旋转柔性叶片系统动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的中心刚体-柔性叶片系统是一个刚柔耦合的柔性多体系统,它具有时变、高度耦合、高度非线性的特征。它在航空航天器、高速车辆、操作机械臂、机器人、复杂机构等领域有着广泛的应用。
     首先,对于中心刚体-柔性叶片所组成的刚柔耦合系统,在轴向变形中考虑了由于横向变形所引起的轴向缩短,应用哈密顿原理,得到了包含动力刚化项的刚柔耦合动力学方程组。之后,利用假设模态法把柔性叶片的变形离散化,得到考虑了二阶耦合项离散的一次近似耦合动力学方程组。若不考虑二阶耦合项,则是传统的零次近似耦合模型。在一次近似耦合模型中,如果忽略纵向变形,就得到了一次近似简化模型。在数值仿真分析中,考虑了两种情况:大范围运动已知的非惯性场中的动力学特性问题和大范围运动未知的刚柔耦合问题。仿真表明,一次近似耦合模型在各种转速下都能得到稳定的结果,而零次近似耦合模型在高速大范围运动下,将出现发散。通过对一次近似模型和一次近似简化模型的仿真结果的比较,表明一次近似简化模型可以代替一次近似模型进行动力学和控制方面的研究。
     其次,应用李亚普诺夫直接法,对刚柔耦合动力学运动控制方程进行稳定性分析。李亚普诺夫直接法能够研究线性和非线性方程的稳定问题,是一种普遍的稳定性分析方法。本文利用能量-动量矩法来构造李雅普诺夫函数,对传统的零次近似耦合模型和一次近似耦合模型进行了稳定性分析,并得出零次模型和一次模型之间应用的范围,结果表明,当旋转角速度大于叶片的基频时,零次近似模型将失效;而一次近似模型能在任意的角速度下保持稳定性。
     最后,把一次近似简化模型进行线性化,得到中心刚体-柔性叶片模型的线性动力学方程。利用最优跟踪控制原理,把线性模型设计的控制律来控制非线性的一次近似简化模型。因为所设计的控制器是叶片的模态坐标的函数,文中给出了一种从物理测量提取模态坐标的方法。文中研究了给定运动轨迹和给定位置两种情况的跟踪仿真,结果表明大范围运动能够到达目标,并有效地对振动进行了抑制。
In this paper, a flexible blade attached to a moving central rigid body undergoing large overall rotating motion is discussed. This is a coupling system about a rigid body and a flexible body. It not only changes with time but also has the highly coupled and nonlinear characteristics. This model has wide application in many areas, for example the airplane, spacecraft, high-speed vehicles, robotic arm, the robot areas and so forth.
     Firstly, the effects of the transverse deformation induced longitudinal deformation were also included in the whole longitudinal deformation. The dynamic equations including the dynamic stiffening terms was established by utilizing the Hamilton theory. The flexible blade is discretized by employing the approach of assumed modes method. This is called for the first-order approximation coupling (FOAC) model taking the second-order coupling quantity. If the second-order coupling quantity is neglect, the model is called for zero-order approximation coupling (ZOAC) model. The simplified first-order approximation coupling (SFOAC) model which neglects the effect of axial deformation of the blade is also studied. Two cases are considered in the simulations. One is the dynamics study in non-inertia system which the large motion of a system is known and the other is that the large motion of a system is unknown. The simulation indicated that the FOAC is stable in any angle velocity, but the ZOAC is emanative in high angle velocity. The SFOAC model is valid for the description of a rotating blade in dynamics and control by numerical comparisons made between the results SFOAC and FOAL.
     Then nonlinear stability of hub-leaf model in large overall motions is studied by Lyapunov direct method. Lyapunov direct method can be used in linear models and nonlinear models. This is a rife method in judging the stability. Utilizing the Energy-Momentum method, nonlinear stability of the equilibrium in the first-order approximation coupling (FOAL) model and the zero-order approximation coupling (ZOAC) model is analyzed. The results show that the ZOAC will lose stability when the rotating angular velocity is greater than its fundamental frequency. However, the FOAC can keep stable in any rotating angular velocity in the coupling dynamical model.
     At last, the linearization model is the linearization treatment for the SFOAC model. Active controller is designed using optimal tracking control theory. Since the controller designed is a function of modal coordinate of the blade, a modal filter used to extract tire modal coordinate from actual physical measurements is presented. Two cases are studied, the one is trajectory given, the other is angle given. By the optimal tracking controller, the desired motion target may be obtained and the vibration of flexible blade can be suppressed.
