基于燃烧检测的电站锅炉分布参数建模与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锅炉是火电机组中最重要的部件之一,锅炉安全一直以来都是具有重大实用价值的研究课题。壁温、热流、质量流速等热力参数是影响锅炉安全性的重要因素,这些热力参数在锅炉受热面上的分布是不均匀的,常用的热电偶、热流计等只能逐点测量,难以实现实时的、分布式的检测,从而不能全面评价机组的安全性。本文在对烟气传热、工质流动等物理过程分析的基础上,利用实时的炉内三维温度场以及颗粒黑度等燃烧检测信息,开展了电站锅炉分布参数建模的研究,获得的模型可全面反映锅炉热力参数分布特性。同时,针对目前用于动态特性分析及控制系统研究的锅炉简化模型由于普遍忽略各控制系统相互影响而精度不高的现状,从复现水位控制系统、主汽温度控制系统对负荷压力特性的实际影响出发,对汽包锅炉简化建模方法进行了探讨。本文开展的研究工作和创造性成果如下:
     考虑水位控制系统及主汽温度控制系统对负荷压力特性的影响,开展了汽包锅炉简化建模的研究。利用系统压力变动焓的概念把锅炉给水量与减温水量的影响引入汽包锅炉简化模型,该模型体现了控制系统间的耦合关系。同时,提出了一种新的水位控制系统和过热汽温控制系统前馈信号,可更好的削弱耦合回路的影响,进一步改善控制效果。
     开展了基于三维燃烧检测的蒸发系统分布参数建模的研究。利用燃烧检测系统提供的实时的炉内三维温度场和颗粒相黑度,计算水冷壁的二维热流分布。同时提出用火焰黑度修正系数对黑度进行修正,以反映气体辐射和对流对炉膛传热的影响。考虑了汽包水空间含汽对水位的影响,同时注意到代表过热系统阻力特性的汽包出口蒸汽流量方程系数随负荷变化,提出一种根据汽包压力和汽机调门开度计算该系数的经验公式。利用蒸发系统分布参数模型进行仿真,结果表明该模型不仅可以准确反映汽包压力、水位以及汽包出口蒸汽流量的动态特性,而且还可全面反映热流、壁温、质量流速等参数的二维分布特性,从而为有效评价锅炉蒸发系统安全性和可靠性提供了重要依据。
     利用蒸发系统分布参数模型对水冷壁水循环特性进行了仿真研究。结果表明,相对于其它因素,上升管管径和水冷壁热负荷偏差对水冷壁流量偏差有重要影响。存在上升管管径的最优设计值,在该管径下,机组可以有效适应热负荷、汽包压力、给水比焓等运行条件的变化,保持较好的水循环状态。当上升管管径等结构参数确定时,锅炉在较高汽包压力、较低给水比焓以及适当大循环泵增压的工况下运行,流量偏差小同时质量流速大,最有利于水循环。
     开展了过热系统分布参数建模的研究。根据热量来源,对过热系统传递的能量进行分类,并利用烟窗把各种类型的传热归结到一个封闭的系统内,进而建立了一种形式统一的过热系统分布式传热模型。在前人对三通集箱静压分布研究的基础上,考虑了宽度方向热负荷不均匀性对集箱静压以及并联管组流量分配的影响,得到了并联管组流量分配的热态模型。在此基础上,获得了过热系统/再热系统的分布参数模型,并通过仿真验证了模型的有效性。该模型在揭示过热系统和再热系统的同屏热力参数分布特性以及屏间热力参数分布特性方面具有独特的优越性。
     利用过热系统/再热系统分布参数模型对过热器和再热器壁温分布特性进行了仿真研究。结果表明:对于U型布置的后屏过热器及屏式再热器,高度方向烟温偏差较小时,外侧管圈存在出口段和水平段两个高壁温区域,内侧管圈则仅存在出口段一个高壁温区域。随着烟气偏差的增大,各管圈出口段壁温下降,而水平段壁温显著升高。对于蛇形布置的高温过热,当烟气偏差较小时,壁温最高点位于管圈尾部上升段内。随着烟气偏差的增大,壁温最高点由出口逆工质流程向管屏下部移动。这些结论可为锅炉的设计优化及运行优化提供有益的指导。
Boiler is an important part of the power plant. The boiler security is still a valuable research. The temperature, heat flux and mass velocity heavily affect the boiler safety, which are non-uniformly distributed on the heated surface. Traditional methods such as thermocouple and heat flow meter are pointwise and hardly used for distributed measurements, so the boiler safety can’t be effectively evaluated. In this paper, based on the combustion monitoring information such as the 3-D temperature distribution and the emissivity of particle phase, the distributed parameter modeling for power plant boiler is studied, which can comprehensively descript the distributed parameter characteristics. In addition, considering the coupling relationship of the control systems, a new modeling method for drum boiler is developed to reflect the effect of the water level control system and the main steam temperature control system to load-pressure characteristics. The detailed description is as below.
