船用增压锅炉炉膛火焰检测和基于辐射能信号的汽包水位仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船用增压锅炉炉膛火焰的脉动对于汽包水位有着重大的影响,炉膛火焰的在线监测对于稳定汽包水位有着重要的意义。
     本文在总结船用增压锅炉结构和工作特点的基础上,介绍了安装于某船用增压锅炉上的炉膛火焰检测系统;对试验中采集的图像进行了分析和讨论,提出了由火焰图像处理技术计算船用增压锅炉炉膛辐射能信号的方法;对辐射能信号的分析表明,船用增压锅炉的工作特性造成了炉膛内火焰的剧烈脉动,这使得锅炉蒸发系统内上升管的吸热量随之脉动,造成了汽包水位的大幅波动。
     结合船用增压锅炉对流蒸发管束的构造和烟气流动特性,对蒸发系统内的换热进行了细致的研究;本文将水冷壁和对流蒸发管束合在一起,作为上升管,认为上升管吸热量由炉膛总换热量和炉膛外对流蒸发管束的吸热量组成;传统的热力计算方法无法反映实时的上升管吸热量,本文得出了辐射能信号与上升管吸热量间的对应关系,并将由辐射能信号计算得到的上升管吸热量引入了蒸发系统动态数学模型中,这样,由此模型得到的汽水系统的动态特性便能够反映炉膛内火焰的实时燃烧情况。使用Fortran语言编写了仿真程序,由于采用了建立数据表进行插值计算的方法,程序的计算速度很快。进行了仿真试验,对得到的响应特性曲线进行了深入分析;本文发现,阶跃扰动后汽包内液面下汽和水体积的变化方向不同,汽和水体积变化的综合作用造成了“虚假水位”现象。
     给出了上升管吸热量(炉膛辐射能信号)脉动对汽包水位影响的仿真结果,上升管吸热量的波动造成了汽包水位的大幅扰动,通过监测炉膛辐射能信号对汽包水位进行超前的控制有巨大的应用潜力。
The pulse of flame in the furnace of marine supercharged boiler will affect drum water level significantly, therefore, real-time detection of flame is very important to stabilize drum water level.
     This paper summarizes the structure and working characteristics of a marine supercharged boiler, based on that, describes the furnace flame detect system installed on that boiler. After analyzing and discussing the flame images captured from experiments, a method to calculate Radiative Energy Signal (RES) is proposed. Analyses of RES show that working characteristics of the marine supercharged boiler cause fierce pulse of flame in the furnace, which makes heat absorption rate of riser change frequently with that, and finally leads to a fluctuation of drum water level.
     Taking structure of convective evaporation tubes and fluxion characteristics of flue gas into consideration, this paper studies the heat transfer in the evaporation system. By combining water wall with convective evaporation tubes, heat absorption rate of riser is obtained from the overall heat absorption rate in the furnace and heat absorption rate of the convective evaporation tubes outside furnace. The traditional thermal calculation can not reflect real-time heat absorption rate of riser, however, after gain relationship between RES and heat absorption rate of riser, this paper introduces heat absorption rate of riser calculated from RES into the dynamic mathematical model of evaporation system, in this way, dynamic characteristics of the steam-water system captured by the model are able to reflect the real-time combustion condition of flame in the furnace.
     Simulation programs are written with Fortran. Because of the application of interpolation method, simulation programs run quit fast. Respond characteristic curves obtained from simulation experiments are deeply researched. This paper shows that volume of steam and water under water level in the drum change differently after step disturb, and the integrative action causes the“false drum water level”phenomena.
     Simulation results of drum water level fluctuated by heat absorption rate of riser (RES) are given, analysis shows that pulse of heat absorption rate of riser leads to a significant fluctuation of drum water level. There is a great potential to control drum water level in advance by introducing RES into control system.
引文
[1]刘长和.船用增压锅炉技术的新进展[J].热能动力工程. 1999, 14 (4): 241–245.
    [2]吉桂明,李汇文.应用于海军舰船的增压主锅炉[J].锅炉制造. 1999, (1): 23–30.
    [3]牛克华.增压锅炉在舰船上的应用与发展[J].中国修船. 2007, 20 (5): 17–19.
    [4]程刚,黄素逸.船用主锅炉模块化仿真模型[J].华中理工大学学报. 1999, 27 (12): 86–88.
    [5]王敏,姜任秋.舰用增压锅炉动态特性仿真分析[J].机电设备. 2006, (3): 1–5.
