高速列车进入隧道产生压缩波的数值模拟及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速列车进入隧道时,一方面,在隧道入口处与列车运动方向相反的方向产生出口流。另一方面在隧道内产生以声速向前传播的压缩波。这些压缩波对列车车体产生较强的作用力,并且与压缩波相关的压力梯度对列车内的乘客和隧道内的维修人员产生生理上的不舒服感。在隧道出口处,产生一种叫做微气压波的压力脉冲,并造成环境问题。
     为了解决这个问题,本文以西南交通大学承担的国家自然科学基金项目“隧道缓冲结构空气动力学特征试验”的研究为依托,同时根据高速列车进入隧道所产生的流场的特征,建立了三维粘性、可压缩、不等熵非定常流模型。对高速列车通过有或无缓冲结构的隧道所产生的压缩波的机理进行了大量的实验和数值计算研究。研究结果表明:
     压缩波是列车进入隧道时形成的。隧道中正压最大值是由列车头部突入隧道时形成的压缩波引起的,并且该压缩波在隧道中以声速传播,而隧道中负压最大值是由列车尾部经过测点时形成的。在影响隧道压缩波的压力以及压力梯度的各种因素中,列车速度以及隧道阻塞比是主要因素,同时得出了隧道内压缩波的最大压力与列车速度的平方成正比,对于给定的列车断面积,隧道断面积越大,则压缩波的压力峰值及压力梯度越小。同时,还与列车在隧道内的运行方式有关。
     列车进入隧道的过程中,在隧道内产生活塞风,在隧道出口处产生出口流。隧道内活塞风不仅具有水平方向的波动,而且也有垂直方向的波动变化,其风速流场结构十分复杂,具有非定常的特性。同时,高速列车进入隧道时在隧道入口附近发生出口流现象,并形成涡流。在整个涡流的形成过程中,可以将这个过程分为连续的4个阶段,即① 涡的形成之前阶段;② 涡的发展阶段;③ 涡的传播阶段;④ 涡的破坏阶段。列车头部形状和列车速度对喷射流速度没有多大影响。
     三角形、钝头形、椭圆形、圆锥形和抛物线形共5种基本的列车头部形状对降低压力及压力梯度有一定的效果,其原因在于变化的列车头部形状延缓了压缩波上升的时间。其中,三角形列车头部形状具有最好的降低压力梯度的效果,其次为抛物线形,效果最差的为钝头形列车。列车头部长细比越大,降压效果越明显。
     竖井断面积的变化和竖井位置的改变均能够有效地降低隧道内的最大压力峰值和压力梯度的大小,其原因在于竖井的存在可以改变初始压缩波的波形,
    
    西南交通大学博士研究生学位论文
    第日页
    将初始压缩波分成几个小的波形。对于竖井的断面积对压力变化的影响,一般
    是断面积越大,压力变化越明显,但继续增大竖井的断面积后,降压效果反而
    不明显,最理想的竖井的断面积的大小为隧道断面积的30%~40%。对于竖井
    位置对压力变化的影响,在某一确定长度的隧道中,总存在着一个最佳的位
    置,在这个位置的竖井具有最佳的降压效果。
     缓冲结构的设置能够有效地降低隧道内的压力和压力梯度的最大值,其原
    因在于缓冲结构延长了压缩波压力上升的时间,降低列车突入隧道时所形成的
    最大压力梯度。
     当缓冲结构长度一定时,三种形状的缓冲结构对压缩波最大压力的影响的
    差异是很小的。而压缩波的压力梯度最大值,以不连续型最小,其次是线形
    的,而二次函数型最大。至于压缩波的压力梯度的平均值,按二次函数型、线
    形、不连续型缓冲结构的顺序变小。不管何种形式的缓冲结构,都是缓冲结构
    越长,断面积越大,则压力梯度值越小。但缓冲结构长度超过隧道的等效直径
    时,缓冲结构长度的影响变得很小。
     在缓冲结构上开口,能够继续降低最大压力梯度。最大压力梯度值,在缓
    冲结构的长度一定时,随开口率增大而增大。通过实验及计算表明,开口率在
    0.05~0.1的缓冲结构,是比较优越的。
The train entry into a tunnel generates an exiting flow at the portal with a direction opposite to the train movement and a compression wave that propagates into the tunnel at the speed of sound. Developments of high-speed trains have generated numerous engineering problems related to the presence of strong compression waves in tunnels. The high amplitude of compression waves provokes strong mechanical stresses on the train body and the associated high pressure gradients are responsible for both the aural discomfort of train passengers and the impulsive acoustical wave called the micro-pressure wave emitted in the surrounding area of tunnel exits. The micro-pressure wave is similar to the aeronautical sonic boom and caused serious environmental damages.