     In the study, considering the coupling relationship of the control systems, a research on simplified model for drum boiler is performed. Using the system pressure deviation enthalpy, a model is developed, which can reflect the influence of feed water and spray water to the load-pressure characteristics. And a new type feedforword signal in water level control system and main steam temperature contol system is constructed, which can effectively weaken the influenc of other coupling control systems and further improve the control effects.
     Based on the 3-D combustion monitoring in furnace, a distributed parameter modeling method for evaporation system is developed. The transient, 2-D radiation flux is obtained by using the 3-D temperature distribution and the emissivity of the particle phase inside its furnace. And a factor of equivalent flame emissivity is proposed to reflect the gases radiation and convection to the heat transfer in furnace. The effect of the steam below liquid level to the drum level is considered, and an empirical express is proposed to calculate the coefficient of the equation of the steam mass flow rate at the outlet of drum, which varies with the boiler load.Then we obtain a distributed parameter model for the evaporation system. A simulation is made to validate the model by the comparison of the simulated value with the measured data of the drum pressure, the drum level and the steam mass flow rate at the outlet of drum. The transient, 2-D distribution of thermodynamic parameters, such as the wall temperature, the steam quality and the mass velocity can be predicted by the model, which forms an important basis to effectively evaluate the security and the reliability of the epaporation system.
     A simulation research on water circulation characteristics is performed by using the distributed parameter model for evaporation system. The results show that the diameter of risers and the thermal load deviation have the greatest influence on the deviation in flow rates. The diameter of the risers has an optimum design value, under the condition of such a diameter, a boiler can adapt to any changes in operation parameters, maintaining a comparatively good water circulation state. Moreover, when the structural parameters of a boiler have been determined, the boiler unit can secure a small deviation in flow rates favorable to water circulation while operating under the condition of a relatively high boiler drum pressure, relatively low feedwater specific enthalpy and moderately high boost-prssure of circulating pumps.
     A distributed parameter modeling for superheater/reheater system is performed. According to heat sources, the energies transferred in the superheater system are classified. By using the smoke vent plane, the heat transfers occur in an enclosure system, and then a distributed parameter model for the heat transfer of superheater panel is deduced. Based on the research of predecessors about the pressure distribution in headers, the effect of heat load distribution along the width to the pressure distribution in headers and flow distribution of parallel tubes is studied in this paper. Then, a distributed parameter model for superheater and reheater system is obtained, which is validated by the simulation and is useful to reflect the thermodynamic parameter distribution on the same platen or between the platens.
     A simulation study is made on the wall temperature characteristics of superheater and reheater system by using the distributed parameter model for superheater/reheater system. For the rear platen superheater or platen reheater, under the small gas deviation, there exist two high wall temperature zones for the outer tubes, one is at the horizontal part of U-tube, and the other is at the outlet of U-tube, however, there exists only one high wall temperature zone at the outlet of U-tube for the inner tubes. With the increase of gas deviation, the wall temperature at the tube’s outlet decreases, and the wall temperature of horizontal part of U-tube increases remarkably. For the high temperature superheater, the maximum wall temperature is at the tail part of the snake-tube. With the increase of gas deviation, the maximum wall temperature moves toward the bottom. These results are helpful for design and modification of the superheaters and reheaters.
