双连杆柔性机械臂的主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,柔性构件在工程机构中大量使用。另外,机构运行速度加快,运行精度的要求也越来越高,由此构成所谓的柔性多体动力学系统或刚柔耦合动力学系统,柔性机械臂是这类系统的典型代表之一。柔性机械臂在作大范围刚体运动的同时,也将产生自身的小变形弹性振动,这两种运动相互耦合和相互影响,系统的动力学行为较为复杂,具有强非线性、强耦合、时变等特点。对于单杆柔性机械臂,系统中只存在单一的刚柔耦合,即系统大范围运动与柔性手臂弹性振动之间的耦合,动力学建模与控制相对来讲较为容易。而对于多杆柔性机械臂,系统中不但存在刚柔耦合,还存在各个柔性杆件弹性振动之间的柔柔耦合,动力学建模与控制难度较大。因为柔性机械臂在航空航天、机器人等许多高科技领域有着强烈的工程应用背景,因此对其动力学建模与控制的研究具有重要的理论意义和实际应用价值。
     另一方面,压电材料由于具有良好的机电耦合特性,既可以作为传感器,也可以作为作动器,在结构振动主动控制领域得到了广泛应用。压电作动器通过粘贴或填埋方式与结构结为一体,因此非常适用于存在大范围运动的柔性构件的振动抑制。
     本文在国家自然科学基金(编号:10772112,10472065)、教育部重点项目(编号:107043)、教育部博士点基金(编号:20070248032)和上海市教委科研重点项目(编号:09ZZ17)的资助下,开展压电双杆柔性机械臂的动力学建模与主动控制的研究,主要内容和成果总结如下:
     (1)在大量阅读文献的基础上,较为全面地综述了柔性机械臂的研究进展。
     (2)研究了压电双杆柔性机械臂的动力学建模问题,并且进行了系统大范围已知和未知两种情况下的动力学仿真,通过仿真揭示对机械臂系统进行主动控制的必要性。该部分的工作是为后续主动控制的设计提供模型保证。
     (3)研究了双杆柔性机械臂的线性最优控制问题。研究中,只采用两个杆件关节扭矩进行系统的位置主动控制,不采用压电作动器。研究结果表明:关节扭矩控制律能够使得系统到达指定位置,并可抑制柔性杆件的弹性振动,但是在系统到达指定位置的时间指标上效果欠佳。
     (4)研究了压电柔性双杆机械臂的非线性控制问题,进行了压电控制律和关节扭矩控制律的综合设计。关节扭矩用于保证系统的大范围刚体运动,压电作动器用于控制柔性杆件的弹性变形,综合设计这两个控制律,以实现系统的轨迹跟踪与振动控制。研究结果表明:非线性控制方法不但可以使得系统跟踪预期的理想轨迹,柔性杆件的弹性振动可以同时得到抑制,而且在到达时间指标上具有良好性能。
     (5)考虑到PD控制方法在实际工程中的大量使用,研究了压电柔性双杆机械臂的模糊PD控制问题。研究中,使用模糊控制器对PD控制的控制参数进行在线调整,形成专家模糊PD控制器,并且与常规PD控制方法的效果进行了对比研究。研究结果表明:在PD控制的增益参数取值较好时,常规PD控制方法与模糊PD控制方法皆可以取得良好的控制效果,但是模糊PD控制方法的控制代价小于常规PD控制方法;当PD控制增益参数取值不理想时,常规PD控制方法的控制效果较差,有可能导致系统响应出现发散,而模糊PD控制方法仍能取得满意的控制效果。模糊控制器能够有效地在线调节PD控制中的增益参数,使之达到良好的控制效果,减少了常规PD控制方法繁冗的参数调节。
     柔性机械臂的动力学与控制问题是一个极具挑战性的研究课题,许多方面还需要进一步深入研究与探讨,因此在论文的最后,对本文的研究工作和成果进行了全面总结,对未来的研究问题进行了展望。
With the development of science and technology, lightweight and flexible components have been widely used in mechanism. Meanwhile, the requirements on operating speed and precision of mechanism become higher and higher. Research in this area comes to the so-called flexible multibody dynamic system or rigid-flexible coupling dynamic system. The flexible manipulator is a typical application in this area. When the manipulator moves with a large-scale movement, elastic vibration of flexible arm will occur synchronously. These two motions are coupled and affect each other, which results in the complicated dynamics of system such as strong nonlinearity and coupling etc. For the flexible one-link manipulator, single rigid-flexible coupling exists in the system, i.e., the coupling of large motion of the system with the elastic vibration of flexible arm, so the problem of dynamic modeling and control for the system is relatively easier. But for the flexible multi-link manipulator, the system exist not only the rigid-flexible coupling but also the flexible-flexible coupling between elastic vibrations of each flexible arms, so the work of modeling and control for the system is very difficult. Since flexible manipulator system has lots of applications in high tech engineering areas such as aerospace, aviation and robot, it is of importance, both theoretically and practically, to study its dynamic modeling and active control method.
