钢管拱桥近断层地震响应及动力稳定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前全球地震活动明显进入多发期,更加需要深化有关抗震基本理论的研究。地震动是强非平稳过程,钢管混凝土拱桥受输入地震频谱特性的影响,非线性响应结果差别巨大。同时,结构动力失稳问题也要从地震响应角度出发进行研究,所以地震频谱特性的差异也会对动力稳定分析产生不容忽视的影响。而关于地震频谱特性对结构非线性响应的影响研究是当前结构抗震分析中的前沿课题,需要涉及数字信号处理及非线性动力学的多学科知识,目前难以使用准确的数学解析模型来描述地震的非平稳性。尽管地震频谱特性对结构反应影响复杂,但还是可以通过地震时变谱估计大致建立起地震能量的时频分布特征与结构非线性响应之间的联系。
     论文以有关地震频谱特性的研究作为主线,同时也关注了包括材料非线性、几何非线性、初始几何缺陷等因素对钢管混凝土拱桥的地震响应及动力稳定的影响问题。由于近断层地震(近场地震)更易对长周期大跨桥梁结构造成严重破坏,因此论文不但对近断层地震的频谱特性及其反应特点加以总结,还通过小波分析数值方法建立了能够反映近断层地震作用大小的指标,并就近断层地震作用下的动力稳定问题展开深入讨论,研究了钢管混凝土拱桥的动力失稳形态特点。论文主要进行了以下几个方面的研究:
     (1)介绍了现代非平稳信号时-频分析技术及各种时变谱估计方法,发现在它们在一定程度上均可描述地震信号的非平稳特性。由于改进L-P小波具有快速算法,并且计算数据量小,所得到的局部谱密度具有重要工程应用价值。提出利用改进L-P小波变换的二进正交特性对地震信号进行快速时-能密度分析,能够准确描述地震信号能量沿时域的分布特征。
     (2)以主跨132米的下承式钢管混凝土拱梁组合桥为实例建立了有限元模型并进行相应的非线性地震响应分析,考虑了初应力效应对模态分析的影响。研究发现,从整体上说结构的几何非线性效应不明显,更主要的是材料非线性的影响。随输入地震作用的增强,材料塑性的发展会改变内力的分布规律,并有利于结构受力。在研究地震非平稳性影响时,通过小波变换对地震信号进行分解与重构,阐明了反应谱无法充分表达地震频谱特性与结构反应之间的联系,而小波方法在确定地震信号时频分布特征及其频率成分对结构作用方面的优势明显。
     (3)就发生在我国台湾地区的集集地震(CHI-CHI,09/20/99)展开了各类场地近断层地震频谱特性研究。结果表明,随着近断层地震效应的增强,更易产生持续密集的低频能量脉冲,加速度反应谱峰值可能出现在中长周期段。结合近断层地震低频脉冲效应对长周期钢管混凝土拱桥的作用特点,提出可以通过二进离散小波分解方法将地震加速度信号进行频域分解并得到了能够描述结构非线性反应的地震作用指标WAPA (Weighted Average Peak Acceleration),体现了基于性能的结构抗震设计思想。
     (4)论文使用了IDA (Incremental Dynamic Analysis)动态增量分析方法并结合B-R (Budiansky-Roth)系统响应准则来确定钢管混凝土拱桥的动力失稳临界荷载。发现材料非线性的影响对动力失稳占主导作用,单纯考虑几何非线性的影响对动力稳定极限承载力分析仅具有理论意义。而钢管混凝土拱桥对初始几何缺陷的敏感性较低,其影响可不予考虑。在研究了近断层地震作用下的动力稳定问题后,指出脉冲型近震的破坏力巨大,有可能造成非线性极值动力失稳,结构的失稳临界荷载会明显降低。使用指标WAPA作为新的IDA分析强度指标IM (Intensity Measure),可显著改善IDA曲线簇的离散性,利于研究近断层脉冲运动对钢管混凝土拱桥结构所造成的动力失稳破坏特点。
In recent years, global seismic activity is more and more frequent, thus it needs more strengthened research in seismic design theory. The ground motion is a strong non-stationary process, and the nonlinear response results of CFST arch bridge vary enormously because of the influence of earthquake spectrum characteristics. Meanwhile, the research of structure dynamic instability needs to proceed from seismic response, the influence of the earthquake spectrum characteristics can not be ignored in dynamic stability analysis also. To research the relationship with the nonlinear response and the earthquake spectrum characteristics is an advanced subject yet, and it will involve with digital signal processing and nonlinear dynamics interdisciplinary knowledge. At present, there is no appropriate mathematical analytical model to describe non-stationary of the earthquake yet, but time-varying spectral estimation of the earthquake can make connections roughly between time-frequency distribution characteristics of the earthquake energy and the corresponding structure nonlinear responses.
