and Actuators.2007(133):161-172
    5 A. Dadvand, M. T. Shervani-Tabar and B. C. Khoo. A note on spark bubble drop-on-demand droplet generation:simulation and experiment. Int JAdv Manuf Technol,2011(56):245-259
    6 J. M. Tsulsui, P. A. Grayburn, F. Xie and T.R. Porter. Drug and gen delivery and enhancement of thrombolysis using ultrasound and microbubbles. Cardiol. Clin.2004(22): 299
    7 F. P. Curra and L. A. Crum, Therapeutic ultrasound:Surgery and drug delivery. Acoust. Sci. &Tech.2003(24):343-348
    8 M. O. Lamminen, H. W. Walker and L. K. Weavers, Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J. Membr. Sci.2004(237): 213-223
    9 L. Rayleigh. On the pressure developed in a liquid during the collapse of spherical cavity. Philos. Mag. Ser. 6,1917,34(200),94-98
    10 M. S. Plesset, S. A. Zwick. The growth of vapor bubbles in superheated liquid. Journal of Applied Physics.1954,25(4),493-500
    11 F. G. Blake. The onset of cavitation in liquids,I, Harvard Acoustics Res. Lab, Rep.no.12, 1949
    12 R. T. Knapp & A. Hollander. Laboratory investigations of mechanism of cavitation. Trans. ASME. July 1948, p.419
    13 L. Thrilling. The collapse and rebound of a gas bubble. J. Appl. Phys.1952,23(1):14-17
    14 H. Poritsky. The collapse or growth of a spherical bubble or cavity in a viscous fluid. Proc. First Nat. Cong. In Appl. Mech.1952,813-821
    15 H. M. Fitzpatrick & M. Strasberg. Hydrodynamic sources of sound. First symposium on naval hydrodynamics,1956
    16 H. J. Baiter. On different notions of cavitation noise and what they imply. Int. Symp. On Cavitation and Multiphase Flow, ASME FED,1986(45):107-118
    17 Y. Tomita, A. Shima. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech.1986,169:535-564
    18 A. Vogel, W. Lauterborn, R. Timm. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech.1989,206:299-338
    19 E. A. Brujan, T. Ikeda, Y. Matsumoto. Dynamics of ultrasound-induced cavitation bubbles in non-Newtonian liquids and near a rigid boundary. Phys. Fluids.2004,16:2402-2410
    20 P. Gregorcic, R. Petkovsek, J. Mozina. Investigation of a cavitation bubble between a rigid boundary and a free surface. J. Appl. Phys.2007,102:094904
    21 D. C. Gibson, J. R. Blake. The growth and collapse of bubbles near deformable surfaces. Appl. Sci. Res.1982,38:215-224
    22 J. R. Blake, D. C. Gibson. Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 1987,19:99-2123
    23 E. A. Brujan, K. Nahen, P. Schmidt, A. Vogel. Dynamics of laser-induced caviation bubbles near an elastic boundary. J. Fluid Mech.2001a,433:251-281
    24 E. A. Brujan, K. Nahen, P. Schmidt, A. Vogel. Dynamics of laser-induced caviation bubbles near an elastic boundary:Influence of the elastic modulus. J. Fluid Mech.2001b,433: 283-314
    25 S. J. Shaw, Y. H. Jin, T. P. Gentry, D. C. Emmony. Experimental observations of the interaction of a laser generated cavitation bubble with a flexible membrane. Phys. Fluids. 1999,11:2437-2439
    26 C. K. Turangan, G. P. Ong, E. Klaseboer, B. C. Khoo. Experimental and numerical study of transient bubble-elastic membrane interaction. J. Appl. Phys.2006,100:054910
    27 S. C. Li, Y. J. Zhang, F. G. Hammit. Characteristics of cavitation bubble collapse pulses,associated pressure fluctuations and flow noise, Journal of Hydraulic Research. 1986,24(2):109-122
    28 M. S. Plesset, R.B. Chapman. Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. J. Fluid Mech.1971,47:283-290