引文
[1]张国宝.调整电力结构促进电力工业健康发展.中国电力企业管理, 2005, 9(9): 4-5
    [2]中国电力企业联合会. 2006年全国电力工业统计快报. http://www.cec.org.cn
    [3]陆延昌,姜绍俊. 21世纪初期中国电力工业展望.中国电力企业管理, 2000, 33(7): 1-8
    [4]李明磊.电力工业信息化的现状与发展.科技与管理, 2003, 5(2): 125-127
    [5]中国电机工程学会电力信息化专业委员会. 2004电力信息化发展综述报告.电力信息化, 2005, 3(3): 20-25.
    [6] H.C. Zhou, S.D. Han. Simultaneous reconstruction of temperature distribution, absorptivity of wall surface and absorption coefficient of medium in a 2D furnace system. International Journal of Heat and Mass Transfer, 2003, 46(14): 2645-2653
    [7] H.C. Zhou, S.D. Han, F. Sheng, et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy image: numerical studies. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 72(4): 361-383.
    [8] H.C. Zhou, C. Lou, Q. Chen, et al. Experimental Investigation on Visualization of Three-dimensional Temperature Distribution in a Large-scale Pulverized-Coal-Fired Boiler Furnace. Proceedings of the Combustion Institute, 2005, 30(1): 1699-1706
    [9] H.C. Zhou, F. Sheng, S.D. Han, et al. A fast algorithm for calculation of radiative energy distributions received by pinhole image-formation process for 2D rectangular enclosure. Numerical Heat Transfer: Applications, 2000, 38(7): 757-773
    [10]薛飞.基于辐射图像的火焰温度场测量研究:博士学位论文.浙江大学, 1999
    [11]高建强,陈聪,李永华,等.基于B/S模式的锅炉金属壁温在线检测系统.中国电力, 2005, 38(12): 68-71
    [12]曾安丰,罗永浩,王孟浩,等.电站锅炉过热器再热器安全性能在线检测系统.锅炉技术, 2001, 32(12): 16-19.
    [13]刘吉臻.现代电站自动化进展.现代电力, 2005, 22(1): 1-6
    [14] C.L. Liu, J.Z. Liu, Y.G.. Niu, et al. Nonlinear boiler model of 300MW power unit for system dynamic performance studies. In: IEEE International Symposium on Industrial Electronics: Institute of Electrical and Electronics Engineers Inc, 2001. 1296~1300
    [15] S. Lu. Dynamic modelling and simulation of power plant systems. Proc Instn Mech Engrs, Par A: Journal of power and energy, 1999, 213(1): 7-22.
    [16] C. Maffezzoni. Boiler-turbine dynamics in power-plant control. Control Eng. Practice, 1997, 5(3): 301-312.
    [17] T. Mahlia. Dynamic modeling and simulation of a palm wastes boiler. Renewable Energy, 2003, 28(8): 1235-1251.
    [18]田亮.单元机组非线性动态模型的研究:博士学位论文.华北电力大学, 2005
    [19]田亮,曾德良,刘吉臻,等.简化的330MW机组非线性动态模型.中国电机工程学报, 2004, 24(8): 180-185
    [20]王泽宁.单相受热管集总参数模型的讨论.中国电机工程学报, 1993, 13(4):
    [21]范永胜,眭喆,姜学智,等.两类适用的单相受热管集总参数动态修正模型.动力工程, 2000, 20(4): 2-7
    [22]任挺进,谢茂清,李志刚.锅炉单相受热面链式建模新方法.中国电机工程学报, 2003, 23(3): 175-178
    [23]范永胜,徐治皋,陈来九.锅炉单相区段的嵌套建模方法.中国电机工程学报, 1995, 15(5): 7-12.