     This paper is mainly concerned with the influence of earthquake spectrum characteristics to seismic response and dynamic stability of the CFST arch bridge, and the other influencing factors such as material nonlinearity, geometrical nonlinearity and initial geometric imperfection are given an intensive study also. Large-span arch bridge with long period is liable to meet with a serious damage by the action of strong near-fault earthquakes. In view of this fact, the spectrum characteristics of the near-fault earthquakes and the reaction characteristics are summarized, and a novel assessment indicator is proposed consequently through wavelet analysis method to identify seismic action effect of the near-fault earthquake. An intensive study on the problem of the CFST arch bridge dynamic stability under the action of near-fault ground motion is carried out also, and the characteristics of dynamic instability forms are investigated thoroughly. The main content of the paper includes the following aspects:
     (1) Several modern time-frequency distribution estimate methods are studied, and they are able to describe the non-stationary characteristics of the seismic signal in a certain extent. With the advantages of fast algorithm and small calculated data, local spectral density through improved L-P wavelet analysis is proved to be of great engineering application value. A novel time-energy density analysis method through dyadic orthogonal wavelet transform is proposed, and it can be beneficial to describe seismic energy distribution characteristics along time domain.
     (2) Nolinear seismic response analysis is conducted through an example of CFST arch bridge with132m main span, and the bridge type is a box girder and CFST arch combination bridge. The influence of initial stress effect about modal analysis is considered also. In general, research results suggest that geometry nonlinear effect is not obvious to the seismic response, and material nonlinearity influence appears to be more importantly. With the increasing earthquake effect, the development of yielding plastic materials can change the laws of internal force distributing, and improve the structure seismic performances to some extent. The earthquake signals are taken decomposition or reconstruction process by wavelet transform to research the influence of earthquake non-stationary. It is demonstrated that response spectrum can not sufficiently show the connection between earthquake spectrum characteristics and structure response, but the wavelet method has distinctive advantages in revealing earthquake time-frequency distribution characteristics and seismic effects of certain frequency components.
     (3) Near-fault ground motion spectrum characteristics are studied in-depth by the records of Taiwan chi-chi earthquake (CHI CHI,09/20/99) at three sites. The results show that with the enhancing near-fault seismic effects, low-frequency energy pulses become intensively and sustainable, and the peak value of acceleration response spectrum may also appears in long cycle section. Since long-span CFST arch bridge is liable to suffer a great destruction by near-fault ground motion with low-frequency impulsive effect, the near-fault earthquake acceleration signal is decomposed by dyadic discrete wavelet analysis in frequency domain then. Combined with the characteristics of low earthquake frequency pulses, a new assessment indicator WAPA (Weighted Average Peak Acceleration) of the seismic action is presented, representing the ideology of performance-based seismic design.
     (4) Dynamic stability research about the CFST arch bridge is carried through, and the instability critical load is determined by the dynamic incremental analysis (IDA) method and Budiansky-Roth system response criterion. It is indicated that material nonlinearity played a dominant role in the dynamic buckling development, and there is merely theoretical meaning only if the influence of geometric nonlinear is taken into account. At the same time, the influence of initial geometric imperfection can be ignored because of low sensitivity to the structure. Near-fault pulse-like ground motions are likely to resulting extremal dynamic instability, and the corresponding critical load will be significantly dropped. If the assessment indicator WAPA is chosen as the intensity measure (IM) in IDA analysis, the discrete level of the IDA curve cluster can be alleviated observably, and the performance features of dynamic instability about CFST arch bridge caused by near-fault pulsed movements will be more apt to be represented also.
引文
[1]吴乃森,王元生,何涛等.大跨度钢管混凝土拱桥地震响应分析[J].郑州大学学报(工学版)2009,30(3):30-34.
    [2]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [3]王克海.桥梁抗震研究[M].北京:中国铁道出版社,2007.
    [4]陈惠发,段炼.桥梁工程抗震设计[M].北京:机械工业出版社,2008.