    29 C. W. Hirt, B. D. Nichols. Volume of Fluid(VOF) method for dynamic of free boundaries. J. Appl. Phys.1981,39(1):201-225
    30 M. Eswaran, U. K. Saha, D. Maity. Effect of baffles on a partially filled cubic tank: numerical simulation and experimental validation. Comput. Struct.2009,87:198-205
    31 A. E. P. Veldman, J. Gerrits, R. Luppes, J. A. Helder, J. P. B. Vreeburg. The numerical simulation of liquid sloshing on board spacecraft. J. Comput. Phys.2007,224:82-89
    32 J. R. Blake, D. C. Gibson. Growth and collapse of a vapor cavity near a free surface. J. Fluid. Mech.1981,111:123-500
    33 J. H. Duncan, S. Zhang. On the interaction of a collapsing cavity and a compliant wall. J. Fluid. Mech.1991,226:401-423
    34 J. H. Duncan, C. D. Milligan, S. Zhang. On the interaction between a bubble and a submerged compliant structure. J. Sound. Vib.1996,197:17-44
    35 E. Klaseboer, B. C. Khoo. Boundary integral equations as applied to an oscillating bubble near a fluid-fluid interface. Comput. Mech.2004,33:129-138
    36 E. Klaseboer, B. C. Khoo. An oscillating bubble near an elastic material. J. Appl. Phys. 2004,96:5808-5818
    37 S. W. Ohl, E. Klaseboer, B. C. Khoo. The dynamics of an non-equilibrium near bio-materials. Phys. Med. Bio.2009,54:6313-6336
    38 E. Zwaan. S, Le. Gas, K, Tsuji. C. D. Ohl. Controlled cavitation in microfluidic systems. Phys. Rev. Lett.2007,98:254501
    39 P. A. Quinto-Su, K. Y. Lim, C. D. Ohl. Cavitation bubble dynamic in microfluidic gaps of variable height, Phys. Rev. E.2009,80:047301
    40 S. R. Gonzalez-Avila, E, Klaseboer, B. C. Khoo, C. D. Ohl. Cavitation bubble dynamics in a liquid gap of variable height. J. Fluid. Mech.2011,68:241-260
    41 H. Y. Miao, S, M. Gracewski. Coupled FEM and BEM code for simulating acoustically excited bubble near deformable structures. Comput. Mech.2008,42:95-106
    42 E. Ory, H. Yuan, A. Prosperetti, S. Popinet, S. Zaleski. Growth and collapse of a vapor bubble in a narrow tube. Phys. Fluids.2000,12 (6):1268-1277
    43 Z. Yin, A. Prosporetti, J.Kim. Bubble growth on an impulsively powered microheater. Intl J. Heat mass Transfer.2004,47:1053-1067
    44 C. Sun, E. Can, R. Dijkink, D. Lohse, A. Prosperetti. Growth and collapse of a vapour bubble in a microtube:the role of thermal effects. J. Fluid. Mech.2009,63:5-16
    45 N. A. Pelekasis, J. A. Tsamopoulos. Bjerknes forces between two bubbles. Part 1. Response to a step change in pressure field. J. Fluid. Mech.1993,254:467-499
    46 N. A. Pelekasis, J. A. Tsamopoulos. Bjerknes forces between two bubbles. Part 2. Response to an oscillatory pressure field. J. Fluid. Mech.1993,254:501-
    47 W. Lauterborn. Cavitation bubble dynamics-new tools for an intricate problem. Appl. Sci. Res,1982,38:165-178
    48 W. Lauterborn, W. Hentschel. Cavitation bubble dynamics studied by high speed photography and holography:part one. Ultrasonics,1985,23:260-268
    49 S. W, Fong. D. Adhikari, E. Klaseboer, B. C. Khoo. Interactions of multiple spark-generated bubbles with phase differences. Exp. Fluid.2009,46:705-724
    50 L. W. Chew, E. Klaseboer, S. W. Ohl, B. C. Khoo, Interactions of two differently sized oscillating bubbles in a free field. Phys. Rev. E.2011,84:066307
    51 P. A. Quinto-Su, C. D. Ohl. Interaction between two laser-induced cavitation bubbles in a quai-two-dimensional geometry. J. Fluid. Mech.2009,633:425-435
