电站锅炉高温对流受热面管壁温度在线监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国火力发电机组逐渐向大容量、高参数方向发展。随着锅炉蒸汽参数的不断提高,过热器和再热器的结构设计也日趋复杂,这将不可避免地加剧管组内并联各管在热负荷与工质流量分配上的热偏差,由此引发的锅炉高温对流受热面超温爆管事故增多,严重影响了电站系统的安全、经济运行。因此,研究基于热偏差理论的锅炉高温对流受热面壁温计算模型以及建立壁温在线监测系统就具有非常重要的工程意义。
     针对电站锅炉高温对流受热面超温爆管现象,本文从蒸汽侧、烟气侧以及同屏各管的热偏差三个方面进行了理论分析;在总结前人研究成果的基础上,对现有壁温计算方法进行了一系列改进,提出了以管圈总吸热量为热力约束条件的具有可校核功能的分段计算模型,并对计算过程中所涉及到的局部热负荷、角系数和辐射因数等主要参数进行了理论推导和修正;还对高温对流受热面的爆管原因进行了分析,认为管壁金属长期高温蠕变是导致受热面失效的首要原因,选择并分析了能够适用于在线监测的受热面管壁金属高温蠕变寿命计算方法。
     以某电厂600MW亚临界锅炉为研究对象,对后屏过热器和末级再热器进行了管壁温度和金属高温蠕变寿命的实例计算,验证了上述理论及计算方法的准确性和可靠性。在此基础上,尝试开发了针对该台锅炉高温对流受热面的管壁温度在线监测系统。
In recent years, the thermal power generation units have been developing in the trend of larger capacity and higher parameter. The structural design and arrangement of the superheater and reheater get complicated increasingly, which inevitably aggravate the hydrodynamic and thermal load deviation in the parallel tube set systems. It leads to the overheating and tube rupture on high-temperature convection heating surface of utility boiler, seriously decreasing the security and economy of the thermal power systems. Consequently, it is significant in engineering to study a computation model to calculate the tube wall temperature on high-temperature convection heating surface of utility boiler based on the thermal deviation and compile an on-line monitoring system.
     For the overheat and tube explosion on supetheater and reheater,this dissertation mainly analyzed theoretically the thermal deviation in three aspects that steam, gas and the heat deviation on the same panel tubes and made a series of improvements on the present computing model of tube wall temperature based on the previous research results. The verifiable subsection-calculating model which takes total heat-absorption in whole pipe loop as thermal restrictive condition was put forward. It also deduced and amended Angle Factor and Radiation Factor which will be used in the temperature calculation. Furthermore, the reasons of tube rupture were also discussed, and the long-term high temperature creep of tube metal was regarded as the primary cause of the heating surface failure. The paper analyzed and selected the high temperature creep remaining life calculation method which will be practicable under the on-line monitoring condition.
     In order to test the proposed theory and computing method, the applied calculation including tube wall temperature and creep remaining life were conducted on the hider-screen superheater and the high-temperature reheater of a 600MW subcritical boiler. Due to the above work,the on-line system applied in aforesaid boiler to monitor tube wall temperature on high-temperature convection heat transfer surface was exploited.
