金属管道裂纹的金属磁记忆定量化评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道运输在现代化工业中占据及其重要的位置,由于腐蚀、磨损、意外损伤等导致的管道泄露造成了很大的损失,各国都对管道无损检测都给予了充分重视。管道存在应力集中是导致事故的主要根源。传统的无损检测方法没有办法对应力集中进行有效检测。金属磁记忆检测技术作为一种新的无损检测方法,在应力集中以及裂纹检测方面具有很多优点。
     本文介绍了金属磁记忆检测机理、检测系统的硬件和软件设计、以及金属磁记忆检测的定量化方法研究。检测系统的硬件主要由MSP430单片机,HMC1021Z型磁阻传感器,以及周边信号调理电路组成。软件设计包括单片机程序设计以及PC机上使用Matlab对数据进行处理的程序设计。检测系统的工作流程是:首先,通过传感器模块对实验板进行检测,检测到的信号经过信号调理电路变成MSP430单片机可以采集的信号,继而单片机A/D端口进行数据采集,并通过串行接口发送到PC终端。最后,使用Matlab软件对采集到的数据进行处理。
     本课题实验部分内容分两步进行,第一部分是对金属实验板进行检测。使用激光线切割的方法在实验板上预置了不同类型的裂纹,并通过振动的方法消除裂纹边缘处的残余应力。利用搭建好的金属磁记忆检测电路对实验板上不同类型的裂纹进行磁信号采集,在提取预置裂纹的原始磁信号基础上,对信号进行微分并归一化处理。而后,计算过零点峰峰值的梯度,并将该值作为检测缺陷/应力集中区的新的特征值。第二部分是验证实验,通过对金属管道裂纹进行检测,达到验证该特征值能否检测不同类型试件上裂纹/应力集中的目的。分析比较结果表明:过零点两端峰峰值梯度能够明显表征缺陷位置,并且具有良好的幅值一致性。由此得出结论,实验搭建的系统可以实现实验目的,同时过零点峰峰值比重可以作为金属磁记忆检测定量化分析的特征值。
Pipeline transportation which can cause large losses for its leaks occupies an important position in modern industry. As stress concentration is a major reason of damage incidents, countries give non-destructive testing of the pipeline full attention. However, the traditional method is not effective. Metal Magnetic Memory (MMM) has many advantages in case of testing and monitoring the crack.
     This paper introduces the MMM theory, design of detection system in hardware and software, and the quantitative analysis of MMM. The hardware of testing system includes MSP430, HMC1021Z magnetoresistive sensor, and the match signal processing circuit. The software design of testing system contains the design of MCU programming, and Matlab Data processing programming. The detection system working flow is:the signal which is processed by the conditioning circuit after detected by sensor module on test board, is collected by MSP430 microcontroller, then sent to the PC through serial interface, and finally, processed by Matlab data processing program.
     This experiment is carried out in two steps. The first step is to detect the metal plate preferences of different types of cracks by laser beam cutting method and being eliminate residual stress by vibration method. The magnetic signal around crack is collected by the testing system, and then processed in differential and scale. The new feature is found by calculating the gradient value on both sides of zero. The second step is to verify weather this new feature is effective on different work piece through testing the pipe which has pre-cracks. New feature has great consistency in testing different work piece. Therefore, the gradient value on both sides of zero can be the new feature in MMM quantitative analysis.
引文
[1]李世荣,宋艾玲,张树军.我国油气管道现状与发展趋势[J].油气田地面工程.2006.25(26):7.
    [2]袁方.成品油管道输送的优势及发展[J].石油库与加油站,2006.15(4):38-39
    [3]Gerhard MOOK, Jouri SIMONIN, Wolf Dieter FEIST. Detection and Characterization of Magnetic Anomalies in Gas Turbine Disks[J]. ECNDT 2006.4(13):15-17
    [4]宋小春,黄松岭,赵伟.天然气长输管道裂纹的无损检测方法[J].天然气工业,2007,7(7):103-106.