    52 S. Paliwal, S. Mitragotri. Ultrasound-induced cavitation applications in drug and gene delivery. Expert Opin. Drug Deliv.2006,3:713-726
    53 N. Inoue, D. Kobayashi, M. Kimura, M. Toyama, I. Sugawara, S. Itoyama, M. Ogihara, K. Sugibayashi, Y. Morimoto. Fundamental investigation of a novel drug delivery system, a transdermal delivery system with jet injection. Int.J.Pbarm.1996,137:75-84
    54 DV. Mcallister, PM. Wang, SP. Davis, J-H. Park, PJ. Canatella, MG. Allen, MR. Prausnitz. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc.Natl.Acad.Sci.US A.2003,100:13755-13760
    55 BR. Meyer, W. Kreis, J. Eschbach, V. Omara, S. Rosen, D. Sibalis. Successful transdermal administration of therapeutic doses of a polypeptide to normal human volunteers. Clin. Pharmacol. Then 1988,44:607-612
    56 MR. Prausnitz, BS. Lau, CD. Milano, S. Conner, R. Lauger, JC. Weaver. A quantitative study of electroporation showing a plateau in net molecular transport. Biophys.J.1993,65:414-422
    57 AC. Williams, BW. Barry. Penetration enhancers. Adv. Drug Deliv.Rev.2004,56:603-618
    58 S. Mitragotri. Breaking the skin barrier. Adv. Drug Deliv.Rev.2004,56:555-556
    59 S. Mitragotri, D. Blankschtein, R. Langer. Ultrasound-mediated transdermal protein delivery. Science.1995,269:850-853
    60 S. Mitragotri, D. Blankschtein, R. Langer. Transdermal drug delivery using low-frequency sonophoresis. Pharm. Res.1996,13:411-420
    61 K. Tachibana. Transdermal delivery of insulin to alloxan-diabetic rabbits by ultrasound exposure. Pharm. Res.1992,9:952-954
    62 R. Bekeredjian, PA. Grayburn, RV. Shohet. Use of ultrasound contrast for gen or drug delivery in cardiovascular medicine. J Am Coll Cardiol.2005,45:329-335
    63 A. Tezel, S. Mitragotri. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys.J.2003,85:3502-3512
    64 S. Mitragotri, D. Ray, J. Farrell, H. Tang, B. Yu, J. Kost, D. Blankschtein, R. Langer. Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport. J. Pharm.Sci.2000,892-900
    65 ME. Johnson, S. Mitragotri, A. Patel, D. Blankschtein, R. Langer. Synergistic effects of chemical cnhancers and therapeutic ultrasound on transdermal drug delivery. J. Pharm. Sci.1996,85:670-679
    66 L. Le, J. Kost, S. Mitragotri. Combined effect of low-frequency ultrasound and iontophoresis:applications for transdermal heparin delivery. Pharm. Res. 2000,17:1151-1154
    67 J. Kost, U. Pliquett, S. Mitragotri, A. Yamamoto, R. Langer, J. Weaver. Synergistic effect of electric field and ultrasound on transdermal transport. Pharm. Res.1996,13:633-638
    68 DL. Miller, S. Bao, JE. Morris. Sonoporation of culture cells in the rotating tube exposure system. Ultrasound Med. Biol.1999,25:143-149
    69 J. Sundaram, BR. Mellein, S. Mitragotri. An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys. J.2003,84:3087-3101
    70 HR. Guzman, DX. Nguyen, AJ. Mcnamara, MR. Prausnitz. Equilibrium loading of cells with macromolecules by ultrasound:effects of molecular size and acoustic energy. J. Pharm. Sci.2002,91:1693-1701
    71 HR. Guzman, DX. Nguyen, S. Khan, MR. Prausnitz. Ultrasound-mediated distruption of cell membranes.Ⅱ.Heterogeneous effects on cells. J. Acoust. Soc. Am.2001,110:597-606
    72 HR. Guzman, DX. Nguyen, S. Khan, MR. Prausnitz. Ultrasound-mediated distruption of cell membranes. Ⅰ.Quantification of molecular uptake and cell viability. J. Acoust. Soc. Am. 2001,110:588-596