    [5]孙焕纯,曲乃泅,林家浩.高等计算结构动力学[M].大连:大连理工大学出版社,1991.
    [6]吴云芳Newmark法在负刚度条件下的收敛性和稳定性[J].重庆建筑大学学报,2001,23(1):21-24.
    [7]中华人民共和国行业标准.高层民用建筑钢结构技术规程(JGJ99-98)[S].北京,1998.
    [8]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [9]Freeman S A, Nicoletti J P, Tyrell J V. Evaluations of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard[C]. Proceedings of 1st U. S. National Conference on Earthquake Engineering,1975,113-122.
    110] Chopra A K, Goel R K. A modal pushover analysis procedure for estimate seismic demands for buildings [J]. Earthquake Engineering & Structure Dynamics,2002, 31:561-582.
    [11]Fajfar P. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structural Dynamics,1999,28(9):979-994.
    [12]California Office of Emergency Services. Vision 2000:Performance based seismic engineering of buildings [R]. Prepared by Structural Engineers Association of California, Sacramento, CA. USA,1995.
    [13]Bertero V V. Strength and deformation capacities of buildings under extreme enviorments, In:Structrual Engineering and Structural Mechanics, Pister K.S., Prentice-Hall:Engwood Cliffs, NJ,1977,95-102.
    [14]Vamvatsikos. D and Cornell. C. A. Incremental dynamic analysis[J]. Eearthquake Engineering and Structural Dynamics,2002,31(3):491-514.
    [15]Vamvatsikos D., Cornell C. A. Direet estimation of seismic demand and capacity of multidegree-of-freedom systems through incremental dynamic analysis of single degree of freedom approximation[J]. Journal of Structural Engineering, ASCE.2005, 131(4):589-599.
    [16]Mwafy A. M., Elnashai A. S. Static Pushover versus dynamic collapase analysis of RC buildings[J]. Engineering Struetures,2001,23:407-424.
    [17]陆新征,叶列平.基于IDA分析的结构抗地震倒塌能力研究[J].工程抗震与加固改造,2010,32(1):13-18.
    [18]郭海山,沈世钊.单层网壳结构动力稳定性分析方法[J].建筑结构学报,2003,24[3]:1-9.
    [19]Federal Emergency Management Agency. FEMA350-Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings[M]. USA,2000.
    [20]宋晓东.桥梁高墩延性抗震性能的理论与试验研究[D].上海:同济大学,2004.
    [21]徐艳.钢管混凝土拱桥的动力稳定性能研究[D].上海:同济大学,2004.
    [22]吴玉华.大跨度钢管混凝土拱桥抗震性能及动力稳定研究[D].杭州:浙江大学,2009.
    [23]蔡绍怀.现代钢管混凝土结构(修订版)[M].北京:人民交通出版社,2007.
    [24]钟善桐.钢管混凝土统一理论——研究与应用[M].北京:清华大学出版社,2006.
    [25]中国工程技术标准化协会标准.钢管混凝土结构设计与施工规程(CECS 28:90)[S].北京:中国计划出版社,1992.
    [26]中国电力行业标准.钢管混凝土组合结构设计规程(DL/T 5058—1999)[S].北京:中国电力出版社,1999.
    [27]陈宝春,林嘉阳.钢管混凝土单圆管拱空间受力双重非线性有限元分析[J].铁道学报,2005,27(6):77-84.
    [28]颜全胜.钢管混凝土受压构件的弹塑性承载力分析[J].郑州大学学报(工学版),2003,24(2):29-32.
    [29]曾国锋,范立础,章关永.应用复合梁单元实现钢管混凝土拱桥的极限承载力分析[J].铁道学报,2003,25(5):97-102.
    [30]杨有福.钢管混凝土结构设计规程比较[J].福州大学学报(自然科学版),2004,32(5):608-613.
    [31]马欣伯,张素梅.各国规程关于圆钢管混凝土构件刚度计算方法的介绍与比较[J].工业建筑,2004,34(2):75-78,
    [32]李涛.大跨度钢管混凝土拱桥的抗震分析[J].公路,1996,41(1):10-13.
    [33]彭大文,王忠.中承式钢管混凝土肋拱桥的地震响应分析[J].工程力学,1997,14(增刊):220-223.
