用户名: 密码: 验证码:
主动磁悬浮轴承系统不平衡振动补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在主动磁悬浮轴承系统中,由于转子存在不平衡,会产生与转速同频的不平衡振动。为了减小这些同频振动对主动磁悬浮轴承系统的不利影响,本文进行了惯性力最小和位移最小振动补偿研究。
     针对惯性力最小振动补偿,主要是通过消除反馈位移信号中的同频振动来减弱主动磁悬浮轴承系统的控制电流,控制电流的减小有利于降低磁悬浮轴承定子的电磁力以及对转子的约束力,使转子在离心力作用下尽可能地绕其惯性主轴转动,最终达到减小转子惯性力以及磁悬浮轴承电磁力的目的。本文先后采用了三种惯性力最小补偿策略,首先,在标准LMS算法自适应滤波的基础上,提出了在固定频率处的惯性力最小切换补偿策略,即在主动磁悬浮轴承原反馈控制系统中添加标准LMS算法作为滤波器,通过切换有效消除反馈位移信号中对应某些固定转动频率的同频振动,实现了转子在300Hz和400Hz转动频率处的惯性力最小切换补偿,补偿后的控制电流幅值相对于未加补偿时分别衰减了大约90%和95%;然后,为了实现实时惯性力最小补偿,即在转动频率连续变化时实现惯性力最小补偿,论文提出了一种变步长LMS算法,其核心是提供时变的前馈信号来补偿位移反馈信号中的同频振动,与未加补偿相比,补偿后的控制电流幅值在转动频率为300Hz时衰减了97.4%,且转动频率越高补偿效果越明显;考虑到前两种补偿策略对主动磁悬浮轴承原控制系统存在干扰影响,论文又提出了一种将H∞算法和一种新的改进变步长LMS算法相结合的惯性力最小实时前馈补偿策略,提高了控制系统的抗干扰能力和鲁棒稳定性,转动频率达到300Hz时,补偿后的控制电流幅值同样衰减了97.4%,且转动频率越高补偿效果越好。
     针对位移最小振动补偿,考虑到转子启动以及停车过程中不平衡振动信号的周期是变化的,论文提出了一种基于自适应迭代学习控制算法的位移最小前馈补偿策略,该算法可以自适应地提供所需的不平衡补偿信号,以便减小由于算法学习周期不一致而对主动磁悬浮轴承控制系统造成的干扰,研究结果表明所提补偿策略实现了系统在固定转动频率处的位移最小补偿,显著减小了转子径向跳动,补偿后转子径向跳动较未加补偿时衰减了91.3%。
     观察到主动磁悬浮轴承系统存在拍振现象,从理论上分析了主动磁悬浮轴承系统参数与拍振的内在关系,研究结果表明,通过改变主动磁悬浮轴承系统广义动刚度能够有效减弱拍振对控制系统的不利影响。
In active magnetic bearings (AMB) system, unbalance vibrations synchronous with the rotationalspeed will be produced because of the rotor’s mass unbalance. To reduce the bad influence of theseunbalance vibrations, force minimum compensation and displacement minimum compensation arestudied in this paper.