    73 MW. Miller, DL. Miller, AA. Brayman. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med. Biol.1996,22:1131-1154.
    74 M. Fechheimer, JE. Boylan, S. Parker, JE. Sisken, GL. Patel, SG. Zimmer. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc. Natl. Acad. Sci. USA.1987,84:8463-8467
    75 HJ. Kim, JF. Greenleaf, RR. Kinnick, JT. Bronk, ME. Bolander. Ultrsound-mediated transfection of mammalian cells. Hum. Gene Ther: 1996,7:1339-1346
    76 VG. Zarnitsyn, MR. Prausnitz. Physical parameters influencing optimization of ultrasound-mediated DNA transfection. Ultrasound Med.Biol.2004,30:527-538
    77 A. Lawrie, AF. Brisken, SE. Francis, DI. Tayler, J. Chamberlain, DC. Crossman, DC. Cumberland, CM. Newman. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation.1999,99:2617-2620
    78 PE. Huber, J. Jenne, J. Debus, MF. Wannenmacher, P. Pfisterer. A comparison of shock wave and sinusoidal-focused ultrasound-induced localized transfection of HeLa cells. Ultrasound Med. Biol.1999,25:1451-1457
    79 DB. Tata, F. Dunn, DJ. Tindall. Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines:LnCap and PC-3. Biocherm. Biophys. Res. Commun.1997,234,64-67
    80 S. Bao, BD. Thrall, DL. Miller. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med. Biol.1997,23:953-959
    81 S. Mehier-Humbert, T. Bettinger, F. Yan, RH. Guy. Ultrasound-mediated gene delivery: kinetics of plasmid internalization and gene expression. J. Control. Release.2005,104:203-211
    82 DL. Miller, S. Bao, RA. Gies, BD. Thrall. Ultrasonic enhancement of gene transfection in murine melanoma tumors. Ultrasound Med. Biol.1999,25:1425-1430
    83 PE. Huber, P. Pfisterer. In vitro and in vivo transfection of plasmid DNA in the dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther.2000,7:1516-1525
    84 Y. Manome, M. Nakamura, T. Ohnot, H. Furuhata. Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo. Hum. Gene Ther.2000,11:1521-1528
    85 U. Lauer, E. Burgelt, Z. Squire, K. Messmer, PH. Hofschenider, M. Gregor, M. Delius. Shock wave permeabilization as a new gene transfer method. Gene Ther.1997,4:710-715
    86 H. Hosseinkhani, T. Aoyama, O. Ogawa, Y. Tabata. Ultrasound enhances the transfection of plasmid DNA by non-viral vectors. Gum Pharm. Biotechnol.2003,4:109-122
    87 EC. Unger, TP. Mccreery, RH. Sweitzer. Ultrasound enhances gene expression of liposomal transfection. Invest. Radiol. 1997,32:723-727
    88 A. Lawrie, AF. Brisken, SE. Francis, DC. Cumberland, DC. Crossman, CM. Newman. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Tber.2000,7:2023-2027
    89 Y. Kaneko, T. Maruyanma, K. Takegami, T. Watanabe, H. Mitsui, K. Hanajiri, H. Nagawa, Y. Matsumoto. Eur Radiol.2005,15:1415-1420
    90 K. Tachibana, S. Tachibana. Albumin microbubble echocontrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation.1995,92:1148-1150
    91 S. Umemura, K. Kawabata, K.. Sasaki. In vitro and in vivo enhancement of sonodynamically active cavitation by secondharmonic superposition. J Acoust Soc Am.1997,101:569-577
    92 S. Umemura, K. Kawabata, K. Sasaki. In vivo acceleration of ultrasonic tissue heating by microbubble agent. IEEE Trans Ultrason Ferroelectr Freq Control.2005,52:1690-1689
    93 AJ. Coleman, JE. Saunders, LA. Crum, M. Dyson. Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med Biol.1987,13:69-76