    [34]陈宝春,韦建刚.钢管混凝上(单圆管)拱肋刚度对其动力特性的影响[J].地震工程与工程振动,2004,24(3):105-109.
    [35]程海根,强士中.钢管混凝土提篮拱动力特性分析[J].公路交通科技,2002,19(3):63-65.
    [36]陈水盛,陈宝春.钢管混凝土拱桥动力特性分析[J].公路,2001,31(2):10-14.
    [37]孙潮,陈宝春.钢管混凝土拱桥抗震研究进展[J].哈尔滨工业大学学报,2003,35(增刊):240-243.
    [38]秦泽豹,孙潮,陈宝春.新桐山大桥动力特性的测试与分析[J].福建建设科技,2005,,(4):20,62.
    [39]Zhou-Hong Zong, Bijaya Jaishi, Ji-Ping Ge, et al. Dynamic analysis of a half-through concrete-filled steel tubular arch bridge[J]. Engineering Structures,2005,27(1):3-15.
    [40]郑家树.大跨度钢管混凝土拱桥非线性地震反应分析[D].成都:西南交通大学,2000.
    [41]郑家树,金帮元.大跨度钢管混凝土拱桥空间地震反应分析[J].西南交通大学学报,2003,38(1):53-56.
    [42]赵灿晖.大跨度钢管混凝土拱桥地震响应分析[D].西南交通大学博士学位论文,2001.
    [43]苏虹,胡世德.钢管混凝土拱桥的地震响应分析方法[J].同济大学学报,2003,31(4):404-407.
    [44]吴庆雄,陈宝春,高桥和雄.新西海桥的非线性地震响应分析[J].地震工程与工程振动,2008,28(5):55-64.
    [45]谢开仲,秦荣,李秀梅等.钢管混凝土拱桥的材料非线性地震反应分析[J].世界地震工程,2005,21(3):40-44.
    [46]谢文.大跨度钢管混凝土拱桥非线性地震响应分析[].长沙理工大学硕士学位论文,2008,4.
    [47]郑史雄,周述华,丁桂保.大跨度钢管混凝土拱桥的地震反应性能[J].西南交通大学学报,1999,34(3):320-324.
    [48]赵灿晖,周志祥.大跨度钢管混凝土拱桥在多维多点地震激励作用下的平稳随机响应[J].世界地震工程,2007,23(4):66-71.
    [49]胡世德,王君杰,魏红一等.丫髻沙大桥主桥抗震性能研究[J].铁道标准设计, 2001,21(6):21-25.
    [50]娄锋,朱向前,毕凯明.钢管混凝土拱桥地震反应分析[J].铁道建筑,2007,(6):1-4.
    [51]黄襄云,周福霖.钢管混凝土结构地震模拟试验研究[J].西北建筑工程学院学报(自然科学版),2000,17(3):14-17.
    [52]许成祥.钢管混凝土框架结构抗震性能的试验与理论研究[D].天津大学博士论文,2003.
    [53]李忠献,许成祥,王冬等.钢管混凝土框架结构抗震性能的试验研究[J].建筑结构,2004,34(1):3-6.
    [54]熊峰.钢管混凝土拱桥的抗震性能研究[D].四川大学博士学位论文,2001.
    [55]郭月哲.下承式钢管混凝土拱桥抗震性能及减震振动台试验研究[D].西安建筑科技大学硕士学位论文,20]0.
    [56]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [57]Spanos P D, Jale Tezcan, Petros Tratskas. Stochastic processes evolutionary spectrum estimation via harmonic wavelets[J]. Computer Methods and Application Mechanics Engineering,2005,194(12):1367-1383.
    [58]Spanos P D, Giaralisb A, Politis N P. Time-frequency representation of earthquake accelerograms and inelastic structural response records using the adaptive chirplet decomposition and empirical mode decomposition [J]. Soil Dynamics and Earthquake Engineering,2007,27(6):675-689.
    [59]曹晖,赖明,白绍良.地震地面运动的局部谱密度描述及其估计方法[J].世界地震工程,2004,20(2):43-49.
    [60]Wen Y K, Gu Ping. Description and simulation of non-stationary processes based on Hilbert spectra[J]. Journal of Engineering Mechanics,2004,130(9):942-951.
    [61]胡灿阳,陈清军.基于HHT法的地震地面运动局部谱密度估计[J].振动与冲击,2007,26(10):126-131.