     Aiming at the inertial force minimum vibration compensation, the major solution is weakeningAMB system control current through eliminating the unbalance vibrations in feedback displacements.The decrease of the control currents helps to weaken the electromagnetic force of magnetic baeringstators and the radial constraint on the rotor, and make the rotor spin around its inertia axis under thecentrifugal force. Finally, the purposes of reducing the effects of rotor inertia force andelectromagnetic force of magnetic baerings are implemented. Three kinds of compensation schemesare adopted in this paper. Firstly, a scheme of switching compensation control in fixed frequencyusing adaptive filter based on norm LMS algorithm is presented. As a filter, the norm LMS algorithmis added into the primary feedback control loop, and the unbalance vibration at some fixed rotationalfrequencies in the feedback displacement can be filtered effectively through switching. Inertial forceminimum switching compensation is achieved at300Hz and400Hz, and the amplitudes of controlcurrent after compensation are attenuated90%and95%compared with the amplitudes beforecompensation, respectively. Secondly, in order to realize real-time inertial force minimumcompensation, implementing inertial force minimum compensation with changing rotationalfrequencies, a new variable step LMS algorithm is presented, and its core is providing feed-forwardsignal to compensate the unbalance vibration. The control current amplitudes after compensation isattenuated97.4%at300Hz, and the compensatory effects become better with the increase of the rotorrotational frequency. Thirdly, in view of the interference influence of the two proposed compensatoryschemes on the primary control system of AMB, another real-time inertial force minimumfeed-forward compensation scheme combined by H∞algorithm and a new modified variable stepLMS algorithm is proposed. This compensatory scheme also realizes inertial force minimumcompensation for AMB system at any frequency, and improves the anti-jamming capability andstability of the control system. The amplitudes of control current after compensation can alsoattenuate97.4%at300Hz, and the higher rotational frequency the better compensatory effects can beachieved.
     Aiming at the displacement minimum vibration compensation, a feed-forward displacement minimum compensatory scheme is proposed based on a new adaptive iterative learning controlalgorithm in consideration of the periodic variation of unbalance interference in the processes of rotorstart and shutoff. In the compensation scheme, this algorithm can reduce the interference to AMBcontrol system due to the inconformity of learning circle and can adaptively provide expectedunbalance compensatory signals. Study results show that the proposed scheme can achievedisplacement minimum compensation for AMB system in fixed rotation frequency, and observablyreduce the rotor radial runout. The radial displacement after compensation has reduced by93.1%.
     The beat vibration phenomenon existing in the AMB system is discovered, and the internalrelation between beat vibration and the parameters of AMB system is theoretically analyzed.Simulation and experiment results show the unfavorable effects of beat on the control system can beeffectively weakened by changing the generalized dynamical stiffness of AMB.
引文
[1]虞烈.可控磁悬浮转子系统.北京:科学出版社,2003.
    [2]胡业发,周祖德,江征风.磁力轴承的基础理论与应用.北京:机械工业出版社,2006.
    [3]Schweitzer G,Bleuler H,Traxler A.主动磁轴承基础、性能及应用(虞烈,袁崇军译).北京:新时代出版社,1997.
    [4]曾学明.磁轴承电控系统研究,[博士学位论文].南京:南京航空航天大学,2002.
    [5]Bleuler H,Gahler C,Herzog R,et al.Application of Digital Signal Processors for IndustrialMagnetic Bearings.IEEE Transactions on Control Systems Technology,1994,2(4):280-289.
    [6]Wajnert D,Zimon J.Control System Design for Active Magnetic Bearing.2nd InternationalStudents Conference on Electrodynamic and Mechatronics,Opole,Poland,2009:35-36.
    [7]Kang M S,Lyou J,Lee J K.Sliding Mode Control for an Active Magnetic Bearing System Subjectto Base Motion.Mechatronics,2010,20(1):171-178.
    [8]Schweitzer G.Mechatronics Concept with Examples in Active Magnetic Bearings.Mechatronics,1992,2(1):65-74.
    [9]Miyahara A.Proceedings of the Japan-U.S.Workshop P-118on Vacuum Technologies for FusionDevices (IPPJ-T-38),1988.
    [10]Aenis M,Knopf E,Nordmann R.Active Magnetic Bearings for the Identification and FaultDiagnosis in Turbomachinery.Mechatronics,2002,12(8):1011-1021.
    [11]Shen J Y,Fabien B C.Optimal Control of a Flywheel Energy Storage System with a RadialFluxHybrid Magnetic Bearing.Journal of the Franklin Institute,2002,339(2):189-210.
    [12]Kawashima H,Nagaya S,Minami M,et al.Study on1kWh CFRP Flywheel for HighTemperature Superconducting Magnetic Bearing for Energy Storage System.Proceedings of theNinth International Symposium on Superconductivity,Berlin,Germany,1997:1353-1356.