    94 LA. Crum. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J Urol.1988,140:1587-1590
    95 MR. Bailey, DT. Blackstock, RO. Cleveland, LA. Crum. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. Ⅱ.Cavitation fields. J Acoust Soc Am.1999,106:1149-1159
    96 MT. Carnel, RD. Alcock, DC. Emmony. Optical imaging of shock wave produced by a high-energy electromagnetic transducer. Phys Med Biol.1993;38:1575-1588
    97 D. Cathignol, J. Tavakkoli, A. Birer, A. Arefiev. Comparison between the effects of cavitation induced by two different pressure-time shock waveform pulses. IEEE Trans Ultrason Ferroelectr Freq Control.1998,45:788-799
    98 CC. Church. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J Acoust Soc Am.1989,86:215-227
    99 A. Philip, M. Delius, C. Scheffczyk. Interaction of lithotripter generated shock wave with air bubbles. J Acoust Soc Am.1993,93:2496-2509
    100YA. Pishchalnikov, VA. Khokhlova, MR. Bailey, JC. Jr. Williams, RO. Cleveland, T. Colonius, LA. Crum, AP. Evan, JA. Mcateer. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. JEndourol.2003,17:435-446
    101OV. Sapozhnikov, VA. Khokhlova, JC. Jr. Williams, JA. Mcateer, RO. Cleveland, LA. Crum. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. J Acoust Soc Am.2002,112:1183-1195
    102AP. Evan, R. Lynn, LR. Willis, JA. Mcateer, MR. Bailey, BA. Connors, Y. Shao, JE. Lingeman, JC. Jr. Williams, NS. Fineberg, LA. Crum. Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. J Urol.2002,168:1556-1662
    103JC. Willams, MA. Stonehill, K. Colmenares, AP. Evan, SP. Andreoli, RO. Cleveland, MR. Bailey, LC. Crum, JA. Mcateer. Effect of macroscopic air bubbles on cell lysis by shock wave lithotripsy in vivo. Ultrasound Med Biol.1999,25:473-479
    104P. Zhong, FH. Cocks, I. Cioanta, GM. Preminger. Controlled forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy. J Urol.1997,158:2323-2328
    105S. Zhu, FH. Cocks, GM. Preminger, P. Zhong. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol.2002,28:661-671
    106RO. Cleveland, MR. Bailey, N. Fineberg, B. Hartenbaum, M. Lokhandwalla, JA. Mcateer, B. Sturtevant. Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3. Rev Sci Instrum.2000,71:2514-2525
    107AM. Loske, FE. Prieto, F. Fernandez, J. van. Cauwelaert. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. Phys Med Biol.2002,47:3945-3957
    108DL. Sokolov, MR. Bailey, LA. Crum. Use of a dual-pulse lithotripter to generated a localized and intensified cavitation field. JAcoust Soc Am.2001,110:1685-1695
    109DL. Sokolov, MR. Bailey, LA. Crum. Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro. Ultrasound Med Biol.2003,29:1045-1052
    110X. Xi, P. Zhong. Improvement of stone fragmentation during shockwave lithotripsy using a combine EH/PEAA shockwave generateor-in vivo experiments. Ultrasound Med Biol. 2000,26:457-467
    111S. Yoshizawa, T. Ikeda, A. Ito, R. Ota, S. Takagi, Y. Matsumoto. High intensity focused ultrasound lithotripsy with caviitating microbubbles. Med Biol Eng Comput.2009,47:S51-860
    112BJ. Mastin, RM. Sherrard, JH. Rodgers Jr, YT. Shah. Hybrid cavitation and constructed wetland reactors for treatment of chlorinated and non-chlorinated organics. Chem. Eng. Technol.2001,24:97