     On the other hand, with good mechanical-electric coupling quality, piezoelectric material can make both a sensor and an actuator, which explains its wide application in active vibration control systems. Piezoelectric actuator can make part of a component by means of either adhering or embedding, which is useful for vibration control of flexible components with large-scale movement.
     This dissertation studies the dynamic modeling and active control of flexible two-link manipulator. This research was funded by the National Natural Science Foundation of China (Grant Nos. 10772112 and 10472065), the Key Project of Ministry of Education of China (Grant No. 107043), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20070248032) and the Key Project of Education Committee of Shanghai (Grant No. 09ZZ17). The main research and achievements are as follows:
     (1) The dynamic modeling theories and vibration control of flexible manipulators are comprehensively reviewed. The research extent and contents of this dissertation are put forward.
     (2) The dynamic modeling of flexible two-link manipulator is studied. Numerical simulations with known and unknown large motion of the system are carried out to demonstrate the necessity of active control for the system. The study in this section provides dynamic model for the following control studies for the system.
     (3) This dissertation discusses the linear optimal control of flexible manipulator, where the two joint torques are only used to drive the system and PZT actuator is not used. Simulation results indicate that, with linear optimal controller, the flexible arm can reach an expected position with suppressed vibration, however the time taken to position is longer than expected.
     (4) Nonlinear control strategy of the flexible manipulator is studied in this dissertation. The PZT controller and the joint controller are synthetically designed, where the joint controller is used to guarantee the large motion of the system and the PZT controller is used to control the vibration of the two flexible arms. Simulation results indicate that, nonlinear control strategy works well with precise positioning, suppression of vibration and time control.
     (5) Due to the wide applications of PD control strategy in practical engineering, fuzzy PD control method is studied for the flexible two-link manipulator in this dissertation. Fuzzy controller is used to adjust the control weighting coefficient of PD strategy to compose the expert fuzzy PD controller. The fuzzy PD controller is compared with the classical PD controller. Simulation results indicate that, when the control weighting coefficient is better chosen, the classical PD controller and the fuzzy PD controller can both achieve better control effectiveness, but the control cost of the classical PD controller is larger than that of the fuzzy PD controller. When the control weighting coefficient is worse chosen, the control effectiveness of the classical PD controller becomes worse and instability of control system may possibly occur, whereas the fuzzy PD controller may also achieve a better control effectiveness. This indicates that the fuzzy controller may effectively adjust the control weighting coefficient of PD strategy to obtain a better control effectiveness, it may reduce the parameter adjusting work using the classical PD strategy.
     The topic of dynamic modeling and control of the piezoelectric flexible manipulator is challenging both in mechanics and in control engineering, where many aspects need further study and more efforts. At conclusion, a summary of work done in this dissertation is given and some problems of interest are also brought forward for future research.