    [24]王广军,胡华进,章臣樾.单相受热面通用动态计算模型.中国电机工程学报, 1994, 14(4): 46-49.
    [25]王广军,李勇,吴景兴.锅炉受热面热力过程通用数学模型.中国电机工程学报, 1998, 18(4): 254-257
    [26] W. Zima. Numerical modeling of dynamics of steam superheaters. Energy, 2001, 26(12): 1175-1184.
    [27] G. Irwin. Neural network modeling of a 200MW boiler system. IEE Proc-control Theory Appl, 1995, 142(6): 529-536.
    [28]刘长良,于希宁,姚万业,等.基于遗传算法的火电厂热工过程模型辨识.中国电机工程学报, 2003, 23(3): 170-173.
    [29]张小桃,倪维斗,李政等.基于主元分析与现场数据的过热气温动态建模研究.中国电机工程学报, 2005, 25(3): 131-135.
    [30]刘志远,吕剑虹,陈来九.基于神经网络在线学习的过热气温自适应控制系统.中国电机工程学报, 2004. 24(4): 179-183.
    [31]刘志远,吕剑虹,陈来九.新型RBF神经网络及在热工过程建模中的应用.中国电机工程学报, 2002, 22(9): 118-122.
    [32]杨戈,吕剑虹,刘志远.基于RBF神经网络的热工过程在线自适应建模算法研究.中国电机工程学报, 2004, 24(1): 191-195
    [33] P.K. Chawdhry, B.W. Hogg. Identification of boiler models. IEE Proceedings, Part D: Control Theory and Applications, 1989, 136(5): 261-271
    [34] A. Leva, C. Maffezzoni, G.. Benelli. Validation of drum boiler models through complete dynamic tests. Control Engineering Practice, 1999, 7(1): 11-26
    [35] S. Lu, B.W. Hogg. Dynamic nonlinear modeling of power plant by physical principles and neural networks. Electrical Power and Energy Systems, 2000, 22(1): 67-78
    [36]陈立甲,伞治,王子才等.锅炉过热器系统机理与神经网络组合建模方法.中国电机工程学报, 2001, 21(1): 73-76
    [37]王广军,何祖威,陈红.基于神经网络何过程机理的锅炉过热系统动态仿真.中国电机工程学报, 2001, 21(12): 38-41
    [38] G. K. Lausterer, J. Francke, E. Eitelbery. Modular modeling applied to a benson boiler. In: IFAC Modeling & Control of Electric Power: Pergamon, 1983. 11~19
    [39] J. Eborn, B. Nilsson. Simulation of a power plant using an object-oriented model batabase. In: Proceedings of the 13th World Congress, International Federation of Automatic Control. Vol.O. Power Plants and Systems, Computer Control: Pergamon, 1996. 121~126
    [40]全苏热工所.锅炉机组热力计算标准方法.北京:机械工业出版社, 1976
    [41] K. Kruger, R. Franke, M. Rode. Optimization of boiler start-up using a nonlinearboiler model and hard constraints. Energy, 2004, 29(12): 2239-2251.
    [42] K. Kruger, M. Rode, R. Franke. Optimal control for fast boiler start-up based on a nonlinear model and considering the thermal stress on thick walled components. In: Proceedings of the IEEE international conference on control applications: Institute of Electrical and Electronics Engineers Inc., 2001. 570~576
    [43] A. Beato. Study of the start-up control of drum boiler by means of a mathematical model. In: Proceedings of the IFAC control of power plants and power systems: Pergamon Press Inc ,1992. 115~121
    [44] R. Pichhardt. Application of a nonlinear predictive controller to a solar plant. In: Proceedings of the IEEE, International conference on control application: IEEE, 1998. 6~10
    [45] G. Emoto. Integrated large-scale multivariable control and real-time optimization of a power plant. In: Proceedings of the IEEE, International conference on control application: IEEE, 1998. 1368~1372
    [46] B. Li, T.K. Chen, D. Yang. DBSSP––A computer program for simulation of controlled circulation boiler and natural circulation boiler start up behavior. Energy Conversion and Management, 2005, 46(3): 533-549.
