基于燃烧监测的双炉膛直流炉蒸发系统分布参数建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锅炉是火电站的重要部件之一,锅炉蒸发系统包含了燃烧和工质蒸发过程,因此对锅炉蒸发系统研究有益于电站锅炉的安全运行。本文基于三维温度场可视化监测技术,开展了炉内燃烧放热过程和锅内吸热蒸发过程的建模,以姚孟发电有限责任公司某台300MW亚临界双炉膛直流锅炉为对象,仿真研究了蒸发系统物理参数的分布特性及变化规律,并进行了模型验证。
     提出假想面的处理方法简化双炉膛的模型,根据三维燃烧监测系统得到炉内三维温度场分布,可以得到假想面的二维热流密度分布和壁温分布,从而解决了因采用经验值而导致计算不合理的情况。蒸发系统分布参数模型以实时监测得到的炉内三维温度分布和颗粒相黑度为依据,计算蒸发系统水冷壁各面墙的二维热流密度分布;上升管内工质汽化过程基于质量守恒、能量守恒和动量守恒定律,金属壁温采用二维稳态导热方程计算。模型计算得到的工质换热量以及金属壁温分布参数能够准确地跟踪锅炉运行的工况,避免了传统模型中通过热电偶测得有限壁温数据或采用分段计算加经验系数修正来计算壁面吸热量所引起的模型误差。
     利用现场采集数据验证了模型的合理性与正确性。通过对锅炉改造前后的水冷壁壁面热流密度分布、壁面温度分布以及质量含汽率分布等的对比分析,为亚临界双炉膛直流锅炉实际运行提供了有益的指导,且模型具有很好的扩展性,为水动力特性的实验研究提供了一种新方法。
Boiler is an important part of the power plant. The studying on the evaporation system of the boiler is crucial for safe operation, which related to combustion behavior in furnace and evaporation of working substance. In this paper, a distributed parameter model for the evaporation system which fused the combustion process and the heat absorption was obtained based on 3-D temperature distribution by flame image processing technique and proved in a 300MW twin-furnace subcritical once-through boiler of Yaomeng Power Plant. The transient distributions and variations of the parameters were researched by the mathematical model.
     The imaginary wall surface was put forward to simplify the twin-furnace problem based on 3-D temperature field reconstruction. Then, the 2-D radiation flux and temperature of the imaginary wall surface can be obtained which avoiding the unreasonable results by empirical value. The model of non-uniformly distribution in two-dimensional surfaces of water-wall tubes was established by using the real-time 3-D temperature distribution and the emissivity of the particle phase inside its furnace. The mathematical model for predicting the dynamics in risers was put forward based on the mass, energy and momentum conservation equations. The real-time heat absorbed and temperature of mental wall in different operating conditions would be provided, avoiding the error of rough accuracy heat computation which would be determined from the temperature between some certain points on the rear of wall or calculated by the method of empirical auxiliary value.
     The simulation results were proved to be reasonable and correct by comparing with the operating status of power plant. The distributions of the parameters before/after reformation, such as heat flux, metal temperature and steam quality and so on, were analyzed relatively, which formed an important basis to optimize the actual motion of the twin-furnace subcritical once-through boiler. The model has great flexibility and extensibility which supplied a new process to research the hydrodynamic force characteristic.
引文
[1]杨元华.奥巴马新能源政策透析.中国远洋航务,2009,(05):18~20.
    [2] 2009年国家电力总投资5800亿元加速发展新能源.有色冶金节能,2009,(02): 62.
    [3]魏丽东.基于图形组态的超临界机组汽水系统数学建模与仿真:[硕士学位论文].河海大学,2006.
    [4]陈立甲,伞冶,王子才,等.锅炉过热器系统机理与神经网络组合建模方法.中国电机工程学报,2001,21(01):73~76.
    [5] Lu S,Hogg B W.Dynamic nonlinear modeling of power plant by physical principles and neural networks.International Journal of Electrical Power and Energy Systems,2000,22(1):67~78.
    [6]王广军,何祖威,陈红.基于神经网络和过程机理的锅炉过热系统动态仿真.中国电机工程学报,2001,21(12):38~40.
    [7] Lausterer G K,Francke J,Eitelbery E.Modular modeling applied to a benson boiler[C].IFAC Modeling and Control of Electric power plants,Como,Italy,1983.
    [8] Lu S . Dynamic modeling and simulation of power plant systems . IMechE Proceedings,Part A., Journal of Power and Energy,1999,213(1):7~22.
    [9]章臣樾.锅炉动态特性及其数学模型[M].北京:水利水电出版社,1987.