引文
[1]杨辉.刚-柔耦合动力系统的建模理论与实验研究.上海交通大学博士学位论文, 2002
    [2]刘锦阳.刚-柔耦合动力学建模理论研究.上海交通大学博士学位论文, 2000
    [3]蒋丽忠.柔性多体系统刚-柔耦合动力学建模理论研究.上海交通大学博士学位论文, 1999
    [4]杨辉,洪嘉振,余征跃.刚柔耦合建模理论的实验验证.力学学报, 2003, 35(2): 253-256
    [5]蔡国平,洪嘉振.旋转运动悬臂梁的假设模态方法研究.力学学报, 2005, 37(1): 48-56
    [6] Dwivedy SK and Eberhard P. Dynamic analysis of flexible manipulators, a literature review. Mechanism and Machine Theory, 2006, 41(7): 749-777
    [7]华卫江,章定国.柔性机器人系统碰撞动力学建模.机械工程学报, 2007, 43(12): 222-228
    [8]章定国,周胜丰.柔性杆柔性铰机器人动力学分析.应用数学和力学, 2006, 27(5): 615-623
    [9] Lee SH and Lee CW. Hybrid control scheme for robust tracking of two-link flexible manipulator. Journal of Intelligent and Robotic Systems, 2001, 32(4): 389-410
    [10] Benosman M, Vey GL and Lanari LA. Rest-to-rest motion for planar multi link flexible manipulator through backward recursion. ASME Journal of Dynamic Systems Measurement and Control, 2004, 126: 115-123
    [11] Zohoor H and Khorsandijou SM. Dynamic model of a flying manipulator with two highly flexible links. Applied Mathematical Modeling, 2008, 32(10): 2117-2132
    [12] Zhang N, Feng Y and Yu X. Optimization of terminal sliding control for two-link flexible manipulators, IEEE 30th Annual Conference of Industrial Electronics Society 2004, 1318-1322
    [13] Kim HK, Choi SB and Thompson BS. Compliant control of a two-link flexible manipulator featuring piezoelectric actuators. Mechanism and Machine Theory, 2001, 36(3): 411-424
    [14]张承龙,王从庆.空间柔性双臂机器人的动力学建模及控制.南京理工大学学报, 2005, 29(增刊): 70-72
    [15]王从庆,张承龙.自由浮动柔性双臂空间机器人系统动力学建模与抑振控制.机械科学与技术, 2007, 26(2): 192-196
    [16]王从庆,张承龙.自由浮动柔性双臂空间机器人系统的动力学控制.机械工程学报, 2007, 43(10): 196-200
    [17]洪在地,贠超,陈力.柔性臂漂浮基空间机器人建模与轨迹跟踪控制.机器人, 2007, 29(1): 92-96
    [18] Giovagnoni M. Linear decoupled models for a slewing beam undergoing large rotation. Journal of Sound and Vibration, 1993, 164(3): 485-501
    [19] Choi Seung-Bok and Shin Ho-Cheol. A hybrid actuator scheme for robust position control of a flexible single-link manipulator. Journal of Robotic Systems, 1996, 13(6): 359-370
    [20] Meirovitch L. Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates. Journal of Guidance, Control and Dynamics, 1990, 14(5): 1374-1383
    [21] Lee JD and Wang BL. Optimal control of a flexible robot arm. Computers and Structures, 1988, 29(3): 459-467
    [22] Lee JD and Wang BL. Dynamic equations for a two-link flexible robot arm. Computers and Structures, 1988, 29(3): 469-477
    [23] Lee JD. Application of optimal control theory to flexible robotic manipulators. Robotics and Computer Integrated Manufacturing, 1990, 7 (3/4): 327-355
    [24] Li YC, Liu GJ, Hong T and Liu K. Robust control of a two-link manipulator with neural network based quasi-static deflection compensation. Proceedings of the American Control Conference, Denver, CO, 2003, 5258-5263
    [25]李元春,陆佑方,唐保健.双连杆柔性臂轨迹跟踪的鲁棒控制.自动化学报, 1999, 25(3): 330-336
    [26]宋轶民,余跃庆,张策,马金盛.柔性机器人动力学分析与振动控制研究综述.机械设计, 2003, 20(4): 1-5
    [27] Simo JC and Vu-Quoc L. On the dynamics in space of rods undergoing large motions, the planar case: part I-II. ASME Transactions on Journal of Applied Mechanics, 1986, 53: 849-863
    [28] Avello A and Jalon J. Dynamics of flexible multibody systems using Cartesia coordinates and large displacement theory. International Journal for Numerical Methods in Engineering, 1991, 32: 1543-1563
    [29]董兴建.高速旋转压电柔性梁的动力学分析与控制.上海交通大学博士学位论文, 2006
    [30] Ying W and Huston RL. A lumped parameter method in the nonlinear analysis of flexible multibody systems. Computers and Structures, 1994, 50: 421-432