    [47] K.J.Chien, E.I. Irgin, C. Ling, et al. Dynamic analysis of a boiler. Transaction of ASME. 80: 1809-1819
    [48]王广军,辛国华.热力系统动力学及其应用.北京:科学出版社,1997
    [49] F.P. de Mello. Boiler models for system dynamic performance studies. IEEE Transaction on Power System, 1991,6(1): 66-74
    [50] K.J. Astrom, R.D. Bell. A nonlinear model for steam generation process. In: Proceedings of the 12th Triennial World Congress of the International Federation of Automatic Control: Pergamon, 1993. 649~652
    [51] K.J. Astrom, R.D. Bell. Drum-boiler dynamics. Automatica, 2000, 36(3): 363-378
    [52] M.E. Flynn, M.J. O’Malley. A drum boiler model for long term power system dynamic simulation. IEEE Transaction on Power System, 1999, 14(1): 209-217
    [53] V. Kecman. Nonlinearity of dynamic processes in a drum boiler circulation loop. In: IFAC Modeling & Control of Electric Power: Pergamon Press Inc, 1983. 21~27
    [54] E.J. Adam, J.K. Marchetti. Dynamic simulation of large boilers with natural recirculation. Computers and Chemical Engineering, 1999, 23(3): 1031-1040
    [55] H. Kim, S. Choi. A model on water level dynamics in natural circulation drum-type boilers. International Communication in Heat and Mass Transfer, 2005, 32(6): 786-796.
    [56] J.Q. Gao, B.S. Wang, Y.G.. Ma, et al. Research on drum feed-water distribution style of sub-critical pressure natural circulation boiler. In: Proceeedings of PowerCon2000, vol.3, 2000: 1521-1525
    [57]高建强,苏志恒,刘广生,下降管注水配水在亚临界自然循环锅炉上的应用.华北电力技术, 1999, 9: 32-34
    [58]余南华,刘永文,张会生,等.余热锅炉汽包水位波动的不确定性成分研究.中国电机工程学报, 2005, 25(7): 18-23
    [59] H.G.. Kwatny, J. Berg. Drum level regulation at all loads.In: Proceeding of the 12th Triennial World Congress of the International Federation of Automatic Control, Vol.4. Applications II, 1994. 659~662
    [60] A. Abdennour. An intelligent supervisory system for drum type boilers during severe. Electrical Power and Energy Systems, 2000, 22(5): 381-387.
    [61] K.J. Astrom, K. Eklund. A simplified non-linear model of a drum boiler turbine unit. International Journal of Control, 1972, 16(1): 146-169.
    [62] R.B. Bell, K.J. Astrom. Dynamic models for boiler-turbine-alternator units:data logs and parameter estimation for a160MW unit. Report TFRT-3192, Lund Institue of Technology, 1987
    [63] R.D. Bell, K.J. Astrom. A low order nonlinear dynamic model for drum boiler-turbine-alternator units. Lund Institute of Technology. 1979.
    [64]曾德良,刘吉臻.汽包锅炉的动态模型结构与负荷/压力增量预测模型.中国电机工程学报, 2000, 20(12): 75-79
    [65]曾德良,赵征,陈彦桥,等. 500MW机组锅炉模型及实验分析.中国电机工程学报, 2003, 23(5): 149-152.
    [66]田亮,曾德良,刘鑫屏, 500MW机组简化的非线性动态模型.动力工程, 2004,24(4): 522-525.
    [67]李益国,沈炯,吕震中.火电单元机组负荷模糊内模控制及其仿真研究.中国电机工程学报, 2002, 22(4): 90-93
    [68]沈炯,金林,陈来九.火电单元机组负荷预见控制系统仿真研究.中国电机工程学报, 1999, 19(3): 14-17.
    [69]陈彦桥,刘吉臻,谭文,等.模糊多模型控制及其对500MW单元机组协调控制系统的仿真研究.中国电机工程学报, 2003, 23(10): 199-203.