    [62]樊剑,吕超,张辉.地震波时频特征及与结构地震响应的关系[J].工程力学,2010,27(6):98-105.
    [63]郭子雄,王妙芳.人造地震动合成的研究现状及展望[J].华侨大学学报(自然科学版),2006,27(1):7-11.
    [64]赵凤新,胡聿贤.地震动非平稳性与幅值谱和相位差谱的关系[J].地震工程与工程振动,1994,14(2):1-6.
    [65]刘小弟,苏经宇.具有天然地震特征的人工地震波研究[J].工程抗震,1992,(3):33-36.
    [66]曹晖,赖明,白绍良.基于小波变换的地震地面运动仿真研究[J].土木工程学报,2002,35(4):40-46.
    [67]樊剑,吕超,张辉.基于离散谐小波变换的地震波时变谱估计及非平稳地震波人工合成[J].地震学报,2009,31(3):334-341.
    [68]李国豪.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版社,1996.
    [69]王亚勇.关于设计反应谱、时程法和能量方法的探讨[J].建筑结构学报,2000,21(1):21-28.
    [70]肖明葵,刘纲,白绍良.基于能量反应的地震动输入选择方法讨论[J].世界地震工程,2006,22(3):89-94.
    [71]中华人民共和国交通运输部.公路桥梁抗震设计细则(JTG/T B02一01—2008)[S].北京:人民交通出版社,2008.
    [72]AASHTO. AASHTO LRFD Bridge Design Specifications[S].4th ed. Washington, D. C:American Association of State Highway and Transpo rtation Officials,2007.
    [73]W. Y. Yong, C. M. Xian. Dependence of Structure Damage on the Parameters of Earthquake Strong Motion[J]. European Earthquake Engineering.1990.
    [74]M. Rodriguez. A Measure of the Capacity Earthquake Ground Motions to Damage Structure[J]. Earthquake Engineering and Structural Dynamics.1994(23).
    [75]翟长海,谢礼立.估计和比较地震动潜在破坏势的综合评述[J].地震工程与工程振动,2002,22(5):2-7.
    [76]Wang Y Y and Cheng M X.Dependence of Structural Damage on the Parameters Of Earthquake Strong Motion[J]. European Earthquake Engineering,1990,(1):13-24.
    [77]叶列平,马千里,缪志伟.结构抗震分析用地震动强度指标的研究[J].地震工程与工程振动,2009,29(4):9-22.
    [78]李刚,程耿东.基于性能的结构抗震设计——理论、方法与应用[M].北京:科学出版社,2004.
    [79]王海云,谢礼立.近断层强地震动的特点[J].哈尔滨工业大学学报,2006,38(12):2070-2072.
    [80]李小军.对近年大震震害现象与工程地震问题研究的思考[J].国际地震动态.2001,8,26-31.
    [81]J. M. Wesolowsky etc. Seicmic isolation of cable-stayed bridges for near-field ground motions. Earthquake Engineering and Structural Dynamics[J].2003,32(14):2107-2126.
    [82]王东升,冯启民,翟桐.近断层地震动作用下钢筋混凝土桥墩的抗震性能[J].地震工程与工程振动,2003,23(1):95-102.
    [83]高学奎,朱晞,李辉.近场地震作用下深水桥墩的地震响应分析[J].工程抗震与加固改造.2006,28(3):83-87.
    [84]周前.大跨度刚构桥近断层脉冲型地震动非线性反应分析[D].哈尔滨工业大学硕士学位论文.2008.6.
    [85]李新乐,窦慧娟,朱晞等.缺乏近断层强震观测资料地区抗震设计规范反应谱研究[J].地震学报,2007,29(4):149-425.
    [86]孙利民,范立础.阪神地震后日本桥梁抗震设计规范的改订[J].同济大学学报,2001,29(1):60-64.
    [87]邬鑫,朱晞.近场地震的速度脉冲效应及简化冲击回归公式的检验[J].北方交通大学学报,2003,27(1):36-39.
    [88]韦韬,赵凤新,张郁山.近断层速度脉冲的地震动特性研究[J].地震学报,2008,28(6):629-637.
    [89]胡广书.数字信号处理——理论、算法与实现.第2版.北京:清华大学出版社,2003.
    [90]谢礼立,张晓志.地震动记录持时和工程持时[J].地展工程与工程振动,1988,1(18):31-38.