    [5]庾莉萍.我国油气管道运营安全管理存在的问题及保障措施[J].石油规划设计,2007.18(2):13
    [6]刘贵民.无损检测技术[M].北京:国防工业出版社,2006:67-80
    [7]刘富顺,汤明.无损检测基础[M].北京:北京航空航天大学出版社,2002:140-160
    [8]范向红,王少华,那晶。我国管道漏磁检测技术及其成就[J].石油工业技术督,2007(4):55-56
    [9]徐丽,张幸红,韩杰才.射线检测在复合材料无损检测中的应用[J].无损检测,2004,26(9):450-456
    [10]Howell,M LA Journal of the I Corr ST[J]. Industial Corrosion,1986,4(6):3-7
    [11]王丽,冯蒙丽,丁红胜,白世武,刘方明.金属磁记忆检测的原理和应用[J],物理测试2007,3(25):2
    [12]仲维畅.铁磁性物体在地磁场中的自发“运动磁化”[J].无损探伤,2004,28(5):9-10
    [13]黄松岭,李路明.用金属磁记忆方法检测应力分布[J].无损检测,2002,24(5):212-214
    [14]张卫民,董韶平,等.磁记忆法检测方法及其应用研究[J].北京理工大学学报,2003,23(8):330-333
    [15]Nick Fost. Pipline coating faults evaluated[J]. Anti-corrosion Method&Materials,1986, 33(10):7-13
    [16]D. C. Jile, S Hariharan, MK Devine. Magnescope:A Portable Magnetic Inspection System for Evaluation of Steel Structures and Components [J]. IEEE Trans. On Magnetics,1990,26(5):2577-2579
    [17]M. K. Devine, D. C. Jile. Composition Dependence of the Magnetomechanical Effect and Magnetostriction [J]. IEEE. Trans. On Magnetics,1996,32(5):4740-4742
    [18]M. J. Sablik, D. C. Jile. Modeling Effects of Varying Torsion in Magnetized Steel [J]. IEEE Transactions on Magnetics,2000,36(5):3248-3250
    [19]Y. H. Chen, D. C. Jile. The magnetomechanical Effect under Torsional Stress in a Cobalt Ferrite Composite [J]. IEEE Transactions on Magnetics,2001,37(4):3069-3072
    [20]Jerzy Kaleta. Magnetovision as a Tool for Investigation of Fatigue Process of Ferromagnetics[C]. SAE Brasil International Conference on Fatigue,2002,10(22):27-35
    [21]T. Sukegawa. Magnetic Nondestructive Evaluation of Ferromagnetic Steel Due to Mechanical Loading[J]. Electromagnetic Nondestructive Evaluation IOS Press,2002,5(7): 135-142
    [22]仲维畅.金属磁记忆法诊断的理论基础[J].无损检测,2001,23(10):424-426
    [23]温伟刚,萨殊利.金属磁记忆检测的机理及实现[J].北方交通大学学报,2002,26(4):67-70
    [24]丁辉,张寒,李晓红,文习山.磁记忆检测裂纹类型缺陷的理论模型[J].无损检测,2002,2(5):78-80
    [25]李路明,黄松岭,等.缺陷长度对漏磁场的影响[J].科学技术与工程,2002,2(4):52-53
    [26]李路明,王晓凤,黄松岭磁记忆现象和地磁场的关系[J].无损检测,2003,25(8):387-389
    [27]周俊华,雷银照.正磁致伸缩铁磁性材料磁记忆现象的理论探讨[J].郑州大学学报,2003,24(3):101-105
    [28]张卫民,刘红光.中低碳钢静拉伸时磁记忆效应的实验研究[J].北京理工大学学报,2004,24(7):571-574
    [29]张卫民,刘红光,等.低碳钢扭转过程弱磁信号变化及金属磁记忆效应[J].北京理工大学学报,2005,25(11):1003-1007