    [13]Noh M D,Cho S R,Kyung J H,et al.Design and Implementation of a Fault-tolerant MagneticBearing System for Turbo-molecular Vacuum Pump.IEEE Transactions on Mechatronics,2005,10(6):626-631.
    [14]Park J Y,Palazzolo A,Beach R.MIMO Active Vibration Control of Magnetically SuspendedFlywheels for Satellite IPAC Service.Journal of Dynamic Systems(Measurement and Control),2008,130(4):1-22.
    [15]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究.中国电机工程学报,2003,23(3):108-111.
    [16]白金刚,张小章,张剀,等.磁悬浮储能飞轮系统中的磁轴承参数辨识.清华大学学报,2008,48(3):382-385.
    [17]吴刚,刘昆,张育林.磁悬浮飞轮技术及其应用研究.宇航学报,2005,26(3):385-390.
    [18]刘晓军,刘小英,胡业发,等.人工心脏泵磁悬浮转子非线性特性及控制方法研究.中国机械工程,2006,20(17):2091-2094.
    [19]Li Hongwei,Zhao Lei,Shi Lei,et al.Study on Active Magnetic Bearing Controller for HTR-10Helium Turbine Rotor.Nuclear Power Engineering,2008,9(4):100-103.
    [20]徐龙祥,周波.磁浮多电发动机的研究现状及关键技术.航空动力学报,2003,12(1):51-59.
    [21]Wang Xiping,Chen Xuejun,Zhu Lijin,et al.Machine Tool Spindles and Active MagneticBearings.Key Engineering Materials,2001,202-203:465-468.
    [22]Ahn H J,Kim J H,Lee J J,et al.Speed-dependent Tool Tip Compliance Measurement of aHigh-speed Machine Tool Spindle Using an Active Magnetic Bearing.Proceedings of the2005IEEE International Conference on Mechatronics,Taipei,Taiwan,2005:669-674.
    [23]王晓光,胡业发,江征风.磁悬浮硬盘驱动器及其静电防护设计.机械设计与制造,2005,3:43-45.
    [24]Driga M D.Induction Motor for Wide Range Static Inverter Drive:Electrical MachinesDesigner's Point of View.IPEC-Tokyo Conference Record of the International Power ElectronicsConference,Tokyo,Japan,1983:193-201.
    [25]Bi Chao,Wu Dezheng,Jiang Quan,et al.Runout Compensation in Active Magnetic Bearingswith Iterative Learning Control Scheme.Asia-Pacific Magnetic Recording Conference,Seoul,South Korea,2004:1-2.
    [26]Friedmann H,Petricevic R,Ries M.On The Way to Active Systems:AVR Rotor-Active VibrationReduction for a Textile Bobbin.Computers and Structures,2008,86(3-5):447-453.
    [27]崔东辉.高可靠磁悬浮轴承系统关键技术研究,[博士学位论文].南京:南京航空航天大学,2010.
    [28]李俊,徐德民,黄心汉.主动磁悬浮轴承的非线性反演变结构控制.华中理工大学学报,1999,27(5):63-66.
    [29]王磊.主动磁悬浮轴承的振动补偿研究,[硕士学位论文].南京:南京航空航天大学,2007.
    [30]陈进.机械设备振动监测与故障诊断.上海:上海交通大学出版社,1999.
    [31]Bleuler H,Gahler C,Herzog R,et al.Application of Digital Signal Processors for IndustrialMagnetic Bearings.IEEE Transactions on Control Systems Technology,1992,2(4):280-289.
    [32]黄晓蔚,唐钟麟.电磁轴承系统实现自动平衡的一种新方法.机械工程学报,2001,37(7):96-99.
    [33]Mohamed N,Abdelfatah M,Ilene B V.Imbalance Compensation and Automatic Balancing inMagnetic Bearing Systems Using the Q-parameterization Theory.IEEE Transactions on ControlSystems Technology,1995,3(2):2952-2957.
    [34]Setiawan J D,Mukherjee R,Maslen H H.Synchronous Disturbance Compensation in ActiveMagnetic Bearings using Bias Current Excitation. International Conference on AdvancedIntelligent Mechatronics Proceedings,Como,Italy,2001:707-712.