    113PC. Sangave, PR. Gogate, AB. Pandit. Ultrasound pre-treatment for enhanced biodegradability of the distillery wastewater. Ultrason. Sonochem.2004,11:197
    114PC. Sangave, PR. Gogate, AB. Pandit. Ultrasound and ozone assisted biological degradation of thermally pretreated and anaerobically pretreated distillery wastewater. Chemospher.2007,68:42
    115K. Nickel, U. Neis. Ultrasonic disintegration of biosolids for improved biodegradation. Ultrason. Sonochem.2007,14:450
    116A. Tiehm, K. Nickel, U. Neis. The use of ultrasound to accelerated the anaerobic digestion of sewage sludge. Water Sci. Technol.2997,36:121
    117A. Tiehm, K. Nickel, M. Zellhorn, U. Neis. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res.2001,35:2003-2009
    118M. Henze, P. Harremoe, EJ. Jansen, E. Arvin. Wastewater treatment:Biological and Chemical processes. Springer-Verlag. Berlin.2000
    119PN. Dugba, R. Zhang. Treatment of dairy wastewater with two-stage anaerobic sequencing bath reactor systems:thermophilic versus mesophilic operations. Bioresour. Technol 1999,68-255
    120T. Clark, T. Stephenson. Effects of chemical addition on aerobic biological treatment of municipal wastewater. Environ. Technol.1998,19:579
    121P. Grau. Criteria for nutrient-balanced operation of activated sludge process. Water Sci. Technol.1991,24:251
    122C. Yusuf. Sonobioreactors:using ultrasound for enhanced microbial productivity. Trends Biotechnol.2003,21:89
    123X. Chen, S. Mandre, J. J. Feng. Partial coalescence between a drop and a liquid-liquid interface. Phys. Fluids.2006,18:051705
    124Y. H. Chen, H. Y.Chu. Interaction and fragmentation of plused laser induced microbubbles in a narrow gap. Phy. Rev. Lett,2006,96:034505
    125T. Gilet, N. Mulleners, J. P. Lecomte, N. Vandewdle, S. Dorbolo. Critical parameters for the partical coalescence of a droplet. Phy. Rev. E,2007,75:036303
    126T. Thoroddsen, K. Takehara. The coalescence cascade of a drop. Phys. Fluid. 2000,12:1265-1267
    127R. A. Menchaca, D. A. Martinez, S. Popinet, S. Zaleski. Coalescence of liquid drops by surface tension. Phys. Rev. E.2001,63:046309
    128S. T. Thoroddse, K. Takehara, T G. Etoh. The coalescence speed of a pendent and a sessile drop. J. Fluid. Mech.2005,527:85-114
    129M. Wu, T. Cubaud, C. M. Ho. Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluid. Mech. 2004,16:51-54
    130S. T. Thoroddsen, T. G. Etho, K. Takehara, N. Ootsuka. On the coalescence speed of bubbles. Phys. Fluid.2005,17:071702
    131W. D. Ristenpart, P. M. McCalla, R. V. Roy, H. A. Stone. Coalescence of spreading droplets on a wettable substrate. Phys. Rev. Lett.2006,97:064501
    132J. C. Burton, P. Taborek. Role of dimensionality and axisymmetry in fluid pinchoff and coalescence. Phys. Rev. Lett.2007,98:224502
    133R. Rioboo, C. Tropea, M. Marengo. Outcomes from a drop iMPact on solid surfaces. At. Sprays.2001,11:155-165
    134A. Rioboo, B. Prunet-Foch, M. Vignes-Adler. IMPact of water drops on small targets. Phys. Fluid.2002,14(3):485-501
    135L. Xu, W. W. Zhang, S. R. Nagel. Drop splashing on a dry smooth surface. Phys. Fluids. 2005,94:184505
    136S. T. Thoroddsen, T. G. Etoh, K. Takehara. Crown-breakup by Marangoni instability. J. Fluid. Mech.2006,557:63-72