    [30]张卫民,刘红光,等.高强度钢磨削时的金属磁记忆现象初探[J].兵工学报,2005,26(3):375-378
    [31]于凤云,张川绪,吴淼.放置方向对磁记忆检测信号的影响[J].煤矿机械,2005,10(21):149-151
    [32]张静,周克印,路琴.受扭轴类零件磁记忆信号的初步研究[J].理化检验-物理分册,2005,41(12):617-619
    [33]邸新杰,李午申,黄炳炎,等.基于微分方法的焊接裂纹金属磁记忆特征研究[J].焊接技术,2006,35(4):14-15
    [34]邸新杰,李午申,等.焊接裂纹金属磁记忆信号的特征提取与应用[J].焊接学报,2006,2(27):19-22
    [35]邸新杰,李午申,等.焊接裂纹的金属磁记忆定量化评价研究[J].材料工程,2006,7(12):56-58
    [36]董丽虹,徐滨士,等.拉伸及疲劳载荷对低碳钢磁记忆信号的影响[J].中国机械工程,2006,17(7):742-745
    [37]蹇兴亮,周克印.构件形状对金属磁记忆检测的影响[J].理化检验-物理分册,2007,43(5):242-244
    [38]王朝霞,张为民.弱磁场下管件表面磁场的分布特征[J].无损检测,2007,29(8):437-439
    [39]任吉林,陈晨.磁记忆检测力-磁效应微观机理的实验研究[J].航空材料学报,2008,10(28):4144
    [40]李济民,张亦良,沈功田.拉伸变形过程中磁记忆效应及微观表征的实验研究[J].压力容器,2009,26(8):1520
    [41]李铿.电磁学[M].北京:国防工业出版社,1996:45-58
    [42]戴道生,钱昆明.铁磁学[M].北京:科学出版社,1987:120-160
    [43]近角聪信等编,韩俊德,杨膺善译.磁性体手册[M].北京:冶金工业出版社,1985:59-130
    [44]林俊明,林春景,林发炳.基于磁记忆效应的一种无损检测技术[J].无损检测,2000,22(7):297-299
    [45]Doubov A.A. Diagnostics of Metal Ttems and Equipment by Means of Metal Magnetic Memory [A].Proc of ChsNDT 7th Conference on NDT and International Research Symposium [C]. Shantou China:Non-Destructive Testing Institution, CMES,1999:181-187
    [46]温伟刚,萨殊利.金属磁记忆检测的机理及实现[J].北方交通大学学报,2002,26(4):67-70
    [47]Doubov A. A. Diagnostics of boiler tubes with usage of metal magnetic memory [M]. Energoatomizdat,1995:44-60
    [48]Doubov A. A. The Express Technique of Welded Joints Examination with Use of Metal Magnetic Memory [D]. NDT&E International 2000,33(6):351-362
    [49]Doubov A. A. Dignostics of equipment and constructions strength with usage of magnetic memory inspection [J]. Diagnostics 2001,35(6):19-29
    [50]粱志芳.焊接裂纹的金属磁记忆特征研究[D].天津:天津大学,2005:40-56
    [51]粱志芳,王迎娜,李午申,白世武,薛振奎.焊接裂纹金属磁记忆信号特征研究的进展[J].机械科学与技术,2007,26(1):81-83
    [52]邸新杰,李午申,白世武,刘方明,薛振奎.焊接裂纹的金属磁记忆定量化评价研究[J].材料工程,2006,7(14):56-59
    [53]孙艳婷,林伟国,陈磊.不同提离高度磁记忆信号的定量化分析方法研究[J].中国科学技术大学学报,2009,8(39):140-143
    [54]王国余,胡先龙,景亮等.新型磁阻传感器在地磁场测量中的应用[J].传感器技术,2002,21(10):44
    [55]张洪润,孙悦,张亚凡.传感器技术与应用教程[M].北京:清华大学出版社,2009:48-70
    [56]秦龙.MSP430单片机应用系统开发典型实例[M].北京:北京航空航天大学出版社,2003:112-145
    [57]魏小龙.MSP430系列单片机接口技术及系统设计实例[M].北京:中国电力出版社,2002:150-189
    [58]撖文广.基于金属磁记忆的智能清管器技术可行性研究[D].北京化工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700