    [70]刘吉臻,陈彦桥,曾德良,等. 500MW单元机组模糊多模型协调控制系统.动力工程, 2003, 23(6): 2790-2794
    [71] A.F. Gomez-Skarneta, M.Delgado, M.A. Vila. About the use of fuzzy clustering techniques for fuzzy model identification. Fuzzy Sets and Systems, 1999, 106(2): 180-188
    [72]林金星,沈炯,李益国.基于递阶G-K聚类的热工过程多模型建模方法.中国电机工程学报, 2006, 26(11): 23-28
    [73]朱红霞,沈炯,李益国.一种新的动态聚类算法及其在热工过程模糊建模中的应用.中国电机工程学报, 2005, 25(7): 34-39.
    [74]范永胜,徐治皋,陈来九.基于动态特性机理分析的锅炉过热气温自适应模糊控制系统研究.中国电机工程学报, 1997, 17(1): 23-28.
    [75]陈学俊,陈立勋,周芳德.汽液两相流于传热基础.北京:科学出版社, 1995
    [76] J.C. Chen. A Correction for boiling heat transfer to saturated fluids in convective flow. ASME-AICHE Heat Transfer Conference, 1963
    [77] J.R. Barbosa, G.F. Hewitt. Force convective boiling of binary mixture in annular flow, PartⅠ:liquid phase mass transport. International Journal of Heat and Mass Transfer, 2001, 44(8): 1465-1474
    [78] J.R. Barbosa, G.F. Hewitt, Force convective boiling of binary mixture in annular flow, PartⅡ: heat and mass transfer. International Journal of Heat and Mass Transfer, 2001, 44(8): 1475-1484
    [79]杨冬,李斌,陈听宽.核态沸腾存在时垂直管内环状流换热数值计算.核动力工程, 2004, 25(5): 408-412
    [80]陈学俊,周芳德,陈立勋.管内汽液两相流动摩擦阻力的试验研究.动力工程, 1989. 9(1): 1-6.
    [81]郑建学,陈听宽,罗毓珊,等.亚临界及近临界压力区内螺纹管两相流阻力特性的研究.动力工程, 1995, 15(1): 56-59.
    [82]陈听宽,孙丹,罗毓珊,等.超临界锅炉内螺纹管传热特性研究.工程热物理学报, 2004, 24(3): 429-432.
    [83]郑建学,陈听宽,罗毓珊,等.亚临界及近临界压力区内螺纹管汽水两相流的传热.锅炉技术, 1994, 23(11): 11-16
    [84]毕勤成,陈听宽,田永升.螺旋管内高压汽水两相流传热恶化规律的研究.西安交通大学学报, 1996, 30(5): 30-35
    [85]杨冬,陈听宽,陈宣政.超临界直流锅炉汽水分离器瞬态传热的研究.西安交通大学学报, 1994, 28(6): 11-16.
    [86]董祖康,王孟浩,李守恒,等.锅炉机组水力计算标准方法.北京:中国电力出版社, 1981
    [87] Z.Q. Miao, T.M. Xu. Single phase flow characteristics in headers and connecting tube of parallel tube platen systems. Applied Thermal Engineering, 2006, 26(4): 396-402.
    [88] P.I. Shen. The effect of friction on flow distribution in dividing and combining flow manifold. ASME Journal of Fluid Engineering, 1992. 114(1): 121-123
    [89]陆方,王孟浩,李道林,等.大容量电站锅炉过热器、再热器带三通集箱流量分布的试验研究.动力工程, 1996, 16(3): 13-19.
    [90]卞韶帅,罗永浩,陆方,等.并联管组离散模型分析及其管间系数的确定.上海交通大学学报, 2002. 36(11): 1685-1688.
    [91]罗永浩,杨世铭.锅炉管组集箱静压分布的离散模型.动力工程, 1997, 17(3): 32-36.
    [92]杨世铭,罗永浩.并联管组流动特性的研究.水动力学研究与进展A辑, 1998, 13(2): 214-220.