    [10] Kwan H W,Anderson J H.A mathematical model of a 200MW boiler.International Journal of Control,1970,12(6):977-998.
    [11]徐治皋,陈来九.带汽-汽换热器的20万千瓦机组汽温系统数学模型.动力工程,1985,(04):42~51.
    [12] Ray A,Bowman H F.A nonlinear dynamic model of a once-through subcritical steam generator.Journal of Dynamic Systems, Measurement, and Control,1976, 98(3):332~339.
    [13] Dolezal R.Simulation of large state variations in steam power plants.New York:Springer-Verlag New York Inc.,1987.
    [14]王广军,章臣樾.锅炉动态模型中能量平衡方程及受热面金属的当量质量.动力工程,1989,(04):29~32.
    [15]徐二树,李恕康,孙志英,等.大容量超临界直流锅炉锅内过程全工况实时仿真数学模型及动态特性.动力工程,2003,23(04):2500~2505.
    [16] Shor S W W.Modular modeling system (MMS) [R].EPRI CS/NP-3016,1987.
    [17] Dumont M N,Heyen G.Mathematical modeling and design of an advanced once-through heat recovery steam generator.Computers and Chemical Engineering, 2004,28(5):651~660.
    [18] Walter H.Dynamic simulation of natural circulation steam generators with the use of finite-volume-algorithms-A comparison of four algorithms.Simulation Modelling Practice and Theory,2007,15(2):565~588.
    [19]张彪,沈炯,李益国.超临界直流炉蒸汽发生器的建模与仿真分析.计算机仿真,2009,26(04):279~283.
    [20]王广军,胡华进,章臣樾.单相受热面通用动态计算模型.中国电机工程学报,1994,14(04):46~49.
    [21]王广军,吴彦历,徐家骏.电站锅炉两类受热面通用动态计算模型.东北电力学院学报,1995,15(01):18~23.
    [22]刘远鹏.超临界压力锅炉汽水系统分布参数动态数学模型:[硕士学位论文].重庆大学,2005.
    [23]王广军,章臣樾.直流锅炉蒸发受热面运行分析及实时仿真通用数学模型.中国电机工程学报,1995,15(01):61~66.
    [24]王伟,任挺进,高琪瑞,等.直流锅炉蒸发区域的数学模型及其仿真.清华大学学报(自然科学版),2001,41(10):105~108.
    [25]刘笑驰,蔡瑞忠,吕崇德.单相受热管的移动参数模型.清华大学学报(自然科学版),2003,43(06):772~790.
    [26]陈钢,任挺进.单相受热管移动参数模型的修正.清华大学学报(自然科学版),2007,47(05):695~698.
    [27]刘树清,余圣方,周龙.900MW超临界直流锅炉的数学模型与仿真研究.计算机仿真,2005,22(10):215~217.
    [28]刘树清,余圣方,周龙.900MW超临界直流锅炉蒸发器的数学模型与仿真研究.动力工程,2005,25(03):335~338.
    [29]蔡丹,冷伟.300MW机组直流锅炉数学模型及动态特性.热力发电,2007,(01):29~31.
    [30]于翔.300MW直流锅炉管内工质动态特性的建模与仿真研究:[硕士学位论文].东南大学,2006.
    [31]王渡.扬州第二发电厂600MW火电机组的锅炉系统建模与仿真:[博士学位论文].东南大学,2006.
    [32] Bowen B D , Fournier M , Grace J R . Heat transfer in membrane waterwalls.International Journal of Heat Mass and Transfer,1991,34(4-5):1043~1057.
    [33]吕俊复,于龙,岳光溪,等.循环流化床锅炉水冷壁的热流密度分布.动力工程, 2007,27(03):336~340.
    [34] Fang Z H,Xie D L,Diao N R,etc.A new method for solving the inverse conduction problem in steady heat flux measurement.International Journal of Heat Mass and Transfer,1997,40(16):3947~3953.
    [35] Andersson B A,Leckner B.Experimental methods of estimating heat transfer in circulating fluidized bed boilers.International Journal of Heat Mass and Transfer, 1992,35(12):3353~3362.
    [36]徐耀文,顾晓栋.电厂热工或称自动调节[M].北京:水利电力出版社,1983.
    [37]张攀,杨石,李文凯,等.水冷壁热流密度测量与误差分析.电站系统工程, 2008, 24(05):21~23
    [38] Carey V P . Liquid-vapor phase-change phenomena : An introduction to the thermophysics of vaporization and condensation processes in heat transferequipment.Taylor and Francis,London,England,1992.
    [39]陶文铨,杨世铭.传热学[M].北京:高等教育出版社,1998.
    [40]陈学俊,陈立勋,周芳德.汽液两相流于传热基础[M].北京:科学出版社,1995.