    To discover this problem, the paper relies on the item of the national natural science fund undertaken by Southwest Jiaotong University for the experimental studying on the aerodynamic feature of tunnel-hood, according to the field features induced by a high-speed train entering into tunnels with or without hood to establish three-dimensional unsteady viscous compressible isentropic flow to model compression wave.
    The experiment and calculation show that the compression wave which propagates along the tunnel at the speed of sound is formed when the train enters into the tunnel. The pressure amplitude of the compression wave creases to the positive maximum at the time the train nose just enters into the tunnel entrance while the negative pressure amplitude is formed when the train tail just passes by the measurement points. The train speed and the train/tunnel ratio are the main factors which influence the pressure amplitude and the pressure gradient of the compression wave, and draws that the maximum amplitude of the fully established compression wave is approximately proportional to the square of the train speed, the maxim- um of the pressure gradient is approximately proportional to the cube of the train speed. For a given train section area, the larger the tunnel section is, the weaker the compression wave amplitude and gradient are. It is also related to the train passing through the single or dual tracks tunnel.
    The calculation show that there are horizontal and vertical fluctuation for the wind induced by the train passing through tunnel, and the field of velocity is very
    
    
    complex, so it has the feature of unsteady fluid. At the same time, there is phenomenon of the annulus jet accompanied by a vortex ring when the train enters into the tunnel. The formation of the vortex ring constitutes four phases, the pre-vortex phase, the vortex development phase, the vortex convection phase and the vortex breakdown phase. The duration of each of these steps is found to be independent of both the studies parameters. Furthermore, neither the train speed nor the train nose geometry induced significant changes on the vortex ring evolution.
    The various shapes of train can decrease effectively the maximum pressure gradient because of modifying the generation process of the compression wave. The calculation releases that the maximum pressure gradient of the compression wave in the case of triangle of revolution is the smallest of the five fundamental nose shapes: a triangle of revolution, a quardrilateral of revolution, an ellipsoid of revolution, a paraboloid of revolution, and a circular cone. Then in the case of paraboloid of revolution, and the quardrilateral of revolution is biggest. At the same time ,the more the length of nose is ,the more the maximum pressure gradient is.
    The maximum pressure gradient of compression wave front increases during propagation in duct sections of constant cross-section in slab track tunnels and decreases at branched sections. The effective of the branch for reducing the maximum pressure gradient depends on the branch length, the branch cross-section area and the position of the branch from tunnel entrance.
    The change of the shaft cross-section area and the position from the tunnel entrance can decrease the maximum pressure amplitude and
引文
[1] 孙翔编译.世界各国的高速铁路.西南交通大学出版社.1992
    [2] 中国的交通运输.中国社会科学出版社.1987
    [3] 高家驹主编.高速铁路与广深准高速铁路概论.中国铁道出版社.1994
    [4] 周宏业等人.京沪高速铁路技术方案可行性研究.中国铁路.1993:No.10
    [5] S.Ozawa.Present situation and future outlook of aerodynamic and aero-acoustic problems of high - speed trains.QR of RTRI. 1992:Vol.33,No. 1
    [6] Zhang Xiaogang, Liu Yingqing. Numerical Computation of Flow over a Train in Cross - Winds. J. of SWJTU. 1995: No.2.
    [7] 张小钢,高速列车湍流绕流三维数值模拟研究.西南交通大学博士论文.1995
    [8] 雷波.明线上高速列车列车风和会车压力波的研究.西南交通大学博士论文.1995
    [9] 田红旗、梁习锋.准高速列车交会空气压力波试验研究[J] .铁道学报.Vol 20.No.4,1998,37-42.
    [10] 张健.高速列车动车头形风洞试验研究[J] .流体力学实验与测量.Vol.11,No.2,1997,6.