    [35]Setiawan J D,Mukherjee R,Maslen E H.Synchronous Sensor Runout and UnbalanceCompensation in Active Magnetic Bearings Using Bias Current Excitation.Journal of DynamicSystems,Measurement and Control,2002,124(1):14-24.
    [36]Setiawan J D.Adaptive Compensation of Sensor Runout and Mass Unbalance in MagneticBearing.Doctor of Philosophy for Michigan State University,2001.
    [37]Bi Chao,Wu Dezheng,Jiang Quan.Automatic Learning Control for Unbalance Compensationin Active Magnetic Bearings.IEEE Transactions on Magnetics,2005,41(7):2270-2280.
    [38]Raoul H,Philipp B,Conrad G,et al.Unbalance Compensation Using Generalized Notch Filtersin the Multivariable Feedback Magnetic Bearings.IEEE Transactions on Control SystemsTechnology,1996,4(5):580-586.
    [39]Shi J,Revell J.System Identification and Re-engineering Controllers for a Magnetic BearingsSystem.2002IEEE Conference on Computer,Communications,Control and Power Engineering,Beijing,China,2002:1591-1594.
    [40]牟鸿.主动磁轴承不平衡补偿的研究,[硕士学位论文].南京:南京航空航天大学,2003.
    [41]彭晓军,高钟毓,王永梁.磁电轴承中抑制不平衡振动的陷波滤波器设计方法.机械工程学报,2006,42(6):120-123.
    [42]孙岩桦,虞烈,罗岷.基于TMS320C30的电磁轴承不平衡补偿方案.电子技术应用,2001,9:33-35.
    [43]Kang M S,Yoon W H.Acceleration Feedforward Control in Active Magnetic Bearing SystemSubject to Base Motion by Filtered-X LMS Algorithm.IEEE Transactions on Control SystemsTechnology,2006,14(1):134-140.
    [44] Johnson M E,Nascimento L P,Kasarda M,et al.The Effect of Actuator and Sensor Placementon the Active Control of Rotor Unbalance.Journal of Vibration and Acoustics,2003,125(2):365-373.
    [45]John W,Carlos H,Ken B,et al.Adaptive Auto-Balancing Control of Magnetic Bearings for anOptical Chopper.Proceedings of the American Control Conference,Arlington,USA,2001:1298-1303.
    [46]张德魁,江伟,赵鸿宾.磁悬浮轴承系统不平衡振动控制的方法.清华大学学报,2000,40(10):28-31.
    [47]Beale S,Shafai B,LaRocca P,et al.Adaptive Forced Balancing for Magnetic Bearing ControlSystems.Conference on Decision and Control,Tucson,USA,1992:3535-3539.
    [48]Shafai B,Beale S,Larocca P,et al.Magnetic Bearing Control Systems and Adaptive ForcedBalancing.Control Systems Magazine,1994,14(2):4-13.
    [49]Vahedforough E,Shafai B,Beale S.Estimation and Rejection of Unknown SinusoidalDisturbances Using a Generalized Adaptive Forced Balancing Method.Proceedings of theAmerican Control Conference,New York,USA,2007:3529-3534.
    [50]Tamisie V,Foni S,Lacour M,et al.Attenuation of Vibrations due to Unbalance of an ActiveMagnetic Bearings Milling Electro-spindle.CIRP Annals-manufacturing Technology,2001,50(1):255-258.
    [51]Kai Y L,Coppola V T,Bernstein D S.Adaptive Autocentering Control for an Active MagneticBearing Supporting a Rotor with Unknown Mass Imbalance.Control Systems Technology,IEEETransactions on,1996,4(5):587-597.
    [52]Shi J,Zmood R.The Direct Method for Adaptive Feed-forward Vibration Control of MagneticBearing Systems.7th International Conference on Control,Automation,Robotics and Vision,Singapore,Singapore,2002:675-680.