引文
1洪嘉振,蒋丽忠.动力刚化与多体系统刚-柔耦合动力学.计算力学学报.1999,16(3):295-301
    2 Sunada W & Dubowsky S. The Applications of Finite Element Methods to the Dynamic Analysis of Flexible Spatial and Co-Planar Linkage Systems. ASME Journal of Mechanical Design,1971,103:643-651
    3 Sunada W & Dubowsky S. On the Dynamic Analysis and Behaviour of Industrial Robotic Manipulators with Elastic Members. ASME Journal of Mechanisms,Transmissions & Automation in Design,1983,105:42-51
    4 Winfry. R C. Dynamics Analysis of Elastic Link Mechanisms by Reduction of Coordinates. ASME Journal of Engineering for Industry, 1972,94:577-582
    5 Winfry. R C. Elastic Link Mechanism Dynamics.ASME Journal of Engineering for Industry,1971,93:268-272
    6 Erdman.A.G., Sandor.G.N. Kineto-elasto dynamics-A review of the state of the art and trends, Mechanism and Machine Theory,1972,7:19-33
    7 Erdman.A.G., Sandor.G.N., Oakberg.R.G. A general method for kineto -elasto dynamics analysis of mechanisms,ASME Journal of Engineering for Industry,1974,94:1193-1205
    8 Meirovitch L & Nelson D A. On the High-Speed Motion of Satellite Containing Elastic Parts. AIAA Journal of Spaeecraft & Rockets,1966. 3(11):1597-1602
    9 Likins P W. Finite Element Appendage Equations for Hybrid Coordinate Dynamic Analysis.Journal Solids & Structures,1972,8:709-731
    10 Simo J C & Quoc L V. On the Dynamics of Flexible Beams Under Large Overall Motions-The Planar Case: Part-Ⅰ. ASME Journal of Applied Mechanics,1986,53:849-854
    11 Simo J C & Quoc L V.On the Dynamics of Flexible Beams Under Large Overall Motions-The Planar Case: Part-Ⅱ.ASME Journal of Applied Mechanics,1986,53:855-863
    12 Simo J C. A Finite Strain Beam Formulation: The Three DimensionalDynamic Problem-Part I. Computer Methods in Applied Mechanics & Engineering,1985,49(1):55-70
    13 Simo J C & Quoc L V.A. Three-Dimension Finite-Strain Rod Model Part2:Computational Aspects Computer Methods in Applied Mechanics & Engineering,1986,58:79-116
    14 Shabana A.A., Chang C. W. Connection Forces in Deformable Multibody Dynamics. Computers & Structures,1989,33(1):307-318
    15 Shabana A.A. Constrained Motion of Deformable Bodies. International Journal for Numerical Methods in Engineering,1991,32:1813-1831
    16 Shabana A.A. Flexible multibody dynamics: review of past and recent developments. Multibody System Dynamics,1997,1(1):189-222
    17 Escalona J.L., Hussien H. A., Shabana A. A. Application of the absolute nodal co-ordinate formulation to multibody system dynamics. Journal of Sound and Vibration,1998,214(5):833-851
    18 Kane T R, Ryan R R & Banerjee A K.Dynamics of a Cantilever Beam Attached to a Moving Base. Journal of Guidance,Control and Dynamics.1987, 10(2): 139-151
    19 Simo J C & Quoc L V. On the Dynamics in Space of Rods Undergoing Large Motions: A Geometrical Exact Approach. Computer Method Applied Mechanics & Engineering,1988,66:125-161
    20 Simo J C & Quoc L V. The Role of Non-linear Theories in Transient Dynamics Analysis of Flexible Structures. Journal of Sound and Vibration,1987,119(3):487-508
    21 Banerjee A K & Dickens J M. Dynamics of an Arbitrary Flexible Body in Large Rotation and Translation. Journal of Guidance, Control and Dynamics,1990,13(2):221-227
    22 Banerjee A K & Lemak M K. Multi-Flexible Body Dynamics Capturing Motion-Induced Stiffness. Journal of Applied Mechanics,1991,58: 766 -775
