火车制动粱端轴裂纹涡流检测成像系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,由于火车制动粱端轴断裂造成的火车制动粱损毁和脱落一直是威胁列车行车安全的一大隐患。而目前对于端轴裂纹的检测,正常采用的磁粉探伤方法,检测工序复杂、需要工人长期肉眼观察裂纹,效率较低、容易造成因探伤人员工作疲劳而人为漏检。开发一种高效、方便探伤工人操作的火车制动粱端轴检测方法和仪器已成为提升列车运行安全性的重要举措。为此本文研究采用涡流检测技术检测端轴裂纹,着力于其关键技术的改进和优化开发,如:采用涡流阵列式探头扫查方式代替传统单探头旋转扫查方式,采用静态扫描方式简化机械装置和操作的复杂性并减小探头的提离从而提高检测精度,以及系统采用全新的涡流扫描彩色成像方式,能够对火车制动粱端轴的表面裂纹情况作直观的显示,图像插值处理提高成像质量等。
     1.在传统涡流仪器电路中引入扫描控制电路,通过多片差分模拟开关AD7502同单片机8051构成的扫描电路,实现对于16通道探头线圈的分时扫描。利用AD采集卡的开关量输入口同单片机的通信实现对于16通道涡流信号的扫描同步和位置同步。从而将单通道的涡流阻抗显示系统扩展成为多通道涡流检测成像系统。
     2.针对火车制动粱端轴的材料特性和裂纹分布情况采用数学模型分析和经验分析并用的方法,确定了线圈参数,并设计了涡流阵列式探头。16通道环型阵列式探头既有放置式探头对于表面裂纹检测灵敏度高等特点,又有阵列探头大面积扫查的优点。本文中采用逐个探头校准的方法,对于各个探头线圈进行了零电势和电感量的校准,在探头制作上最大限度地保证了阵列探头线圈的一致性,经过放大之后的剩余零电势采用软件补偿的办法,从而较好得解决了阵列探头的一致性问题。
     3.基于LabVIEW全新开发平台的开发扫描成像软件。实现了多通道数据的扫描同步和位置同步采集。通过IO控制卡,实现了设备参数控制。继承了传统涡流成像方式,包括并阻抗显示、XY幅值分量显示,并采用了全新的涡流C扫描彩色成像显示。
     4.此外,本文作者根据涡流信号的特点和处理的高效性设计数据处理算法,包括采用均线增量异常判断法快速地消除涡流信号中的异常值,实现数字信号滤波。采用模最大值压缩法实现对于数据压缩显示。引入伪彩色增强技术增强了涡流扫查成像信号幅值的分辨率,采用图像二维线性插值算法,通过快速的线性插值矩阵算法对于数字图像进行插值处理,消除了多通道图像之间颜色突变,提高了C扫描成像的质量。
     本研究不仅对于基于阵列式探头的涡流检测成像系统的进一步深入研究提供了参考,而且也为火车制动梁端轴裂纹的专用检测仪器的生产提供重要的技术基础。
In our country, train brake braking and shedding caused by the cracks in brake beam axle is a hidden trouble to the safety of trains. Magnetic particle test used nowadays to inspect the cracks at beam axle is inefficient and with personal failure of defects report caused by the complicated testing procedure and long term defect viewing. So it is in urgent need of a new efficient, quick and easy operation testing method. For this reason, eddy current testing technique is used to test the cracks at beam axle in this paper with improvement and advance in some techniques such as: using eddy current array probe scan instead of single probe rotation scan for the reason that static scan has higher accuracy with shorter lift-off and simpler scan mechanical device than the single probe scan, using Pseudo color image display directly showing the crack in the surface of beam axle and using linear interpolation process to improve the quality of image. All these improve the ability of inspection cracks.
     1. Adding the scan circuit into the traditional eddy current instrument circuit, the multi-channel scan circuit which is built with several CMOS dual 4-channel analog multiplexer and Mod 8091 SCM achieves function of 16 channel probe coils shared-time scanning. In addition, the system collects data in scan synchronization and position synchronization based on the communication between data acquisition and SCM. The system is the production of upgrading an eddy current instrument to multi-channel eddy current imaging instrument.
     2. Through the analysis of the object's characters and its crack feature, by derivation the magnetic core pancake coil's Impedance analytical expression and analysis from experience, coil's character the coil's parameters is determined and the array probe is produced. 16 channel eddy current array probe has both the advantage of high sensitivity of surface crack and large area quick scanning. The difference between the coils is eliminated to minimum by coil adjustment one by one. The software will subtract the residual voltage of the coil and solve this problem completely.
     3. The eddy current scan imaging software is designed based on the new LabVIEW platform. The software realizes the functions of parameters control through IO control card and inherits the traditional eddy current display including eddy current impedance and XY value display. However, the software have the new way of display like C-scan imaging display.
     4. In addition, the author designs the digital process algorithm according to the character of eddy current signal character and processing efficiency. The algorithm includes digital denoising based on the increment abnormity judge method and signal maximum compression. In image process, pseudo color technique is used to enhance the image vision resolution and the image interpolation process algorithm is designed to improve the image quality.
     The research in this paper provides not only the conference to further research of eddy current imaging system but also a technical fundament to develop the special instrument which is used in train brake beam axle crack inspection.