    [53]Shi J,Zmood R,L Qin.Synchronous Disturbance Attenuation in Magnetic Bearing SystemsUsing Adaptive Compensating Signals.Control Engineering Practice2004,12(3):283-290.
    [54]Fan Yihua,Chen Kuanyu,Weng Duanliang,et al.Design of Adaptive Compensator of ForceImbalance for a Single Active Magnetic Bearings Suspended Rotor System.Journal of AppliedPhysics,2008,103(935):1-3.
    [55]胡业发.磁悬浮转子不平衡补偿的研究.机械制造,2006,44(502):24-26.
    [56]李自新,景敏卿,虞烈,等.非线性电磁力作用下的转子不平衡响应和界限碰摩转速.振动工程学报,2000,14(1):76-80.
    [57]Jing Minqing,Li Zixin,Luo Min,et al.Unbalance Response and Touch-rubbing Threshold Speedof Rotor Subjected to Nonlinear Magnetic Forces.Chinese Journal of Mechanical Engineering,2008,21(2):1-4.
    [58]Nonami K,Fan Q F,Ueyama H.Unbalance Vibration Control of Magnetic Bearing SystemsUsing Adaptive Algorithm with Disturbance Frequency Estimation.JSME International Journal,Series C (Mechanical Systems, Machine Elements and Manufacturing),1998,41(2):663-672.
    [59]Nonami K,Liu Zihe.Adaptive Unbalance Vibration Control of Magnetic Bearing System UsingFrequency Estimation for Multiple Periodic Disturbances with Noise.International Conference onControl Applications,Kohala Coast,USA,1999:576-581.
    [60]上野哲,岡田養二.磁気軸受のスライディングモード制御:センサ測定時とセルフセンシングの比較.日本機械学会,講演論文集,1999:16-19.
    [61]Tian Hongqi,Nonami K.Discrete-time Sliding Mode Control of Flexible Rotor Magnetic BearingSystems.International Journal of Robust and Nonlinear Control,1996,6:609-632.
    [62]Rundell A E,Drakunov S,Decarlo R A.Rotational Motion Stabilization for a Vertical ShaftMagnetic Bearing with a Sliding Mode Controller and Observer.Conference on ControlApplications Dearborn,Dearborn,MI,USA,1996:662-667.
    [63]Costic B T,Queiroz M S,Dawson D N.A New Learning Control Approach to the ActiveMagnetic Bearing Benchmark System.American Control Conference,2000:28-30.
    [64]Chiacchiarini H G,Mandolesi P S.Unbalance Compensation for Active Magnetic Bearings UsingILC.Control Applications,Proceedings of the2001IEEE International Conference,Mexico City,Mexico,2001:5-7.
    [65]Long M L,Carroll J J,Mukundan R.Adaptive Control of Active Magnetic Bearings UnderUnknown Static Load Change and Unbalance.Proceedings of the1996IEEE InternationalConference on Control Applications Dearborn,Dearborn,USA,1996:15-18.
    [66]Taguchi N, Ishimatsu T, Woo S J, et al. Unbalance Compensation of MagneticBearings.International Conference on Industrial Electronics,Control and Instrumentation,Bologna,Italy,1994:2051-2056.
    [67]Burrows C R, Sahinkaya M N. Vibration Control of a Multi-mode Rotor-bearingSystem.Proceedings of the Royal Society London,1983,386(1790):77-94.
    [68]Burrows C R,Sahinkaya M N,Clements S.Active Vibration Control of Flexible Rotors: anExperimental and Theoretical Study.Proceedings of the Royal Society London,1989,422(1862):123-146.
    [69]Knospe C R.Robust Adaptive Control of Unbalance Response for a Flexible Rotor.MechanicalSystems, Machine Elements and Manufacturing,1997,40(4):599-606.
    [70]Knospe C R,Humphris R R,Maslen E H,ei al.Active Balancing of a High Speed Rotor inMagnetic Bearings.In Process of Rotor Dynamicst’92Conference,San Francisco,USA,1992:28-30.