    23 Banerjee A K. Block-Diagonal Equations for Multibody Elastodynamics with Geometric Stifness and Constraints. Journal of Guidance, Control and Dynamics,1994,16(6):1092-1100
    24 Ryu Jeha, Kim Sang-Sup, Kim Sung-Soo. A General Approach to Stress Stifening Efects on Flexible Multibody Dynamic Systems. Mech. Strut &Mach.,1994,22(2):157-180
    25 Likins P W., Barbera F.J. and Baddeley V. Mathematical Modeling of Spinning Elastic Bodies for Modal Analysis. AIAA Journal,1973,11:1251 -1258
    26 Laurenson R.M. Influence of Mass Representation on the Equations of Motion for Rotating Structures. AIAA Journal.1985,23:1995-1998
    27 Wallrapp O & Schwertassek R. Representation of Geometric Stifening in Multi-body System Simulation.International Journal for Numerical Methods in Engineering,1991,32:1 833-1850
    28 Wallrapp O. Linearized Flexible Multi-body Dynamics Including Geometric Stifening Efects. Mech. Strut & Mach.,1991,19:385-409
    29 Banerjee A K & Kane T R. Dynamics of a Plate in Large overall Motion. Journal of Applied Mechanics,1989.56:887-892
    30 Haering W J & Ryan R R. New Formulation for Flexible Beams Undergoing Large Overall Motions. Journal of Guidance, Control and Dynamics,1994, 17(1):76-83
    31 Meirovitch L. Computational Methods in Structural Dynamics. The Netherlands: Alohen aan den Rijn:Sijthoff & Noordhof,1980
    32 Yigit A,Scot R.A & Ulsoy A.G. Flexural motion of a radially rotating beam attached to a rigid body. Journal of Sound and Vibration,1988, 121(2): 201-210
    33 Al-Bedoor B O, Almusallam A A. Dynamics of flexible-link and flexible-joint manipulator carrying a payload with rotary inertia. Mechanism and Machine Theory,2000,35:785-820
    34 Wu S C & Haug E J. Geometric nonlinear sub-structuring for dynamics of flexible mechanical system.International Journal for Numerical Methods in Engineering,1988,26:2211-2226
    35 Hopkins A S & Likins P W. Analysis of Structures with Rotating Flexible Substructures. Proceeding of AIAA/ASME/ASCE/AHS 28th Structural Dynamics and Materials Conference, AIAA New York,1987:944-954
    36 Liu A Q & Liew K M. Non-Linear Substructures Approach for Dynamic Analysis of Rigid-Flexible Multi-body System. Computer Methods in Applied Mechanics & Engineering,1994,114:379-396
    37 Husion R L. Multi-body Dynamics Including the Effects of Flexibility and Compliance. Computers &Structures,1981,14(5):443-451
    38 Huston R L and Kamman J W. Validation of finite segment cable models. Computers & Structures,1982,15:653-660
    39 Amirouche F M L. Dynamic analysis of tree-like structures undergoing large motions a finite segment approach. Engineering Analysis,1986, 3:111-117
    40 Amirouche F M L & Huston R L. Dynamics of Large Constrained Flexible Structures. Journal of Dynamic Systems, Measurement and Control,1988, 110(1):78-83
    41 Connelly J D & Huston R L, The Dynamics of Flexible Multi-body System: A Finite Segment Approach-ⅠTheoretical Aspects. Computers & Structures,1994,50:255-258
    42 Connelly J D & Huston R L. The Dynamics of Flexible Multi-body System: A Finite Segment Approach-ⅡExample Problems. Computers & Structures, 1994,50:259-262
    43蒋丽忠,洪嘉振,赵跃宇.作大范围运动弹性梁刚-柔耦合动力学建模.计算力学学报, 2002,19(1):12-15
    44杨辉,洪嘉振,余征跃.两种刚柔耦合动力学模型的对比研究.上海交通大学学报, 2002,36(11)
    45杨辉,洪嘉振,余征跃.一类刚-柔耦合系统的模态特性与实验研究.2002,23(2):67-72
    46刘锦阳,洪嘉振.柔性梁的刚-柔耦合动力学特性研究.振动工程学,2002,15(2),194-198
    47刘锦阳,洪嘉振.柔性体的刚-柔耦合动力学分析.固体力学学报,2002,23(2):159-166