    [91]杜峰,唐岚,丁峻强.PSD和PWELCH函数的分析改进及应用[J],中国测试,2010,36(1):94-96.
    [92]何正嘉,訾艳阳,张西宁.现代信号处理及工程应用[M].西安:西安交通大学出版社,2007.
    [93]姚武川,姚天任.经典谱估计方法的MATLAB分析[J].华中理工大学学报,2000,28(4):45-48.
    [94]Gabor D. Theory of communication[J]. Inst. Elec. Eng.,1946,93:429-457.
    [95]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1999.
    [96]葛哲学,沙威.小波分析理论与MATLABR2007实现[M].北京:电子工业出版社,2007.
    [97]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [98]胡昌华.基于MATLAB的系统分析与设计小波分析[M].西安:西安电子科技大学出版社,2000.
    [99]Jones D L, Baraniuk R G. Efficient approximation of continuous wavelet transform[J]. Electronic Letters,1991,27(9):748-750.
    [100]张彤,杨福生,唐庆玉.基于Mellin变换的连续小波变换快速算法[J].信号处理,1996,12(4):342-349.
    [101]秦毅,秦树人,毛永芳.连续小波变换快速带通滤波实现算法的研究[J].振动与冲击,2008,27(12):23-27.
    [102]Basu Biswajit, Gupta V K. Non-stationary seismic response of MDOF systems by wavelet transform[J]. EESD,1997,26:1243-1258.
    [103]Arunasis Chakraborty, Basu Biswajit, Mira Mitra. Identification of modal parameters of a mdof system by modified L-P wavelet packets[J]. Journal of Sound and Vibration, 2006,295:827-837.
    [104]Basu Biswajit. Identification of stiffness degradation in structures using wavelet analysis[J]. Construction and Building Materials,2005,19:713-721.
    [105]任宜春,张杰峰,易伟建.基于改进L-P小波的时变模态参数识别方法[J].振动与冲击,2009,28(3):144-148.
    [106]曹晖,赖明,白绍良.适合于地震工程信号分析的快速小波变换法[J].工程力学,2002,19(4):141-148.
    [107]樊剑,袁涌,曾志和.基于谐小波变换的地震波非平稳随机模型建立[J].华中科技大学学报(自然科学版),2010,38(4):117-120.
    [108]李强,刘全金.分形信号的小波谱相关研究及仿真[J].计算机技术与发展,2008,18(10):40-45.
    [109]腾军,朱焰煌,周峰等.基于复Morlet小波变换的大跨空间结构模态参数识别研究[J].振动与冲击,2009,28(8):25-29.
    [110]伊廷华,李宏男,李兵等.地震动信号小波谱分析与结构损伤评估[J].振动与冲击,2006,25(5):32-36.
    [111]曹晖,赖明,白绍良.地震地面运动局部谱密度的小波变换估计[J].工程力学,2004,21(5):109-115.
    [112]于德介,程军圣.基于小波变换的时-能密度分析[J].振动工程学报,2001,14(1):109-112.
    [113]程军圣,于德介.基于时-能密度分析的滚动轴承故障诊断[J].振动与冲击,2001,20(3):79-81.
    [114]凌同华,李夕兵.基于小波变换的时能分布确定微差爆破的实际延迟时间[J].岩 石力学与工程学报,2004,23(13):2266-2270.
    [115]凌同华,李夕兵,陈文胜.基于小波分析的爆破地震效应评估[J].振动与冲击,2007,26(2):124-127.
    [116]严鹏,卢文波,罗忆等.基于小波变换时-能密度分析的爆破开挖过程中地应力动态卸载振动到达时刻识别[J].岩石力学与工程学报,2009(28)增1:2836-2844.
    [117]钟善桐.钢管混凝土拱桥设计中的几个问题[J].哈尔滨建筑大学学报,2000,33(2):13-17.
    [118]王君杰,周晶.地震动频谱非平稳性对结构非线性反应的影响[J].地震工程与工程振动,1997,17(2):16-20.
    [119]韦韬.近断层速度脉冲对钢筋混凝土框架结构影响的研究[D].中国地震局地球物理研究所.2005.硕士学位论文
    [120]马宏伟,罗英,彭福明等.自重对输电铁塔的风振响应和地震响应分析[J].长安大学学报(自然科学版),2002,22(6):58-60.
    [121]谢肖礼,赵国藩,邹存俊.钢管混凝土拱桥肋拱面内极限承载力全过程计算机模拟[J].土木工程学报,2004,37(5):54-58.