    [93]刘林华.炉膛传热计算方法的发展状况.动力工程, 2000, 20(1): 523-527
    [94]曹汉鼎.上锅SG50412型400t/h锅炉炉膛计算方法的研究.上海机械学院学报, 1984,6(2):41-57
    [95]李永兴,陈春元,孙家庆.电站锅炉炉膛出口温度计算方法的研究与改进.动力工程, 1992, 12(6): 19-25
    [96]唐必光.大容量锅炉炉膛换热计算的一个新方法.动力工程, 1992, 12(6):26-30
    [97]周克毅,赵震,曹汉鼎.炉膛出口温度计算方法的分析与比较.动力工程, 1999, 19(5): 363-366.
    [98]冷伟.电站锅炉炉膛和管内工质的分布参数动态数学模型:博士学位论文.东南大学, 2002
    [99]孙昭星.锅炉燃烧室辐射传热的Monte-Carlo解法.中国电机工程学报, 1984, 4(5): 67-70
    [100]徐旭常.火焰三元传热过程数学模拟在电站锅炉中的应用.工程热物理学报, 1982, 3(2): 161-168
    [101]郭宏生.四角布置切圆燃烧锅炉炉膛内的热负荷分布:博士学位论文.西安交通大学, 1991
    [102]李宏顺,周怀春,陆继东.炉膛辐射换热计算的一种改进的离散传递法.中国电机工程学报, 2003, 23(4): 162-166
    [103] C.G.. Yin, S. Ciallat, J. Harin, et al. Investigation of the flow, combustion, heat-transfer and emissions from a 609MW utility tangentially fired pulverized-coal boiler. Fuel, 2002, 81(8): 997-1006
    [104] C.G.. Yin, L. Rosendahl, T.J. Condra. Further study of the gas temperature deviation in large-scale tangentially coal-fired boilers. Fuel, 2003, 82(9): 1127-1131.
    [105]刘林华,余其铮,谈和平.切圆燃烧锅炉过热器和再热器沿炉膛宽度吸热偏差的分布规律.动力工程, 1999, 19(5): 375-378
    [106]周月桂,章明川,徐通模,等.四角切向燃烧锅炉烟道速度偏差的试验研究与数值模拟.中国电机工程学报, 2001, 21(1): 68-72
    [107]朱珍锦,张长鲁,方志成.一种消除切圆锅炉残余旋转新技术的模型试验研究.中国电机工程学报, 2002, 22(2): 59-63
    [108]李文彦,康志忠,宋之平,等. 600MW切圆燃烧锅炉的烟气偏差及控制技术的研究.中国电机工程学报, 2003, 23(2): 163-167
    [109]吴风庭,鲁学农,曾汉才.大型锅炉水平烟道左右两侧烟温偏差的研究.燃烧科学与技术, 1998, 4(3): 285-262.
    [110]王孟浩,邵慰骏,何沛霖,等.电站锅炉对流过热器和再热器的同屏热偏差.动力工程, 1984. 4(2): 41-48.
    [111]王孟浩,杨宗煊,何沛霖.屏式过热器同屏热偏差的成因和计算方法.动力工程, 1986, 6(6): 18-26
    [112] L.J. Xu, J.A. Khan, Z.H. Chen. Thermal load deviation model for superheater and reheater of a utility boiler. Applied Thermal Engineering, 2000, 20(6): 545-558
    [113]刘林华.大容量电站锅炉过热器和再热器热偏差计算的理论分析与试验研究.锅炉技术, 1991, 20(3): 1-14.
    [114]阎维平,陈华桂,叶学民,等.电站锅炉高温对流受热面管壁温度的校核算法.动力工程, 2002, 22(3): 1768-1771.