    [6] Emara-Shabaik H.E., Habib M.A., Al-Zaharna I. Prediction of risers’tubes temperature in water tube boilers[J]. Applied Mathematical Modelling. 2009, (33): 1323–1336.
    [7] Kim H., Choi S. A model on water level dynamics in natural circulation drum-type boilers[J]. International Communications in Heat and Mass Transfer. 2005 (32): 786–796.
    [8] Mahlia T.M.I., Abdulmuin M.Z., Alamsyah T.M.I., et al. Dynamic modeling and simulation of a palm wastes boiler[J]. Renewable Energy. 2003, (28): 1235–1256.
    [9] ?str?m K.J., Bell R.D. Drum-boiler dynamics[J]. Automatica. 2000, 36 (3): 363–378.
    [10] Flynn M.E., O’Malley M.J. A drum boiler model for long term power system dynamic simulation[J]. IEEE Transactions on Power Systems. 1999, 14 (1): 209–217.
    [11] De Mello F.P., Fellow. Boiler models for system dynamic performance studies[J]. IEEE Transactions on Power Systems. 1991, 6 (1): 66–74.
    [12]卓旭升,周怀春,文忠林,等.火电机组过热器压力和温度的动态研究[J].中国电机工程学报. 2007, 27 (14): 72–76.
    [13]卓旭升,周怀春,杨超,等.燃煤汽包炉发电机组的动态建模及其运行数据验证[J].中国电机工程学报. 2008, 28 (17): 26–31.
    [14] Chu Y.T., Lou C., Cheng Q. Distributed parameter modeling and simulation for the evaporation system of a controlled circulation boiler based on 3-D combustion monitoring[J]. Applied Thermal Engineering. 2008, (28): 164–177.
    [15] Li B., Chen T.K., Yang D. DBSSP––A computer program for simulation of controlled circulation boiler and natural circulation boiler start up behavior[J]. Energy Conversion and Management. 2005, (46): 533–549.
    [16] Adam E.J., Marchetti J.L. Dynamic simulation of large boilers with natural recirculation[J]. Computers and Chemical Engineering. 1999, (23): 1031–1040.
    [17]初云涛,周怀春.基于炉内三维燃烧检测的蒸发系统分布参数建模[J].中国电机工程学报. 2006, 26 (9): 20–25.
    [18]初云涛,周怀春.蒸发系统分布参数特性动态仿真研究[J].中国电机工程学报. 2006, 26 (11): 17–22.
    [19]初云涛,周怀春,程强,等.电站锅炉过热系统分布式传热模型及其应用[J].中国电机工程学报. 2007, 27 (11): 62–67.
    [20] Li Y.Q., Ren T.J. Moving boundary modeling study on supercritical boiler evaporator[C]. In: 2009 Asia-Pacific Power and Energy Engineering Conference.
    [21] Ahnert F., Colonna P., Kikstra J.F. Moving boundary model of once through boiler evaporators[C]. In: Proceedings of IMECE’03, 2003 ASME International Mechanical Engineering Congress.
    [22] Li H.P., Huang X.J., Zhang L.J. A lumped parameter dynamic model of the helical coiled once-through steam generator with movable boundaries[J]. Nuclear Engineering and Design. 2008, (238): 1657–1663.
    [23] Abdalla M.A. A four-region, moving-boundary model of a once-through, helical-coil steam generator[J]. Annals of Nuclear Energy. 1994, 21 (9): 541–562.
    [24]范永胜,眭喆,姜学智,等.一种高精度的锅炉单相区段集总参数动态修正模型[J].中国电机工程学报. 2000, 20 (1): 50–54.
    [25]李海鹏,黄晓津,张良驹.螺旋管式直流蒸汽发生器的集总参数动态模型[J].原子能科学技术. 2008, 42 (8): 729–733.
    [26]周赟. 300MW燃煤机组辐射能信号检测、分析与建模[D].硕士学位论文.武汉:华中科技大学. 2005.
    [27] Lu S., Hogg B.W. Dynamic nonlinear modelling of power plant by physical principles and neural networks[J]. Electrical Power and Energy Systems. 2000, (22): 67–78.
    [28]张晓云,王元慧,李淑英,等.船用增压锅炉动态特性仿真研究[J].计算机仿真. 2010, 27 (7): 346–349.
    [29] Zhu Q.D., Leng X., Lei Y.M., et al. Research on dynamic water level model based on supercharged boiler[C]. In: Proceedings of 2008 IEEE International Conference on Mechatronics and Automation. 393–397.
    [30]齐治国.船用锅炉汽水系统数学建模及仿真的研究[D].硕士学位论文.哈尔滨:哈尔滨工程大学. 2003.