    [41] Chen J C.Correction for boiling heat transfer to saturated fluids in convective flow.Industrial and Engineering Chemistry Process Design and Development,1966,5(3):322~329.
    [42] Vikrev Y V,Lokshin V A.An experimental study of temperature conditions in horizontal steam generator tubes at supercritical pressure.Thermal Engineering,1964,11(1):105~109.
    [43] Barbosa J R,Hewitt G F.Forced convective boiling of binary mixture in annular flow,PartⅠ:liquid phase mass transport.International Journal of Heat and Mass Transfer, 2001,44(8):1465~1474.
    [44]王建军,李东芳,姬广勤,等.循环流化床锅炉炉膛内气固两相流的数值模拟.锅炉技术,2010,41(03):21~26.
    [45]高峰,陈听宽,罗毓珊,等.倾斜并联内螺纹管汽-水两相流密度波型脉动试验研究.核动力工程,2005,26(01):11~14.
    [46]黄凡,罗毓珊,陈听宽,等.超临界循环流化床锅炉垂直并联内螺纹管内两相流不稳定性的研究.动力工程,2009,29(04):353~357.
    [47] The International Association for the Properties of Water and Steam.Release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam[S].Erlangen,Germany,1997.
    [48] Wagner W,Cooper J R,Dittmann A,etc.The IAPWS industrial formulation1997 for the thermodynamic properties of water and steam.Journal of Engineering for Gas Turbines Power,2000,122(1):150~184.
    [49] The International Association for the Properties of Water and Steam.Supplementary release on backward equations for specific volume as a function of pressure and temperature v (p, T) for region 3 of the IAPWS industrial formulation 1997 for thethermodynamic properties of water and steam[S].Electric Power Research Institute,Palo Alto,Canada,2005.
    [50] Kretzschmar H -J,Cooper J R,Dittmann A,etc.Supplementary backward equations for pressure as a function of enthalpy and entropy p(h,s) to the industrial formulation IAPWSIF97 for water and steam.Journal of Engineering for Gas Turbines Power,2004,128(03):702~713.
    [51] Kretzschmar H J,Cooper J R,Dittmann A,etc.Supplementary backward equations T( p,h),v( p,h) and T( p,s),v( p,s) for the critical and supercritical regions (region 3) of the industrial formulation IAPWS-IF97 for water and steam.Journal of Engineering for Gas Turbines and Power,2007,129(01):294~303.
    [52] Kretzschmar H J,Cooper J R,Dittmann A,etc.Supplementary backward equations p(h,s) for the critical and supercritical regions (region 3),equations for the region boundaries,and an equation for the two-phase region of the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam.Journal of Engineering for Gas Turbines and Power,2007,129(04):1125~1137.
    [53]李明,范鑫,刘静宇.IAPWS-IF97与IFC-67公式在超临界机组热力计算中的偏差分析.水利电力机械,2007,29(12):35~38.
    [54]王培红,贾俊颖,程懋华.水和水蒸汽性质的IAPWS-IF97计算模型.动力工程,2000,20(06):988~991.
    [55]田子平,容銮恩,袁镇福.电站锅炉原理[M].北京:中国电力出版社,1997.
    [56]俞谷颖,张富祥,陈端雨,等.超临界直流锅炉炉膛水冷壁布置型式的比较.动力工程,2008,28(03):334~338.
    [57]车东光,华洪渊.超超临界锅炉设计特点.锅炉制造,2005,(04):5~9.
    [58]吴继高.本生锅炉炉膛垂直管圈水冷壁新型设计方案.东方电气评论,1996,10(02):82~93.
    [59]贡献,孙志英.大容量超临界直流锅炉数学模型的研究.电力科学与工程,2008,24(08):52~55.
    [60] Astrom K J,Bell R D.Drum-boiler dynamics.Automatica,2000,36(3):363-378.
    [61]黄承懋.锅炉水动力学及锅内传热[M].北京:机械工业出版社,1982.
    [62]车得福.锅炉--理论设计及运行[M].西安:西安交通大学出版社,2008.
    [63] Chen,J C. Correlation for boiling heat transfer to saturated fluids in convective flow.Industrial and Engineering Chemistry Process Design Development,1966,5(3):322-329.
    [64]初云涛.基于燃烧检测的电站锅炉分布参数建模与仿真研究:[博士学位论文].华中科技大学,2007.
    [65]范永胜.600MW超临界机组直流锅炉的全工况建模与仿真研究:[博士学位论文].南京:东南大学,1997.
    [66]樊泉桂.超超临界及亚临界参数锅炉[M].北京:中国电力出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700