    [31]张大均.柔性多体系统动力学理论方法与实验研究.天津大学博士学位论文, 1991
    [32] Gamarra-Rosado VO and Yuhara EAO. Dynamic modeling and simulation of a flexible robotic manipulator. Robotica, 1999, 17(5): 523-528
    [33] Dai YQ, Loukianov AA and Uchiyama MA. Hybrid numerical method for solving the inverse kinematics of a class of spatial flexible manipulators. Proceedings of the IEEE InternationalConference on Robotics and Automation, 1997, 3449-3454
    [34]刘明治,刘春霞.柔性机械臂动力学建模和控制研究.力学进展, 2001, 31(1): 1-8
    [35] Book WJ. Modeling design and control of flexible manipulator arms. PhD Dissertation of MIT, 1974
    [36]王树新,员今天,石菊荣,刘又午.柔性机械臂建模理论与控制方法研究综述.机器人, 2002, 24(1): 86-91
    [37] Lane JS and Dickerson SL. Contribution of passive damping to the control of flexible manipulators. Proceedings of the International Computers in Engineering Conference, 1984, 175-180
    [38] Alberts TE, Dickerson SL and Book WJ. On the transfer function modeling of flexible structures with distributed damping. ASME DSC, 1986, 3: 23-30
    [39]范子杰.机器人弹性手臂的动力学分析及其粘弹性大阻尼控制的研究.西安交通大学博士学位论文, 1989
    [40]黄文虎,王心清,张景绘,郑钢铁.航天柔性结构振动控制的若干新进展.力学进展, 1997, 27: 5-18
    [41]张景绘,李新民.主、被动振动控制一体化理论及技术(Ⅲ)—杂交阻尼.强度与环境, 2004, 31: 51-64
    [42] Cannon RH and Schmitz E. Initial experiments on end-point control of a flexible one-link robot. International Journal of Robotics Research, 1984, 3(3): 62-75
    [43] Cai Guo-Ping and Lim CW. Active control of a flexible hub-beam system using optimal tracking control method. International Journal of Mechanical Sciences, 2006, 48(10): 1150-1162
    [44] Cai Guo-Ping, Hong Jia-Zhen and Simon X Yang. Model study and active control of a rotating flexible cantilever beam. International Journal of Mechanical Sciences, 2004, 46(6): 871-889
    [45]蔡国平,李琳,洪嘉振.中心刚体-柔性梁系统的最优跟踪控制.力学学报, 2006, 38(1): 97-105
    [46]蔡国平,滕悠优,洪嘉振.中心刚体-柔性梁系统的旋转运动控制.宇航学报, 2005, 26(4): 487-490
    [47]蔡国平,洪嘉振.柔性机械臂的位置主动控制.机械科学与技术, 2005, 24(10): 1178-1180
    [48] Cai Guo-Ping and Lim CW. Optimal tracking control of flexible hub-beam system with time delay. Multibody System Dynamics, 2006, 16(4): 331-350
    [49]滕悠优,蔡国平.柔性机械臂的时滞最优跟踪控制.应用力学学报, 2007, 24(3): 399-403
    [50]陈龙祥,蔡国平.旋转运动柔性梁的时滞主动控制实验研究.力学学报, 2008, 40(4): 520-527
    [51] Bayo E. Inverse dynamics and kinematics of multilink elastic robots: an iterative frequency domain approach. The International Journal of Robotic Research, 1989, 8: 49-62
    [52] Lucibello P. Output tracking for a nonlinear flexible arm. ASME Transactions on Journal of Dynamic Systems, Measurement and Control, 1993, 115: 75-85
    [53] Xia JZ and Menq CH. Real time estimation of elastic deformation for end-point tracking control of flexible two-link manipulators. ASME Transactions on Journal of Dynamic Systems, Measurement and Control, 1993, 115(3): 385-393
    [54] Moallem M, Patel RV and Khorasani K. An observer based inverse dynamics control strategy for tip position tracking of flexible multi-link manipulators. Proceedings of the IEEE Conference on Decision and Control, 1996, 4112-4117
    [55] Moallem M, Patel RV and Khorasani K. Flexible-Link Robot Manipulators: Control Techniques and Structural Design. Springer-Verlag, London, 2000
    [56] Moallem M, Patel RV and Khorasani K. Nonlinear tip position tracking control of a flexible-link manipulator: theory and experiments. Automatica, 2001, 37(11): 1825-1834
    [57] Ozen F. New nonlinear stabilizing control law for flexible-link manipulators. Proceedings of the Japan/USA Symposium on Flexible-link manipulators, 1996, 291-298