    [31]于文轩,唐胜利.船用增压锅炉的模块化仿真研究[J].机电设备. 2008, 3: 48-51.
    [32]杨志春.船用增压锅炉汽包水位动态特性建模及仿真[D].硕士学位论文.武汉:海军工程大学. 2006.
    [33]刘宝玲,何钧.火电厂汽包水位预警及故障诊断系统应用研究[J].电站系统工程. 2007, 23 (6): 49–51.
    [34]余南华,刘永文,张会生,等.余热锅炉汽包水位波动的不确定性成分研究[J].中国电机工程学报. 2005, 25 (7): 18–23.
    [35] Yang J.C., Cao X.L., Liu Y.W., et al. Development and dynamic simulation research of thermal model of drum level wave action and sloshing[J]. Journal of System Simulation. 2007, 19 (9): 2030–2036.
    [36] Cao X.H., Cao X.L. Development of model of drum level sloshing[C]. In: 2009 International Conference on Energy and Environment Technology. 269–274.
    [37]彰金宝.汽包水位变送器指示异常分析[J].热力发电. 2007, (1): 73–76.
    [38]余南华,马文通,王岳人.汽包水位多传感器测量中信号差异的研究[J].化工自动化及仪表, 2005, 32 (5): 50–53.
    [39]田晓林.汽包水位测量的补偿[J].工业仪表与自动化装置. 1989, (3): 3–6.
    [40]彭道刚,杨平,杨艳华,等.具有对负荷变化前馈补偿的锅炉汽包水位系统的神经网络内模控制[J].中国电机工程学报. 2005, 25 (5): 141–145.
    [41] Zhang Y.N., Li H.X. A self-adjusting fuzzy control for the drum water level[C]. In: Proceedings of the 2010 IEEE International Conference on Information and Automation. 2087–2091.
    [42] Yue W.J., Liu Y.X. Boiler drum level controlled by fuzzy self-adapting PID[C]. In: 2009 Second Asia-Pacific Conference on Computational Intelligence and Industrial Applications. 381–384.
    [43]孙俊.船舶锅炉汽包水位及其专家PID控制系统仿真[J].计算机仿真. 2007, 24 (4): 162–169.
    [44]王东风,韩璞,王国玉.锅炉汽包水位系统的预测函数控制[J].华北电力大学学报. 2003, 30 (3): 44–47.
    [45] Yu N.H., Ma W.T., Su M. Application of adaptive Grey predictor based algorithm to boiler drum level control[J]. Energy Conversion and Management. 2006, (47): 2999–3007.
    [46]朱齐丹,冷欣.基于约束预测控制的增压锅炉汽包水位系统研究[J].哈尔滨工程大学学报, 2009, 30 (11): 1246–1250.
    [47] Berndorfer T., Eitzinger C., Brenner A., et al. A multivariate approach to obtain real time behaviour of image processing applications[J]. Proceedings of SPIE. 2001, (4188): 10–16.
    [48] Tan T., Guan L., Burne J. A real-time image analysis system for computer-assisted diagnosis of neurological disorders[J]. Real-Time Imaging. 1999, (5): 253–269.
    [49] Mori K., Deguchi D., Sugiyama J., et al. Tracking of a bronchoscope using epipolar geometry analysis and intensity-based image registration of real and virtualendoscopic images[J]. Medical Image Analysis. 2002, (6): 321–336.
    [50] Zalewski K., Buchholz R. Morphological analysis of yeast cells using an automated image processing system[J]. Journal of Biotechnology. 1996, (48): 43-49.
    [51] Fathy M., Siyal M.Y. An image detection technique based on morphological edge detection and background differencing for real-time traffic analysis[J]. Pattern Recognition Letters. 1995, (16): 1321–1330.
    [52] Zhou Y., Srinivasan R., Lakshminarayanan S. Critical evaluation of image processing approaches for real-time crystal size measurements[J]. Computers and Chemical Engineering. 2009, (33): 1022–1035.
    [53] Wang F., Wang X.J., Ma Z.Y., et al. The research on the estimation for the NOx emissive concentration of the pulverized coal boiler by the flame image processing technique. Fuel. 2002, (81): 2113–2120.
    [54] Bae H., Kim S., Wang B.H., et al. Flame detection for the steam boiler using neural networks and image information in the ulsan steam power generation plant[J]. IEEE Transactions on Industrial Electronics. 2006, 53 (1): 338–348.
    [55] Gilabert G., Lu G., Yan Y. Three-dimensional tomographic reconstruction of the luminosity distribution of a combustion flame[J]. IEEE Transactions on Instrumentation and Measurement. 2007, 56 (4): 1300–1306.