    137A. U. Chen, P. K. Notz, O. A. Basaran. Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett.2002,88:174501
    138J. C. Burton, R. Waldrep, P. Taborek. Scaling and instabilities in bubble pinch-off. Phys. Rev. Lett.2005,94:184502
    139N. C. Keim, P MΦDler, W. W. Zhang, S, R. Nagel. Breakup of air bubbles in water:memory and breakdown of cylindrical symmetry. Phys. Rev. Lett.2006,91:144503
    140S. T. Thoroddsen, T. G. Etoh, K. Takehara. Experiments on bubble pinch-off. Phys. Fluid. 2007,19:042101
    141S. T. Thoroddsen, T. G. Etoh, K. Takehara. Microjetting from wave focusing on oscillating drops, Phys. Fluids,1007,19:052101
    142Y. Tomita, A. Shima. High-speed photographic observations of laser-induced cavitation bubbles in water. Acustica.1990,71:161
    143J. P. France, J. M. Michel. Fundamentals of cavitations. Kluwer Academic Publishers, Dordrecht, Boston, London.2004
    144W. Besant. Hydrostatics and Hydrodynamics. Cambridge University Press.1859
    145M. S. Plesset. On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 1954,25:96-98
    146W. Lauterborn, H. Bolle. Experimental investigations of cavitation-bubble collapse in the neighborhood of a solid boundary. J. Fluid Mech.1975,72:391-399
    147T. G. Leighton. The Acoustic Bubble. Academic.London,1994
    148S. Buogo, B. C. Cannelli. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model. J. Acoust. Soc. Am.2002,111:2594-2599
    149A. Prosperetti, M. S. Plesset. Bubble dynamics and cavitation. Annu. Rev. Fluid. Mech.1977,9:145-185
    150F. Jomni, A. Devat. Viscosity effect on the dynamics of small bubbles generated by electrical current pulse in viscous insulating liquids. Conference on Electrical Insulation and Dielectric Phenomena, IEEE 1997 Annual Report,,1997',2:652-655
    151 A. R. McCarn, E. M. Englert, G. A. Williams. Laser induced bubbles in glycerol-water mixture. American Physical Society (APS) March Meeting.2008
    152L. Xiu-Mei, H. Jie, L. Jian, N. Xia-Wu. Growth and collapse of laser-induced bubbles in glycerol-water mixtures. Chin. Phys. B.2008,17:2574
    153H. N. Oguz, A. Prosperetti. Dynamics of bubble growth and detachment from a needle. J. Fluid Mech.1993,257:111-145
    154D. Lohse, R. Bergmann, R. Mikkelsen, C. Zeilstra, D. van der Meer, M. Versluis, K. van der Weele, M. van der Hoef, H. Kuipers. Impact on Soft Sand:Void Collapse and Jet Formation. Phys. Rev. Lett.2004,93:198003
    155S. Nakajima, Y. Yamamoto, M. Ota, K. Maeno. Experimental investigation of laser-induced bubble dynamics near elastic/soft material in distilled water. Journal of Physics:Conference Series.2009,147:012026
    156J. Jussila. Preparing ballistic gelatin-review and proposal for a standard method. Forensic Sic Int.2004,141:91-98
    157K. G. Sellier, B. P. Kneubuehl. Wound ballistics and the scientific background. Elsevier ISBN0-444-81511-2.1994
    158J. Jusilla.Wound ballistics simulation:Assessment of the leiitimacy of law enforcement firearms ammunition by means wound ballistic simulation. Thesis Second Department of Surgery. University of Helsinki,Finland.2005
    159G. L. Chahine, A. K. Morine. The influence of polymer additives on the collapse of a bubble between two solid walls. ASEM Cavitation and Polyphase Forum. New Orleans, Louisiana. 1980