    [71]Knospe C R,Hope R W,Fedigan S J,et al.Adaptive On-line Rotor Balancing Using DigitalControl.Magnetic Bearings, Magnetic Drives and Dry Gas Seals Conference and Exhibition,Virginia,USA,1993:153-164.
    [72]Knospe C R,Tamer S M,Fedigan S J.Robustness of Adaptive Rotor Vibration Control toStructured Uncertainty.Journal of Dynamic Systems,Measurement,and Control,1997,119(2):243-250.
    [73]Li Lichuan,Tadahiko S S,Zhang Xiaoyou,et al.A Simple Method for Rotation about the InertialAxis of a Rigid AMB Rotor.8th International Symposium on Magnetic Bearings,Mito,Japan,2002:405-410.
    [74]蒋科坚,祝长生.基于在线识别对转速不敏感的主动电磁轴承转子系统不平衡振动控制.中国电机工程学报,2010,30(6):93-99.
    [75]蒋科坚,祝长生.基于不平衡识别的主动电磁轴承转子系统自动平衡.振动工程学报,2009,22(6):559-564.
    [76]王晓刚,邓智泉,王晓琳,等.基于最优控制的转子不平衡补偿的研究.电子机械工程,2008,24(4):61-64.
    [77]张涛,朱熀秋.无轴承永磁同步电机转子质量不平衡补偿控制.中国电机工程学报,2007,27(15):33-37.
    [78]汤亮,陈义庆.不平衡振动自适应滤波控制研究.宇航学报,2007,28(6):1569-1574.
    [79]顾家柳.转子动力学.北京:国防工业出版社,1985.
    [80]Kosaki T,Sano M,Tanaka K.Model-based Fuzzy Control System Design for MagneticBearings.Proceedings of the Sixth IEEE International Conference on Fuzzy Systems,Barcelona,Spain,1997:895-899.
    [81]Chen Kuanyu,Tung P C,Tsai M T,et al.A self-tuning Fuzzy PID-type Controller Design forUnbalance Compensation in an Active Magnetic Bearing.Expert Systems with Applications,2009,36(4):8560-8570.
    [82]李书鹏.磁悬浮轴承系统的鲁棒H∞控制研究,[硕士学位论文].南京:南京航空航天大学,2007.
    [83]Sun Yanhua,Ho I S,Lie Yu.Dynamic Stiffnesses of Active Magnetic Thrust Bearing IncludingEddy-Current Effects.IEEE Transactions on Magnetics,2009,45(1):139-149.
    [84]胡海岩,孙久厚,陈淮海.机械振动与冲击.北京:航空工业出版社,1998.
    [85]韩军,高德平,胡绚,等.航空发动机双转子系统的拍振分析.航空学报,2007,28(6):1369-1373.
    [86]ISO1940-1:3(E),Mechanical Vibration-Balance Quality Requirements for Rotors in a Constant(Rigid) State.Switzerland,2003:14-19.
    [87]Hiroki S,Yoshitaka B,Toshikazu M,et al.Development of a Centrifugal Compressor Equippedwith Magnetic Bearings.Research and Development Kobe Steel Engineering Reports,1999,49(1):12-16.
    [88]Amati N,Brusa E.Vibration Condition Monitoring of Rotors on AMB Fed by InductionMotors.IEEE International Conference on Advanced Intelligent Mechatronics,Como,Italy,2001:750-756.
    [89]张志谊,胡芳,王俊芳,等.自适应振动控制中的输出饱和抑制.机械工程学报,2009,45(9):41-45.
    [90]任磊,王永良.雷达抗窄带通信干扰的频域自适应算法及实现.空军雷达学院学报,2003,17(4):13-15.
    [91]马广富,刘亚秋,姜雪原.基于DWT/LMS直交自适应算法的非线性系统辨识.哈尔滨工业大学学报,2004,36(3):302-306.
    [92]张家琦,葛宁.联合CMA+DDLMS盲均衡算法.清华大学学报,2009,26(39):1681-1683.