    [56] Lu G., Yan Y. Temperature profiling of pulverized coal flames using multicolor pyrometric and digital imaging techniques[J]. IEEE Transactions on Instrumentation and Measurement. 2006, 55 (4): 1303–1308.
    [57] Brisley P.M., Lu G., Yan Y., et al. Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera[J]. IEEE Transactions on Instrumentation and Measurement. 2005, 54 (4): 1417–1421.
    [58] Bheemul H.C., Lu G., Yan Y. Digital imaging-based three-dimensional characterization of flame front structures in a turbulent flame[J]. IEEE Transactions on Instrumentation and Measurement. 2005, 54 (3): 1073–1078.
    [59] Lu G., Yan Y., Colechin M. A digital imaging based multifunctional flame monitoring system[J]. IEEE Transactions on Instrumentation and Measurement. 2004, 53 (4): 1152–1158.
    [60] Ballester J., Garcia-Armingol T. Diagnostic techniques for the monitoring and control of practical flames[J]. Progress in Energy and Combustion Science. 2010, 36: 375–411.
    [61]周怀春.炉内火焰可视化检测原理与技术[M].北京:科学出版社. 2005.
    [62] Lou C., Zhou H.C. Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation[J]. Combustion and Flame. 2005, (143) : 97–105.
    [63] Zhou H.C., Lou C., Cheng Q., et al. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace[J]. Proceedings of the Combustion Institute. 2005, (30): 1699–1706.
    [64] Luo Z.X., Zhou H.C. A combustion monitoring system with 3-D temperature reconstruction based on flame image processing technique[J]. IEEE Transactions on Measurement and Instrumentation. 2007, 56 (5): 1877–1882.
    [65] Zhou H.C., Luo Z.X. A new direct energy balance control concept for pc-fired boiler-turbine unit based on radiation energy signal[C]. In: The 17th Annual Joint ISA POWID/EPRI Controls and Instrumentation Conference. 2007, 471: 1–12.
    [66] Zhou H.C., Zhang S.S., Huang Y.L., et al. Monitoring of 2-D combustion temperature images in a 670 t/h utility boiler and simulation of its application in combustion control[J]. Dev. Chem. Eng. Mineral Process. 2000, 8 (3/4): 311–322.
    [67]罗自学,杨超,周怀春.炉膛辐射能信号的提取机理及其应用研究[J].动力工程. 2005, 25 (3): 374–377.
    [68] Huang B.Y., Luo Z.X., Zhou H.C. Optimization of combustion based on introducing radiant energy signal in pulverized coal-fired boiler[J]. Fuel Processing Technology. 2010, (91): 660–668.
    [69] Yang C., Zhou H.C., Huang Z.F. Visualization of 3-D temperature distribution in a 300 MW twin-furnace coal-fired boiler[J]. Journal of China University of Mining & Technology. 2008, (18): 33–37.
    [70] Wang H.J., Huang Z.F., Wang D.D., et al. Measurements on flame temperature and its 3D distribution in a 660 MWe arch-fired coal combustion furnace by visible image processing and verification by using an infrared pyrometer[J]. Measurement Science and Technology. 2009, (20): 1–12.
    [71] Jiang Z.W., Luo Z.X., Zhou H.C. A simple measurement method of temperature and emissivity of coal-fired flames from visible radiation image and its application in a CFB boiler furnace[J]. Fuel. 2009, (88): 980–987.
    [72]周国义,唐积才,李忠根.增压锅炉火焰图像采集系统构建[J].锅炉制造. 2010, 4: 28–32.
    [73]唐积才,周国义.船用增压锅炉燃烧火焰图像获取方法研究[J].船海工程. 2009, 38 (2): 107–109.
    [74]周国义,孙亦鹏,娄春,等.增压锅炉燃烧监测试验研究[J].热能动力工程. 2009, 24 (6): 766–769.
    [75]周怀春,罗自学,娄春.辐射能信号作为锅炉燃烧及机组运行重要监控参数的分析[J].动力工程学报. 2010, 30 (8): 593–600.
    [76]周国义.舰用锅炉原理[M].武汉:海军工程大学. 2002.
    [77]卓旭升,周怀春,陈楠.过热蒸汽比焓和密度的双线性拟合[J].华中科技大学学报(自然科学版). 2007, 35 (12): 111–113.
    [78]严家碌,余晓福,王永青.水和水蒸汽热力性质图表(第二版)[M].北京:高等教育出版社. 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700