    48洪嘉振,尤超蓝.刚柔藕合系统动力学研究进展.动力学与控制学报, 2004,2(2):1-6
    49蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究.力学学报,2005,37(1):48-56
    50膝悠优,蔡国平.具有附加质量的中心刚体-柔性梁的频率特性.力学季刊2005,26(4):623-628
    51李彬,刘锦阳.大变形柔性梁系统的绝对坐标方法.上海交通大学学报.2005,39(5):827-831
    52蔡国平,洪嘉振.旋转运动柔性悬臂梁的动力特性及振动主动控制研究.机械科学与技术, 2005,24(1):70-78
    53肖建强,章定国.空间运动体上梁的三维动力学建模和仿真.空间科学学报,2006,28(3): 227-234
    54章定国,朱志远.一类刚柔耦合系统的动力刚化分析.南京理工大学学,2006,30(1):21-33
    55刘锦阳,李彬,洪嘉振.作大范围空间运动柔性梁的刚-柔耦合动力学,力学学报,2006,38(2):276-281
    56赵行明,滕光蓉,段发阶等.叶间定时旋转叶片振动测量新技术.测控技术.2006,25(3):13-16
    57葛永庆,刘江,安连锁.汽轮机叶片振动非接触测量技术综述.华北电力大学学报,2006,33(3)
    58赵跃宇,康厚军,冯锐等.曲线梁研究进展.力学进展,2006,36(2):170-186
    59李艳辉,杨智春,黄小光.一种分析旋转梁振动的梁柱有限元.机械科学与技术,2005,24(3):299-302
    60李德源,信伟平,张婕敏.变分渐近梁截面分析方法在叶片分析中的应用.汕头大学学报(自然科学版),2005,20(2):56-62
    61李德源,叶枝全,包能胜等.风力机旋转风轮振动模态分析,太阳能学报,2004,25(1):72-77
    62李德源,叶枝全,陈严.风力机旋转叶片的多体动力学数值分析.太阳能学报,2005,26(4):474-481
    63 Bailieul J. Levi M. Rotational Elastic Dynamics. Physica,1987, 27D: 43-62
    64 Krishnaprasad P S. Marsdsen J E. Hamiltonian Structures and Stabity for Rigid Bodies with Flexible Attachments. Arch. for Ratio Mech.Anal,1987,98:73-91
    65肖世福,陈滨.一类刚-柔耦合系统动力学.力学学报.1997,29(4):23-29
    66蒋丽忠,洪嘉振.作大范围运动弹性梁的非线性稳定性分析.振动与冲击,2001,20(1),63-65
    67李智斌,王照林,王天舒等.平面型刚柔耦合系统几何非线性动力学建模[J].力学学报,2002,34(增刊):79-84
    68李智斌,王照林,李俊峰.带柔性伸缩附件航天器几何非线性振动稳定性.宇航学报,2004,25(2),142-145
    69李智斌,王照林,李俊峰等.刚柔耦合系统的几何非线性运动稳定性.清华大学学报(自然科学版).2004. 44 (5)
    70程耀,陆启韶.一类刚-柔耦合系统平面稳态运动的稳定性.力学学报,2005,37(6),750-754
    71冯志华,胡海岩.轴向基础窄带随机激励柔性梁的稳定性与Hopf分岔.振动工程学报.2006.19(2)
    72黄文虎,王心清,张景绘,郑钢铁.航天柔性结构振动控制若干进展.力学进展,1997,27(1):5-18
    73 MeirovitchL.DynamicsandControlofStructures.NewYork:JohnWoley&Sons,1990
    74 Meirovitch L and Baruh H. Control of self-adjoint distributed-parameter systems, Journal of Guidance and Control, 1982,5(1):60-66
    75 Wang D A and Huang Y M. Modalspace vibration control of a beam by using the feed forward control loops, International Journal of Mechanical Science,2002,44(1):1-19
    76 Schafer B E and Holzach H. Experimental research on flexible beam modal control, Journal of Guidance, Control and Dy-namics,1985,8(5):597-604
    77 BazAandPohS.Experimentalimplementationofthemodi-fiedindependentmodalspacecontrolmethod,JournalofSoundandVibration,1990,139(1):133-149
    78刘福强,岳林.基于加速度测量的柔性智能桁架结构振动主动控制实验研究[J].宇航学报,2001,22(3):20-25
    79胡海岩.振动主动控制中的时滞动力学问题[J].振动工程学报, 1997, 10(3): 273 -279
    80 Cai G P and Hong J Z. Optimal control method with time de-lay in control. Journal of Sound and Vibration, 2002, 251(3):383-394
    81 J. Fei, G. Song. Adaptive vibration suppression of a smart flexible beam using direct model reference adaptive control Modeling, Signal Processing, and Control. 2004. 5383
    82 S. V. Gosavi, A. G. Kelkar. Modelling, Identification, and Passivity-Based Robust Control of Piezo-actuated Flexible Beam Journal of Vibration and Acoustics. 2004, 261(126)
    83 Tao Tao, Kenneth D. Frampton. Distributed Vibration Control with Sensor Networks Modeling, Signal Processing, and Control,2006, 6166
    84 Darren W. Rowen, Mark A. Hopkins. H-Infinity controller design for structural damping. Journal of Damping and Isolation, 2006. 6169,
    85蔡国平,洪嘉振.柔性梁结构的时滞主动控制.宇航学报.2003.24(5)
    86蔡国平,洪嘉振.中心刚体柔性悬臂梁系统的位置主动控制[J].宇航学报,2004,25(6)
    87蔡国平,滕悠优,洪嘉振.中心刚体-柔性梁系统的旋转运动控制.宇航学报.2005.26(4)
    88王锋,唐国金,李道奎.带刚性基柔性附件振动鲁棒控制.动力学与控制学.2006.4(1)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700