引文
[1]赵钦新,朱丽慧.超临界锅炉耐热钢研究[M].北京:机械工业出版社, 2010
    [2]樊泉桂.超超临界及亚临界参数锅炉[M].北京:中国电力出版社, 2007
    [3]刘彤.电站锅炉承压部件寿命分析及在线监测[D].华北电力大学博士学位论文, 2007
    [4]柳光池,杨栋.过热器再热器壁温在线监测技术在寿命监测中的应用[J].华东电力, 2004, 32(7): 5-7
    [5] Yu Yan-zi. Test and Calculation of the Tube Temperature of a High-temperature Superheater[J]. Engineering for Thermal Energy and Power, 2003, 1(18): 71-73
    [6] Nader Asnafi. Theoretical and Experimental Analysis of Stroke-controlled Tube Hydroforming[J]. Materials Seience and Engineering, 2000, 279: 95-110
    [7]董祖康,王孟浩等译.锅炉机组水力计算标准方法[M].北京:电力工业出版社, 1981
    [8] Xu Lijun, Jamil Khana, Chen Zhihang. The Thermal Load Deviation Model for Superheater and Reheater of a Utility Boiler[J]. Applied Thermal Engineering, 2000, 20(6): 545-558
    [9] H.A.Hearter. Flow Distribution and Pressure Change along Slotted or Branched Dusts[J]. ASHRAE Journal, No.1, 1963
    [10]陈之航,赵再三.单相流体在并联管组中的流量分布和热偏差的理论及计算[J].锅炉技术, 1974, 10: 54-58
    [11]罗永浩,杨世铭.电站锅炉过热器和再热器流量分布计算方法的改进[J].上海交通大学学报, 2000, 34(4): 482-485
    [12]周月桂,窦文宇,周屈兰等.四角切向燃烧锅炉折焰角结构对水平烟道烟速偏差影响的试验研究[J].动力工程, 1999, 19(3): 7-10
    [13] Zhou Yuegui, Xu Tongmo, Hui Shien, et al. Experimental and Numerical Study on the Flow Fields in Upper Furnace for Large Scale Tangentially Fired Boilers[J]. Applied Thermal Engineering, 2009, 29(4): 732-739
    [14]刘林华,余其铮,谈和平.切圆燃烧锅炉过热器和再热器沿炉膛宽度吸热偏差的分布规律[J].动力工程, 1999, 19(5): 375-378
    [15] Yin Chungen, Lasse Rosendahl, Thomas J.Condra. Further Study of the Gas Temperature Deviation in Large-scale Tangentially Coal-fired Boilers[J], Fuel, 2002, 12: 1127-1137
    [16] Yin Chungen, Sebastien Caillatb, Jean-Luc Harionb. Numerical Simulation of the Flow, Combustion, Heat-transfer and Emissions from a 609 MW Tangentially Fired Pulverized-coal Boiler[J]. Fuel, 2002, 8: 997-1006
    [17] Lasse Rosendahl, T.J.Condra. Further Study of the Gas Temperature Deviation[J]. Fuel, 2003, 1: 1127-1137
    [18] M.M.Prieto, F.J.Fernandez, I.Suarez. Experimental Thermal Behavior of a Power Plant Reheater[J]. Energy, 2006, 31: 665–676
    [19] M.M.Prieto, I.Suarez, F.J.Fernandez. Application of a Thermal Model to a PowerPlant Reheater with Irregular Tube Temperatures[J]. Applied Thermal Engineering, 2007, 27: 185-193
    [20] M.M.Prieto, I.Suarez, F.J.Fernandez. Theoretical Development of a Thermal Model for the Reheater of a Power Plant Boiler[J]. Applied Thermal Engineering, 2007, 27: 619–626
    [21]杨冬,陈听宽,李会雄等.锅炉过热器与再热器流量分配的非线性数学模型及壁温计算方法[J].中国电机工程学报, 2001, 21(5): 38-42
    [22]阎维平.锅炉高温对流受热面进出口烟温软测量方法[J].锅炉技术, 2002, 33(11): 1-3
    [23]赵星海,魏春明,辛国华.电站锅炉屏式过热器管壁温度的数值分析方法[J].锅炉技术, 2004, 35(6): 14-17.