引文
[1]吕云嵩.柔性机构在列车制动梁检测机上的应用[J].组合机床与自动化加工技术,2004,10:89-91
    [2]石全进.铁路货车制动梁端轴裂纹的原因及预防措施[N].淮北职业技术学院学报.2005.6:94
    [3]付心民,制动梁滚子轴裂纹的原因分析及对策[J].铁道机车车辆工人,2005,5:19-22
    [4]王新利.制动梁支柱产生裂纹的原因分析及改进措施[J].机车车辆工艺,2004,4(2):45-46
    [5]李开颜,郭 凯,郭文兰,姚中贵.制动梁裂纹分析[J].铁道车辆,2004,42(4):43-44
    [6]陈昭志.货车制动梁端轴进行超声波探伤的可行性[J].铁道运营技术.2004.10(2):38-39
    [7]汪令祥.制动粱检修中存在的问题和思考[J].上海铁道科技,2003,4:18-19
    [8]覃光禄.货车制动梁滚子轴开焊原因分析及防止措施[J].铁道车辆,2003,41(3):42-43
    [9]Hugo L Libby.Introduction to Electromagnetic Nondestructive Test Method[M],1971:180-213
    [10]游凤贺.涡流检测技术的某些新进展[J].无损检测,2001,23(2):70-77
    [11]Buckhart G L,Beissuer R E,Creek E A,etc.Eddy Current for Detecting Second-layer Crack Under Install Fastemer[R].Appears in NTIS No:AD-Al79871/8/HDM.1996,4:24-27
    [12]游凤荷,何福有等.涡流检测的信号处理技术[J].无损检测,2003.25(8):423-427
    [13]Ren Z,Razek A.Computation of 3-D electromagnetic field using differential forms based elements and dual formulations[J].The International Journal of Numerical Modelling:Electron Network Device and Fields,1996,9:81-98
    [14]任吉林.涡流检测技术近20年的进展[J].无损检测,1998,20(5):121-128
    [15]KRAWEZYK A TUROWAKI J.Recent development eddy current analysis[J]IEEE Trans Magn.1987.23:3032-3037.
    [16]范志勇.超声-涡流一体化NDE成像系统的研究.北方交通大学,1998.12
    [17]高印寒等,涡流实时成像技术的研究[J],仪表技术与传感器,2003(40):44-47
    [18]吴迪等.通用扫描成像检测软件的开发及应用.无损检测,2003.8:403-406
    [19]Leclerc R,Samson R.Eddy current array probe for corrosion mapping on ageing aircraft[M].Review of progress in quantitative nondestructive evaluation,1999,19
    [20]林俊明,李同滨.相控阵涡流传感器的研制及其应用[J].无损检测,2002,24(2):9-11
    [21]A.McNab and J.Thomson.An eddy current array instruments for application on ferritic welds[J].NDT&E International,1995,28(2):103-112
    [22]李家伟等.无损检测手册[M].北京:机械工业出版社,2002
    [23]美国无损检测学会(编),《美国无损检测手册》译审委员会(译),美国无损检测手册[M]电磁卷.世界图书出版公司,1999:138-290
    [24]雷银照,时谐电磁场解析方法[M],2000,9:178-219
    [25]张会云等.阻抗平面显示技术在涡流检测信号处理中的应用[J].无损检测,2003.1:44-47;
    [26]任吉林,吴礼平,李林.涡流检测[M].北京:国防工业出版社,1985:150-230
    [27]Haoyu Huang,Nozomu Sakurai,Toshiyuki Takagi~*,Tetsuya Uchimoto,Design of an eddy-current array probe for crack sizing in steam generator tubes[J],NDT&E International,2003,36:516-522
    [28]Kurokawa M,Miyauchi R,Enami K,Matsumoto M,New eddy current probe for NDE of steam generator tubes[J].Electromagnetic nondestructive evaluation(Ⅲ),IOS Press;1999:57-64.
    [29]谭祖根,陈守川.电涡流传感器的基本原理分析与参数选择[N].仪器仪表学报,1980,1(1):11-12
    [30]孙金立,袁英民,陈新波,放置式涡流检测传感器的设计与制作[N],青岛大学学报,2002,15(3):71-74
    [31]罗吃路,张屺,彭涛.涡流检测中X-R正交分解器的实现与误差分析.无损检测,1998,20(12):343-345
    [32]CMOS 4-/8-Channel Analog Multiplexer,AD7501/AD7502/AD7503,Analog Device
    [33]秦志远.张占睦,莫华.计算机图像处理可视化软件设计与实现[J].测绘学院报,2001.18:33-35.
    [34]Rafael C.Gonzalez,Richard E.Woods(著),阮秋琦 阮宇智 等(译),数字图像处理[M]第二版,电子工业出版社,2003:250-400
    [35]李爱华,王章瑞.基于虚拟仪器概念的虚拟逻辑分析仪的设计[J].计算机测景与控制,2003,11(10):812-814.
    [36]周求湛,钱志鸿等.虚拟仪器与LabVIEW 7 Express程序设计[M].北京:北京航空航天大学出版社,2004.6
    [37]刘君华等.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社.2003,1
    [38]杨乐平,李海涛等.LabVIEW程序设计与应用[M].北京:电子工业出版社,2001.7.
    [39]何海波等,数据采集软件开发中问题的分析[J],微机计算机信息,1999,15(2):28-29
    [40]庞晓晖,胡修林,张蕴玉等.高速数据采集系统的设计与实现[J],仪器仪表学报,2002,21(3):81
    [41]王伯雄.测试技术基础[M].北京:清华大学出版社,2003:70-238
    [42]邹理和.数字信号处理[M],北京:国防工业出版社,1985:130-276
    [43]程庆.数据压缩处理的方法与技术[J].计算机与网络,2006,(3):243-361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700