    [58] Kelly R, Omega R and Ailton A. Global regulation of Flexible joint robots using approximate differentiation. IEEE Transaction on Automation and Control, 1994, 36(6): 1222-1224
    [59] Yigit AS. On the stability of PD control for a two-link rigid-flexible manipulator. ASME Journal of Dynamics System, Measurement and Control, 1994, 116(2): 208-215
    [60] Xu BO, Fujimoto K and Hayakawa Y. Control of two-link flexible manipulators via generalized canonical transformation. IEEE Conference on Robotics, Automation and Mechatronics, 2004, 1: 107-112
    [61] Lin SH, Tosunoglu S and Tesar D. Control of a six-degree-of-freedom flexible industrial manipulator. IEEE Control Systems Magazine, 1991, 11(3): 24-30
    [62] Pieper JK. Optimal control of a flexible manipulator and controller order reduction. Optimal Control Applications & Methods, 1998, 19(5): 331-343
    [63] Lahdhiri T and ElMaraghy HA. Optimal nonlinear position tracking control of a two-link flexible-joint robot manipulator. Experimental Robotics V Lecture Notes in Control and Information Sciences, 1998, 232: 503-514
    [64] Morris and Madani. Quadratic optimal control of a two-flexible-link robot manipulator. Robotica, 1998, 16: 97-108
    [65]戈新生,姜兵利,刘延柱.空间刚柔性机械臂动力学模型与轨迹跟踪控制.机械科学与技术, 1998, 17(7): 606-608
    [66]戈新生,崔玮,赵秋玲.刚柔性耦合机械臂轨迹跟踪与振动抑制.工程力学, 2005, 22(6): 188-191
    [67] Ingole AK and Bandyopadhyay B. Variable structure control application for flexible manipulators. Proceedings of the IEEE Conference on Control Applications, 1994, 2: 1311-1316
    [68] Li Y and Kang J. Combined robust control method for trajectory tracking of multi-link flexible manipulator. Modeling, Measurement and Control, 1998, 65(2): 27-37
    [69]樊晓平,徐建闽,毛宗源,周其节.受限柔性机器人臂的鲁捧变结构混合位置/力控制.自动化学报, 2000, 26(2): 176-183
    [70]刘才山,王建明,阎绍泽,刘又午.滑模变结构控制在柔性机械臂中的应用.天津大学学报, 1999, 32(2): 244-247
    [71] Konno A, Uchiyama M and Murakami KYM. Vibration controllability of flexible manipulators. Proceedings of the IEEE International Conference on Robotics and Automation, 1994, 1: 308-314
    [72] Konno A, Uchiyama M and Murakami KYM. Configuration dependent vibration controllability of flexible-link manipulators. The International Journal of Robotics Research, 1997, 16 (4): 567-576
    [73] Yang JH, Lian FL and Fu LC. Nonlinear adaptive control for flexible-link manipulators. IEEE Transaction on Robotics and Automation, 1997, 13(1): 140-148
    [74] Lin Lih-chang and Yeh Sylin. A composite adaptive control with flexible quantity feedback for flexible-link manipulators. Journal of Robotic Systems, 1996, 13(5): 289-302
    [75] Cao WJ and Xu JX. Dynamic modeling and adaptive VSC of two-link flexible manipulator using a hybrid sliding surface. Proceedings of the IEEE Conference on Decision and Control, 2000, 5143-5148
    [76] Chen Y and Etimsahy AH. Hybrid adaptive control of two-link flexible manipulators grasping a payload. Proceedings of the IEEE Conference on Control Applications. 1995, 705-710
    [77]申铁龙. Hint控制理论及应用.北京:清华大学出版社, 1996
    [78] Song G and Cai L. New approach to robust position/force control of flexible-joint robotmanipulators. Journal of Robotic Systems, 1996, 13(7): 429-444
    [79] Bossert D and Ly U. Experimental comparison of robust reduced-order hybrid position and force optimization techniques for a two-link flexible manipulator. IEEE Conference on Control Applications, 1996, 982-987
