多触点抗强光干扰红外触摸屏的设计与验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
触摸屏作为一种交互式输入设备,因其具有操作简单,使用灵活的特点得到了广泛的应用。红外触摸屏是其中的一种,它是在屏幕四边放置红外发射管和红外接收管,微处理器控制驱动电路依次接通红外发射管并检测相应的红外接收管,形成横竖交叉的红外光阵列。它无需薄膜,光透过率为100%,而且不受电流、电压和静电干扰,适宜恶劣的环境条件。但受到的外界光干扰很大,容易造成误操作,并且在应用中的分辨率不高。以上两点缺陷严重的制约了它在触摸屏市场上的发展,尤其是在机载显示领域中。同时多触点的电阻触摸屏、电容触摸屏相继问世,更是给红外触摸屏的性能提出了更高的要求。
     为了实现以上红外触摸屏的待改善的性能,本论文基于红外触摸屏的原理设计并开发出一种多触点、抗强光干扰、高分辨率的红外触摸屏,并对设计方案进行了验证。
     本论文中微处理器实时控制红外发射和接收模块,保证红外发射管与红外接收管一一对应,并将接收到的光强信号量化分级,利用触摸物的位置与接收的红外光信号强度一一映射的关系,实现了高分辨率,可达到2048×768;通过在红外接收管前安装对传播方向敏感的光准直沟道尽可能的削弱了外界光的干扰,同时根据检测不同状态下的光强信号,确定每对红外管的光强域值,并实时的调节该域值响应外界光的变化,通过以上的处理红外触摸屏可以在17600勒克司的环境光下正常工作,将触摸屏的抗强光干扰能力提高了近3倍;在检测完所有的触摸点位置后,判断手指触摸的先后,剔出其中的虚伪触摸点,得到精确的触摸位置,实现了红外触摸屏的多触点;通过VC编程,研究了在Windows下实现鼠标的平滑化处理、定位、单击、双击、抬手,以及指定调节亮度的区域的算法。
Touch screen as an interactive input device is extensively applied because of the simple operation and the flexible feature. Infrared touch screen is one of them. Infrared transmitters and infrared receivers are placed on the screen edges and microprocessor driving circuit is used to connect to the infrared transmitters and check the appropriate infrared receivers, which forms the infrared crossed arrays. Films are not needed, and the optical transmission is 100 percent. The current, voltage and electrostatic interference can make no difference on the screen, and so it is suitable for harsh environmental conditions. But the infrared touch screen is greatly affected by the light interference, causing the accidental operation easily. Meanwhile it is not high in the resolution of application. These two points above seriously constraint it in the market, especially in the development of applications in airborne human-computer interaction. At the same time, multi-points resistive touch screen and capacitive touch screen have gradually come into the market, which makes the performance of the infrared touch screen require much more.
     Based on the improvement of the infrared touch screen above, the design of the multi-touch, anti-intense interference, high resolution infrared touch screen design is presented and proved in the dissertation.
     In this dissertation, the emission module and the receiving module are controlled by the microprocessor chip to make the infrared receivers keep accord with the infrared transmitters. And the light signal received is graded. According to the relationship between the position of the touch and the integrity of the light signal, the high resolution is achieved, 2048 by 768; in front of the infrared receiver, the light collimation channels sensitive to the direction of propagation of light are installed to weaken the optical jamming around the environment. At the same time, according to detecting the light signal received in the different state, the threshold of the touch is determined. The threshold is adjusted real-timely to response to the change of the light around the environment. By the processing above, touch screen can normally work in the 17600 lx light and the ability of the anti-highlight jamming can nearly be enhanced by 3; after testing all the positions of the fingers touch, the false touch points are removed to get the exact coordinates and get the multi-touch infrared touch screen. With the programming of VC, the algorithm which makes the mouse smoothing process, orientation, click, double-click, identifies hand movements and appoints the area where the brightness will be modulated is researched.