    [122]谢旭.桥梁结构地震响应分析与抗震设计[M].人民交通出版社,2006.
    [123]雷宇,赵雷,孟庆成等.钢管混凝土拱桥地震响应分析的参数研究[J].公路交通科技,2008,25(7):54-64.
    [124]赵灿晖,周志祥.大跨度钢管混凝土拱桥非线性地震响应分析[J].重庆建筑大学学报,2006,28(2):47-51.
    [125]R W克拉,彭津,王光远.结构动力学[M].北京:科学出版社,1981.
    [126]张晓志,谢礼立,于海英.地震动反应谱的数值计算精度和相关问题[J].地震工程与工程振动,2004,24(6):15-20.
    [127]张健,全先成,高玉峰等.人造地震动反应谱的计算[J].河海大学学报(自然科学版),2002,30(5):91-94.
    [128]李英民,赖明.工程地震动模型化研究综述及展望(Ⅲ)[J].重庆建筑大学学报,1998,20(5):108-114.
    [129]戴公连,李建德.桥梁结构空间分析设计方法及应用[M].北京:人民交通出版社,2001.
    [130]E.C.汉勃利.桥梁上部结构性能[M].北京:人民交通出版社,1982.
    [131]Zhu Bing, Xing Fan and Li Xiangjun. Dynamic performance of box girder and CFST arch combination bridge considering pile-soil interaction, in:Qiyuan Peng, Kelvin C.P. Wang, international Conference on Transportation Engineering 2009. U.S.A.:ASCE. 2009.1371-1377.
    [132]张建民,郑皆连,肖汝诚.钢管混凝土拱桥的极限承载能力分析[J].中南公路工程,2004,29(4):24-28.
    [133]高西全,丁玉美.数字信号.数字信号处理(第三版)[M].西安:西安电子科技大学出版社,2008.
    [134]Loh C H, Wan S, Liao W I. Effects of hysteretic model on seismic demands: consideration of near-fault ground motions[J]. The Structural Design of Tall Buildings, 2002,11:155-169.
    [135]Sucuoglu H, Nurtug A. Earthquake ground motion characteristics and seismic energy dissipation[J]. Earthquake Engineering & Structu ral Dynamics,1995, 24(9):1195-1213.
    [136]C. H. Loh, W. I. Liao, J. F. Chai. Effect of near-fault earthquake on bridges:Lessons learned from Chi-Chi earthquake [J]. Earthquake Engineering and Engineering Vibration.2002, 1(1):86-93.
    [137]A. K. Chopra, C. Chintanapakdee. Comparing of SDF Systems to Near-Fault and Far-Fault Earthquake Motions in the Context of Spectral Regions[J]. Earthquake Engineering and Structural Dynamics.2001,30 (12):176-178.
    [138]Malin, S.A..Ground motion prediction needs for engineered building design. Strong Ground Motion Simulation and Earthquake Engineering Applications [J]. Earthquake Engineering Research Institute.1985.
    [139]Pacific Earthquake Engineering Research Center. PEER strongmotion database. California:Berkley.http://peer.berkeley.edu/smcat/.
    [140]陈鹏,刘文锋,付兴潘.关于场地卓越周期和特征周期的若干讨论[J].青岛理工大学学报,30(6):30-35.
    [141]宋雅桐,朱继澄.地震动持续时间对多层结构反应的影响[J].地震工程与工程振动.1983,3(4):49-59.
    [142]Trifunac M D, Brady A G.. A study on the duration of strong earthquake ground motion[J]. Bulletin of the Seismological Society of America,1975,65(3):581-626.
    [143]谢礼立,张晓志.地震动记录持时与工程持时[J].地震工程与工程振动.1988,8(1):31-38.
    [144]中华人民共和国建设部.建筑抗震设计规范(GB 50011-2001)[S].北京,2001.
    [145]杨迪雄,李刚,程耿东.近断层脉冲型地震动作用下隔震结构地震反应分析[J].地震工程与工程振动,2005,25(2):119-124.
    [146]Benjamin JR, Associates. A criterion for determining exceedance of the operating basis earthquake[R]. EPRI Report NP-5930, Electric Power Research Institute, Palo Alto, California,1988.
    [147]吴泽玉,王东炜,李玉河等.关于结构频率控制方法的研究[J].铁道建筑,2006,(4):96-98.