    [80] Lee TH, Ge SS and Wang ZP. Adaptive robust controller design for multi-link flexible robots. Mechatronics, 2001, 11 (8): 951-967
    [81]孙富春,孙增圻.柔性连杆机器人的多速率神经网络混合控制器设计.控制与决策, 1997, 12 (增刊): 425-429
    [82] Lee JX and Vukovich G. Fuzzy control of a flexible link manipulator. Proceedings of the American Control Conference, 1994, 1: 568-574
    [83] Moudgal VG, Passino KM and Yurkovich S. Rule-based control for a flexible-link robot. IEEE Transactions on Control System Techniques, 1994 , 2(4): 392-405
    [84] Greene K and Michael E. Indirect adaptive control of a two–link robot arm using regularization neural networks. Proceedings of the 1991 International Conference on Industrial Electronics, Control and Instrumentation , 1991: 252-258
    [85] Yesildirek A, Vandegrift MW and Lewis FL. A neural network controller for flexible-link robots. Journal of Intelligent and Robotics Systems, 1996, 17(4): 327-349
    [86] Talebi HA and Khorasani K. Neural network based control schemes for flexible-link manipulators: simulations and experiments. Neural Networks, 1998, 11(7-8): 1337-1357
    [87] Talebi HA and Khorasani K. Tip-position tracking for flexible-link manipulators using artificial neural networks: experimental results. IEEE International Conference on Neural Networks Conference Proceedings, 1998, 3(4-9): 2063-2068
    [88]韩猛.柔性臂的动力学及其轨迹跟踪.兰州理工大学硕士学位论文, 2008
    [89]王洪福,曲东升,孙立宁,祝宇虹.压电与声光, 2003, 25(3): 118-121
    [90] Tzou HS and Wan GC. Distributed structural dynamics control of flexible manipulators, part I-II. Computers and Structures, 1990, 35(6): 667-687
    [91] Moallem M, Kermani MR, Patel RV and Ostojic M. Flexible control of a positioning system using piezoelectric transducers. IEEE Transaction on Control Systems Technology, 2004, 12(5): 757-762
    [92] Choi SB, Thompson BS and Gandhi MV. Elastodynamic analysis and control of industrial robotic manipulators with piezoelectric material based elastic members. ASME Transactions on Journal of Mechanical Design, 1995, 117: 640-643
    [93] Gandhi MV, Thompson BS and Choi SB. Electro-rheological-fluid-based articulating robotic systems. ASME Transactions on Journal of Mechanisms, Transmissions and Automation in Design, 1989, 111(3): 328-336
    [94] Baz A, Iman K and Mccoy J. Active vibration control of flexible beams using shape memory actuators. Journal of sound and Vibration, 1990, 140(4): 431-456
    [95] Chen Q and Levy C. Active vibration control of elastic beam by means of shape memory alloy layers. Smart Materials and Structures, 1995, 4: 252-263
    [96]滕悠优.柔性机械臂的主动控制与实验研究.上海交通大学硕士学位论文, 2007
    [97]滕悠优,蔡国平.旋转运动柔性梁的压电质量和刚度效应.动力学与控制学报, 2008, 6(1): 22-25
    [98]邱志成,谢存禧,张洪华,吴宏鑫.压电柔性机械臂的主动振动控制研究.机器人, 2004, 26(1): 45-48
    [99]滕悠优,蔡国平.柔性机械臂的非线性主动控制.第11届全国非线性振动、非线性动力学及运动稳定性学术会议,石家庄, 2007, 5
    [100] Sun D, Mills JK, Shan JJ and Tso SK. A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics, 2004, 14(4): 381-401
    [101]王化详,张淑英.传感器原理及应用.天津:天津大学出版社, 1995
    [102]张福学,王丽坤.现代压电学(上册).北京:科学出版社, 2001
    [103]冯引安,谢昭莉,张元涛.基于模糊PD控制的电动助力转向系统建模及仿真分析.轻型汽车技术, 2006, 7: 14-17
    [104]李二超,李炜,王洪瑞.基于新型PD模糊控制方法的机器人轨迹跟踪.工业仪表与自动化装置, 2007, 2: 40-42
    [105]于华男,万磊,徐玉如.开架式水下机器人运动的模糊非线性PD控制方法.海洋工程, 2004, 22(3): 65-68
    [106] Ni SD, Wu HT, Yuan ZQ and Ji HP. Fuzzy adaptive control of flexible-link robot manipulator. Transactions of Nanjing University of Aeronautics & Astronautics, 2004, 21(3): 200-205
    [107]庞文尧,丁金婷,黄戟.双连杆柔性机械臂的模糊PID参数自调整控制.科技通报, 2007, 23(4): 549-552
    [108]诸静等.模糊控制原理与应用.北京:机械工业出版社, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700