    [93]Widrow B,McCool J,Ball M.The Complex LMS Algorithm.Proceedings of the IEEE,1975,63(4):719-720.
    [94]Feuer A,Weinstein E.Convergence Analysis of LMS Filters with Uncorrelated GaussianData.IEEE Transactions on Acoustics,Speech and Signal Process,1985,33(1):222-229.
    [95]沈福民.自适应信号处理.西安:西安电子科技大学出版社,2001.
    [96]Ghogho M,Ibnkahla M.Analytic Behavior of the LMS Adaptive Line Enhancer for SinusoidsCorrupted by Multiplicative and Additive Noise.IEEE Transactions on Signal Processing,1998,46(9):2386-2393.
    [97]Xiao Y,Tadokoro Y.LMS-based Notch Filter for the Estimation of Sinusoidal Signals inNoise.Signal Processing,1995,46(2):223-231.
    [98]Vaz C,Kong X,Thako N.An Adaptive Estimation of Periodic Signals Using a Fourier linearCombiner.IEEE Transactions on Signal Processing,1994,42(1):1-10.
    [99]胡松涛.自动控制原理.北京:科学出版社,2001.
    [100]Sabirin C R,Binder A,Popa D D,et al.Modeling and Digital Control of an Active MagneticBearing System. Revue Roumaine des Sciences Techniques, Serie Electrotechnique etEnergetique,2007,52(2):157-81.
    [101]高辉,徐龙祥.基于LMS算法的磁悬浮轴承系统振动补偿.振动工程学报,2009,22(6):583-588.
    [102]Matsumura F,Namerikawa T.Application of Gain Scheduled H∞Robust Controller to aMagnetic Bearing.IEEE Transactions on Control System Technology,1996,9(5):484-492.
    [103]Knospe C R,Tamer S M,Fedigan S J.Robustness of Adaptive Rotor Vibration Control toStructured Uncertainties.Journal of Dynamic Systems,Measurement and Control,1997,119(2):243-250.
    [104]Woo J S,Min S P.A Complementary Pair LMS Algorithm for Adaptive Filtering.Acoustics,Speech,and Signal Processing,1998,E81-A(7):1493-1497.
    [105]Park D J.New Performance Function and Variable Step Size LMS Algorithm Derived by Karniand Zeng.Electronics Letters,1991,27(23):2182-2183.
    [106]Douglas S C,Meng T H.Normalized Data Nonlinearities for LMS Adaptation.IEEETransactions on Signal Processing,1994,42(6):1352-65.
    [107]Ramadan Z,Poularikas A.Performance Analysis of a New Variable Step-size LMS Algorithmwith Error Nonlinearities.Proceedings of the Annual Southeastern Symposium on SystemTheory,Proceedings of the Thirty-Sixth Southeastern Symposium,Atlanta,USA,2004:384-388.
    [108]Beaven R W,Wright M T,Seaward D R.Weighting Function Selection in the H∞DesignProcess.Control Engineering,1996,4(5):625-633.
    [109]吴旭东,解学书.H∞鲁棒控制中的加权阵选择.清华大学学报,1997,37(1):27-30.
    [110]Tsai M C,Geddes E J M,Postlethwaite I.Pole-zero Cancellations and Closed-loop Propertiesof an H∞Mixed Sensitivity Design Problem.Automatic,1992,28(3):519-530.
    [111]孙明轩,黄宝健.迭代学习控制.北京:国防工业出版社,1999.
    [112]Jung H M, Tae Y D, Myung J C. An Iterative Learning Controls Scheme forManipulators.Intelligent Robots and Systems,Proceedings of the1997IEEE/RSJ InternationalConference,New York,USA,1997:759-765.
    [113]Brian E,Lee H C,Douglas A,et al.Combined H-feedback Control and Iterative LearningControl Design with Application to Nanopositioning Systems.IEEE Transactions on ControlSystem Technology.2010,18(2):336-351.
    [114]魏北平.磁悬浮轴承转子现场动平衡研究,[硕士学位论文].南京:南京航空航天大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700