    [148]吴琛,周瑞忠.基于小波变换的结构地震响应与能量计算分析[J].地震工程与工程振动,2006,26(6):24-30.
    [149]谢礼立,马玉宏,翟长海.基于性态的抗震设防与设计地震动[M].北京:科学出版社,2009:254.
    [150]曹晖,林学鹏.地震动非平稳特性对结构非线性响应影响的分析[J].工程力学,2006,23(12):30-35.
    [151]曹永红,曹晖,李英民.地震动中控制钢筋混凝土框架非线性响应的小波分量[J].地震工程与工程振动,2008,28(4):106-110.
    [152]史庆轩,杨文星,门进杰.单自由度体系非线性地震能量反应的计算[J].建筑科学与工程学报,2005,22(2):25-29.
    [153]Housner G W. Limit design of structures to resist earthquake [A]. Proceeding of First World Conference on Earthquake Engineering[C]. Berkeley:Earthquake Engineering Research Institute,1956,1-11.
    [154]胡冗冗,王亚勇.地震动瞬时能量与结构最大位移反应关系研究[J].建筑结构学报,2000,21(1):71-76.
    [155]刘哲锋,沈蒲生,胡习兵.地震总输入能量与瞬时输入能量谱的研究[J].地震工程与工程振动,2006,26(6):31-36.
    [156]SEAOC Vision 2000 Committee. Performance-based Seismic Engineering of Buildings[R]. Oakland, Calf: Wiley Inc,1995.
    [157]左琼,吴强,陈少林.速度脉冲型地震动瞬时输入能特性研究[J].工业建筑,2009,39(增刊):186-189.
    [158]李英民,丁文龙,黄宗明.地震动幅值特性参数的工程适用性研究[J].重庆建筑大学学报,2001,23(6):16-21.
    [159]Budiansky B., Roth R. S. Axisymmetric dynamic buckling of clamped shallow spherical shells[A]. Collected Papers on Instability of Shell Structures[C], NASA TND-1510,1962.
    [160]闻邦椿,李以农,徐培民.工程非线性振动[M].北京:科学出版社,2007.
    [161]舒仲周.运动稳定性[M].成都:西南交通大学出版社,1989.
    [162]李忠学,沈祖炎,邓长根.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报,2000,28(2):148-151.
    [163]李忠学,沈祖炎,邓长根.钢网壳模型的动力稳定性振动台试验研究[J].实验力学,1999,14(4):482-491.
    [164]陈应波,陈军明,吴代华.网壳结构在地震作用下的动力稳定研究[J].华中科技大学学报(自然科学版),2004,32(10):40-42.
    [165]Xing Fan, Zhu Bing and Wang Xiaoping. Stability analysis for CFST basket handle arch bridge, in: Qiyuan Peng, Kelvin C.P. Wang, international Conference on Transportation Engineering 2009. U.S.A.:ASCE,2009.1378-1383.
    [166]Balut N, Porumb D, Goncu V. Some aspects concening the behavior and analysis of single-layer latticed roof structures[C]. Stability of Metal Structures. Int. Coll. Paris, Prelim. Raport:1983.133-140.
    [167]沈世钊,陈听.网壳结构稳定性[M].北京:科学出版社,1999.
    [168]李忠学.初始几何缺陷对网壳结构静、动力稳定性承载力的影响[J].土木工程学报,2002,35(1):11-14.
    [169]严建科,吕婷,贺拴海.有初始几何缺陷混凝土系杆拱桥极限承载力分析[J].西安建筑科技大学学报(自然科学版),2010,42(1):54-59.
    [170]沈尧兴,赵志军,华旭刚.大跨度钢管混凝土拱桥的稳定性分析[J].西南交通大学学报,2003,38(6):655-657.
    [171]徐艳,胡世德.钢管混凝土拱桥的动力稳定极限承载力研究[J].土木工程学报,2006,39(9):68-73.
    [172]公路桥涵施工技术规范(JTJ041-2000)[S].北京:人民交通出版社,2000.
    [173]邢帆,祝兵,王学勇等.下承式钢管混凝土拱桥稳定性研究[J].桥梁建设,2009,1(190):25-28.
    [174]Papadimitriou K, Beck J L. Stochastic characterization of ground motion and applications to structural response[C].10th WCEE, Madrid, Spain,1992,2:835-844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700