引文
[1] Michael Tomordy. Airline with the person touch. IEE REVIEW November, 1998: 261-264
    [2] Schultz Kevin, Batten David, Sluchak Thomas. Optimal viewing angle for touch-screen displays: Is there such a thing? International Journal of Industrial Ergonomics, November 1, 1998, Vol.22: 343-350
    [3] Tzou Jyh-Hwa, Su Kuo L.The Development of the Restaurant Service Mobile Robot with a Laser Position System. Proceedings of the 27th Chinese Control Conference, July 16-18, 2008,662-666
    [4] Ying-Wen Bai, Hsing-Eng Lin and Wei-Chun Iau. Design and Implementation of an Integrated Man-Machine Interface by Touch Panel for an Embedded Electronic Measurement System. VECIMS 2008-IEEE International Conference, July 14-16, 2008, 978-984
    [5]张明.抗强光干扰的高精度红外触摸屏设计与实现[电子科技大学硕士论文].成都:电子科技大学光电信息学院,2008
    [6]刘新斌.红外触摸屏技术[J].多媒体世界,1995,9:44-45
    [7]张雪峰.触摸屏技术浅谈[J].现代物理知识,2004,16(3):43-45
    [8]岳庆来.变频器、可编程序控制器及触摸屏综合应用技术[M].北京:机械工业出版社,441-446
    [9]许桂华.触摸屏的技术特征[J].现代通信,2000,6:30-31
    [10] Prachi Patel, Predd. The Trouble With Touch Screens. IEEE SPECTRUM, January 2009: 11-12
    [11] R. N. Aguilar, G. C. M. Meijer. Fast Interface Electronics for a Resistive Touch Screen. 2002 IEEE, 1360-1363
    [12] Datasheet of TSD2015RM, Resistive Multi Touch Screen IC, ad semiconductor. July 2008
    [13] Eric So, Hong Zhang and Yi-sheng Guan. Sensing Contact with Analog Resistive Technology. 1999 IEEE, 806-811
    [14]杨邦朝,张治安.触摸屏技术及应用[J].电子世界,2003,2:79-80
    [15] Dietz, P. Leigh, D. Diamond Touch: a multi-user touch technology. In Proc. of UIST’01 (Nov. 11–14, Orlando, FL), ACM, NY, 2001, 219–226
    [16] Rekimoto, J. SmartSkin. An infrastructure for freehand manipulation on interactive surfaces. In Proc. of SIGCHI’02 (April20–25, Minneapolis, MN), ACM, NY, 2002, 113–120
    [17] Hotelling S., Strickon, J. A., Huppi, B. Q. Multipoint touch-screen. U. S. Patent Application 20060097991, 2006
    [18]刑丽娟,杨世忠.触摸屏的性能及应用[J].今日电子,2006,7:71-73
    [19] E. Dieulesaint, D. Royer, O. Legras. Acoustic Plate Mode Touch Screen. ELECTRONICS LETTERS, 3rd January 1991 Vol.27 (1): 49-51.
    [20] T. Katsuki, F. Nakazawa, S. Sano, Y. Takahashi, and Y. Satoh. A Compact and High Optical Transmission SAW Touch Screen with ZnO Thin-film Piezoelectric Transducers. 2003 IEEE, 821-824.
    [21]刘新斌.触摸-用户界面的新感觉[N].计算机世界,2001,28:B1-B3
    [22] Datasheet of LPC2132. Philips Semiconductors. 2005, 4
    [23]Datasheet of 74HC4051. Texas Instruments Inc. 1990, 12
    [24]张亮,卫星.基于RS-485总线的多通道数据监测系统[J].微计算机信息,2006,22(12): 104-106
    [25]陈晓东.采用RS-422接口标准的PC通信接口电路[J].电子技术应用,1992,4:21-22
    [26] Datasheet of Max3490. Maxim integrated products, 1994
    [27]周立功.深入浅出ARM7-LPC213X/214X(上册)[M] .北京:北京航空航天大学出版社,2005, 6
    [28] DataSheet of IR333C/HO-A.EVERLIGHT. 2000, 1
    [29] DataSheet of 74HC595.Philips Semiconductors. 2003, 6
    [30]翟震,张春玲.用74HC595芯片驱动LED的电路设计.机床与液压[J],2004,12:151-152
    [31] DataSheet of PT334-6B.EVERLIGHT. 2000, 1
    [32] DataSheet of ADS7830.Burr-Brown Products from Texas Instruments Inc. 2003-2005
    [33] The I2C-bus specification Version 2.1.Philips Semiconductors Inc. 2000, 1
    [34]尹东,刘东华,梁光明.TMS320VC5402与I2C总线接口的实现[J].微处理机,2002,1:46-48
    [35] DataSheet of SPX1117.Sipex Corporation. 2004
    [36]张明,黄子强.基于I2C总线的高分辨率红外式触摸屏设计.电子设计应用[J].2008,7:95-97
    [37]沈文星,张东来,龚丽雯,刘兵.一种红外屏电路的驱动电流自适应调节方案[J].红外,2005,6:21-25
    [38]唐云茂,王斐昊,黄世通.具有防光特性的红外触摸屏.中国专利,ZL200720079264.6,2008-03-12
    [39]刘新斌,叶新林,邹镇中.用于红外触摸屏的组合结构红外滤光框.中国专利,ZL01278403.6,2002-10-09
    [40]卢如西,李军明,周春景.一种多点触摸定位的方法.中国专利200710028038.X
    [41]卢如西,李军明,周春景.一种红外触摸屏及多点触摸定位的方法.中国专利200710031082.6,2008-03-26
    [42]刘建军,叶新林,刘新斌.一种识别红外触摸屏上多个触摸点的方法.中国专利200710117751.1,2007-11-14
    [43]张宏伟,黄子强.基于ARM7和VC实现的高分辨率红外触摸屏.电子元器件应用[J],2009, Vol.4:20-22
    [44]李现勇.Visual C++串口通信技术与工程实践[M].北京:人民邮电出版社,2002,64-66
    [45]龚建伟. Visual C++/Turbo C串口通信编程实践[M].北京:电子工业出版社,2007,64-65
    [46]张晓明.超声波触摸屏PC机接口驱动程序设计[J].计算机应用,2004, Vol.24:165-167
    [47]刘杰,黄子强.机载高分辨率LCD控制器的软硬件设计[电子科技大学硕士论文].成都:电子科技大学光电信息学院.2007,6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700