    160G. L. Chahine. Experimental and asymptotic study of non-spherical bubble collapse. Appl. Sci. Res,1982,38:381-387
    161E. A. Brujan, A. Pearson, J. R. Blake. Pulsating buoyant bubbles close to a rigid boundary and near the null final Kelvin impulse. Int. J. Multiphase. Flow.2005,31:302-317
    162T. Ikeda, S. Yoshizawa, M. Tosaki, J. S. Allen, S. Takagi, N. Ohta, T. Kitamura, Y. Matsumoto. Cloud cavitation control lithotripsy using high intensity focused ultrasound. Ultrasound Med Biol.2006,32:1383-1397
    163C. M. H. Newman, T. Bettinger. Gene therapy progress and prospects:Ultrasound for gen transfer. Gene Therapy.2007,14:465-475
    164L. W. Chew, E. Klaseboer, S. W. Ohl, B. C. Khoo. Interaction of two oscillating bubbles near a rigid boundary. Exp Therm. Fluid Sci.2012
    165T. Ye, J. L. Bull. Microbubble expansion in a flexible tube. J. Bio. Eng.2006,128:554-563
    166S. Martynov, E. Stride, N. Satfari. The natural frequencies of microbubble oscillation in elastic vessels. J. Acoust. Soc.^m.2009,126:2963-2972
    167L. A. Crum. Surface oscillations and jet development in pulsating bubbles. J. Phys. 1979,C8:285-287
    168B. C. Khoo, E. Klaseboer, K. C. Hung. A collapsing bubble-induced micro-pump using the jetting effect. Sens. Actuation. A.2005,118:152-161
    169R. Dijkink, C. D. Ohl. Laser-induced cavitation based micropump. Lab on a chip. 2008,8:1676-1681
    170A. Dadvand, B. C. Khoo, M. T. Shervani-Tabar. A collapsing bubble-induced microinjector: an experimental study. Exp. Fluids.2009,46:419-434
    171W. D. Song, M. H. Hong, B. Lukyanchuk, T. C. Chong. Laser-induced cavitation bubbles for cleaning of solid surfaces. Appl. Phys. Lett.2004,95-2592
    172C-D. Ohl, M. Arora, R. Dijkink, V. Janve, D. Lohse. Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett.2006,89:074102
    173C. F. Caskey, S. M. Stieger, S. Qin, P. Y. Dayton. Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. Acoustical Society of America.2007,122:1191-1200
    174A. Sbrestba, S. W. Fong, B. C. Khoo, A. Kishen. Delivery of Anibacterial Nanoparticles into Dentinal Tubules Using High-intensity Foucus Ultrasound. Endoontics.2009,5:1028-1033
    175D. Pavard, E. Klaseboer, S-W. Ohl, B. C. Khoo. Removal of particles from holes in submerged plates with oscillating bubbles. Phys. Fluids.2009,21:083304
    176X. M. Liu, J. He, J. Lu, X-W. Ni. Effect of liquid viscosity on a liquid jet produced by the collapse of a laser-induced bubble near a rigid boundary. The Japan Society of Applied Physics.2009,48:016504
    177E. Klaseboer, B. C. Khoo. A modified Rayleigh-Pleasset model for a non-spherically symmetric oscillating bubble with applications to boundary integral methods. Engineering analysis with boundary elements,2006,30:59-71
    178M. Lee, E. Klaseboer, B. C. Khoo. On the boundary integral method for the rebounding bubble. J. Fluid. Mech.2007,570:407-429
    179B. M. Borkent, M. Arora, C. D. Ohl, N. De. Jong, M. Versluis, K. A. March, E. Klaseboer, B. C. Khoo. The acceleration of solid particles subjected to cavitation nucleation. J. Fluid. Mech.2008,610:157-182
    180Y. Inoue, T. Kobayashi. Nonlinear oscillation of a gas-filled spherical cavity in an incompressible fluid. Fluid dynamics research,1993,11:85-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700