    [115]周欣,刘伯安,石秉学.神经网络的空间分解方法求解热传导方程.清华大学学报, 2005, 45(1): 130-132
    [116]刘吉臻,田亮,曾德良,等, 660MW机组负荷-压力非线性特性的分析.动力工程, 2005, 25(8): 553-556
    [117]林文孚,胡艳.单元机组自动控制技术.北京:中国电力出版社, 2004
    [118]王陪红.热能转换过程中水和水蒸汽性质计算模型.汽轮机技术, 1993, 35(3): 31-38
    [119]方超.高精度的过热水蒸汽焓函数简单实用数学模型的探索.中国电机工程学报, 1989, 9(1):37-47
    [120]王惠文.偏最小二乘回归方法及其应用.北京:国防工业出版社, 1999
    [121]王文圣,丁晶,赵玉龙,等.基于偏最小二乘回归的年用电量预测研究.中国电机工程学报, 2003, 23(10): 17-21
    [122]张伏生,汪鸿,韩悌,等.基于偏最小二乘回归分析的短期负荷预测.电网技术, 2003, 27(3): 36-40.
    [123]周怀春.炉内火焰可视化检测原理与技术.北京:科学出版社, 2005
    [124] K Kudo, A. Kuroda, A. Eid, et al. Solution of the inverse radiative load problem using the singular value decomposition technique. JSME, Series B, 1996, 39(4):808-814.
    [125] W.J. Yang, H. Taniguchi, K. Kudo. Radiation heat transfer by the Monte Carlo method. In: J.P. Hartnett, T.F. Irvine (eds.), Advances in heat transfer: Academic Press, 1998. 1-215.
    [126] IAPWS. Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. 1997, Erlangen, Germany
    [127] IAPWS. Supplementary Release on Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) to the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. 2001, Gaithersburg, Maryland, USA..
    [128] IAPWS. Supplementary Release on Backward Equations for the Functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. 2003, Vejle, Denmark.
    [129]章臣樾.锅炉动态特性及其数学模型.北京:水利电力出版社,1986.
    [130]朱金荣,章臣樾.直流锅炉炉内传热及蒸发工况的实时数学模型.中国电机工程学报, 1991, 11(1): 63-72
    [131] L.I Diez, C. Cortes, A. Campo. Modelling of pulverized coal boiler: review and validation of non-line simulation techniques. Applied Thermal Engineering, 2005, 25(10): 1516-1533
    [132]冯俊凯,沈幼庭.锅炉原理及计算.北京:科学出版社, 1992
    [133]杨冬,陈听宽,唐人虎,等.考虑汽水两相流动压降时的水冷壁流量偏差系数计算.热能动力工程, 2001, 16(2): 172-174
    [134]王孟浩.消除大容量电厂锅炉过热器及再热器进步超温的措施.中国电力, 2003, 36(3): 13-16.
    [135]刘林华,尚稀禹,姜宝成.顺列管屏中各管排对流传热特性的实验研究.动力工程, 2001, 21(1): 1038-1041
    [136]袁益超,刘聿拯,陈之航.大型电站锅炉烟温与气温分布理论分析与试验研究.中国电机工程学报, 2002, 22(12): 56-60
    [137]李文蛟,曹欣玉.三次风反切下二次风配风方式对水平烟道偏差影响的试验研究.中国电机工程学报, 2005, 25(7): 73-77
    [138]解海龙.锅炉计算机辅助设计及设计.北京:水利电力出版社, 1993
    [139]罗永浩.管组集箱采用三通结构引入引出对锅炉过热器热偏差的影响.锅炉技术, 1996, 25(7): 12-15.
    [140]杨冬,陈听宽,李会雄.锅炉过热器与再热器流量分配的非线性数学模型及壁温计算方法.中国电机工程学报, 2001, 21(5): 38-42.
    [141]王恩禄.电站锅炉分配集箱静压分布参数的确定.上海交通大学学报, 2004, 38(7): 1185-1187
    [142] J.Tomeczek, H. Palugniok, J. Ochman. Modelling of deposits formation on heating tubes in pulverized coal boilers. Fuel, 2004, 83(2): 213-221
    [143]阎维平,梁秀俊,周健,等. 300MW燃煤电厂锅炉积灰结渣计算机在线监测与优化吹灰.中国电机工程学报, 2000, 20(9): 84-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700