    [24]王为术,徐雏晖,陈听宽等.非均匀受热管管壁温度场的数值计算[J].热能动力工程, 2007, 22(4): 435-439
    [25]陈谦,曾雪梅,初云涛.高度方向烟温偏差对后屏过热器壁温影响的数值研究[J].热力发电, 2007, 36(9): 32-36
    [26] Rose Mary, G.P.Souza, Joao.M.L, et al. Neural The Network Correlation for Power Peak Factor Estimation[J]. Annals of Nuclear Energy, 2006
    [27]阴玉清,巨林仓,周鹏.基于人工神经网络的过热器故障诊断系统[J].动力工程, 2005, 25(6): 446-449
    [28] Douglas.J.Smith, The Importance of the Best Life to Inerease Power Plant Life[J], Power Engineering, 1991, 2
    [29] John Reason. Measure How Fast You’re Expanding Boiler Life[J]. Power, 1986, 7
    [30] R.Viswanathan, J.Stringer. Failure Mechanism of High Temperature Componments in Power Plants[J]. Journal of Pressure Vessel Technology. 2000, 122(6): 2-8
    [31]郑晓红.锅炉“四管”的失效机理研究与寿命预测[D].浙江大学硕士学位论文, 2002
    [32] George.Harth. Assess the Remaining Life of High-temperature Boiler Parts[J]. Power, 1985, 8
    [33] T.Sokolowski, K.Gerke. Evaluation of Tube Formability and Material Characteristics: Hydraulic Bulge Testing of Tubes[J]. Journal of Materials Processing Technology, 2000, vol.98: 34-40
    [34] N.K.Mukhopadhya, S.G.Chowdhury. Remaining Life Estimation of a Service Exposed Economizer Tube[J], Engineering Failure Analysis, 1999, 6: 233-243
    [35] A.K.Ray, Y.N.Tiwari, S.Chaudhuri. Evaluation of Mechanical Properties and Assessment of Residual Life of a Service-exposed Water Wall Tube[J]. Engineering Failure Analysis, 2000, 7: 393-402
    [36] A.K.Ray, Y.N.Tiwari. Residual Life Prediction of Service Exposed Main Steam Pipe of Boilers in Thermal Power Plant[J]. Engineering Failure Analysis, 2000, 7: 359-376
    [37]刘彤,徐钢,庞力平.锅炉炉内承压部件的蠕变分析及寿命计算[J].动力工程, 2004, 24(5): 631-635
    [38]束国刚,李益民. 10CrMo910钢薄壁主汽管θ法寿命评估及其应用研究[J].热力发电, 2000, 29(4): 39-41
    [39]陈楠.锅炉后屏过热器的分布式动态模型及壁温计算[D].华中科技大学硕士学位论文, 2006
    [40]邹阳.锅炉高温段壁温及汽包疲劳寿命监测系统开发[D].西安交通大学硕士学位论文, 2001
    [41]高建强,陈聪,陈鸿伟等.基于B/S模式的锅炉金属壁温在线监测系统[J].中国电力, 2005, 38(12): 68-71
    [42]史平洋,李立人,盛建国等.电站锅炉高温受压元件蠕变和低周疲劳寿命损伤计算及在线监测[J].动力工程, 2007, 27(3): 463-468
    [43]阎维平,陈华桂,叶学民等.电站锅炉高温对流受热面管壁温度的校核算法[J].动力工程[J], 2002, 22(3): 1768-1771
    [44]中国动力工程学会主编.火力发电设备技术手册锅炉卷[M].北京:机械工业出版社, 2000
    [45]刘林华,尚稀禹,姜宝成.顺列管屏中各管排对流传热特性的实验研究[J].动力工程[J], 2001, 21(1): 1038-1041
    [46]北京锅炉厂译.锅炉机组热力计算标准方法[M].北京:机械工业出版社, 1973
    [47]董泽.电站锅炉承压部件寿命预测及运行分析专家系统的研究[D].华北电力大学博士学位论文, 2001
    [48]吕邦泰,沈月芬.锅炉承压部件强度及寿命[M].北京:水利电力出版社, 1992
    [49]万嘉礼主编.机电工程金属材料手册[M].上海:上海科学技术出版社, 1990
    [50]王培红,贾俊颖,程懋华.水和水蒸汽性质IAPWS-IF97计算模型[J].动力工程, 2000, 20(6): 988-991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700