    [11] 山本彬也.列车空气力学.铁道技术研究报告.1983:No.1230
    [12] Yamamoto A.Pressure variation、aerodynamics drag of trains、and natural ventilation in SHINKSEN Type Tunnel.QR of RTRI. 1974:207--214
    [13] Henson D. A, Lowndes J. F. L. Design and ventilation system for an English channel tunnel. ASHRAE Journal. 1978
    [14] 前田达夫.车辆空气斗.RRR.1987
    [15] Vardy A E, Anandaranjah A. Initial design considerations for rail tunnel aerody - namics and thermodynamics. 4th ISAVVT. 1982:353--366
    [16] Eeaud J. TGV Atlantique-tunnel de villejust.Tunneling in soft and water-bearing grounds.AFTES. 1985
    [17] Myyakawa J. Hosaka S. Aerodynamics design of frontal shape for JR maglev train.13TM MAGLEV.19 93:174-179
    [18] 刘应清、雷波、雷兵.列车在隧道中行驶的空气动力学现象.西南交通大学风工程中心研究报告.1991
    [19] Vardy A E. Aerodynamic drag on trains in tunnels. Part1:Synthesis and definitions. Proc.Inst.Mech.Engrs. 1996:Vol.210
    [20] Vardy A E. Aerodynamic drag on trains in tunnels. Part2: Prediction and validations. Proc. Inst. Mech. Engrs., 1996: Vol. 210
    
    
    [21] Guoping D, Vardy A E.Tunnel temperature control by ventilation. 8th ISAVVT. 1994
    [22] S.Ozawa,T.Maeda,T.Matsumura,K.Uchida, Micro-pressure wave radiating from exit s of Shinkansen tunnels,Quartely Reports of RTRI 34(2)0993) 134-140.
    [23] T.Maeda. Micro-pressure wave radiating from tunnel portal and pressure variation due to train passage.QR of RTRI.1996:Vol.37,No.4
    [24] Vardy A E. Unsteady airflows in rapid transit systems Partl:measurements on the London transport Victoria line. Proc. Inst. Mech. Engrs.1980:Vol.194
    [25] Vardy A E. Unsteady airflows in rapid transit systems Part2: theoretical backgrou- nd and design parameters. Proc. Inst. Mech. Engrs. 1980:Vol. 194
    [26] 王建宇.高速铁路隧道设计参数的考虑.铁科院西南分院研究报告.1994
    [27] 郎茂祥.世界高速铁路的发展趋势.中国铁路报道.1997:No.2
    [28] 钱仲侯主编.高速铁路概论.中国铁道出版社.1994
    [29] 沈之介.加快我国高速铁路的发展.中国铁路.1993:No.7
    [30] 王其昌.高速铁路土木工程.西南交通大学出版社.1999
    [31] 王建宇.关于高速铁路隧道设计参数问题.世界隧道 1995:No.5
    [32] W.R.White,C.W.Pope.The use of a hydraulic analogy for modeling the unsteady flows in railway tunnels.3rd ISAVVT,BHRA,Paper H1,1979.
    [33] J.Valense,et al.Theoretical and experimental investigation of the piston effect in a twin tunnel.2nd ISSAVVT,BHRA,Paper E3,1976
    [34] Swarden, M. C. 1973 Vehicle-tunnel entry at subsonic speeds. Final Report — Part Ⅱ, Report No. FRA-RT-73-16 / DSR 76111-4, Prepared for United States Department of Transportation.
    [35] B.Dayman and A.E.Kurtz,Eeperimental studies relating to the aerodynamics of trains traveling in tunnels at low speeds. Proc 1th Int Symp on the Aerodynamics and Ventilation of Vehicle Tunnels,Paper G2,BHRA,Canterbury,UK,April 1973.
    [36] B.Dayman,AE.Vardy.Alleviation of tunnel entry pressure transients(report 1); exp- erimental program.In:Proceedings of the Third International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels, 1979.p.343-362.
    [37] 高品贤等.隧道空气压力波浅水槽拖动模型实验的实时检测.铁道学报.2000:Vol.22,No.3
    [38] C.W.Pope; The simulation of flows in railway tunnels using a 1/25th scale moving model facility. Proceeding of the 7th ISAVVT. 1991
    
    
    [39] 小沢智.出口微気压波研究.日本国有铁路铁道技术研究所.1979
    [40] T.Hara and J.Okushi.Model tests on the aerodynamics phenomena of high speed train entering a tunnel.Quarterly Report of the Railway Technical Research Institute,JNR,Vol 3,No 4,1962.
    [41] S.Ozawa,K.Tsukamoto,T.Maeda. 1976.Model experiments on devices to reduce pressure wave radiated from a tunnel(in Japanese).Rept.No.990, Railway Technical Research Institute,Japanese National Railways.
    [42] C.W.Pope.Tunnel aerodynamics.Proc of Railway Aerodynamics Symposium. Univ. of Nottingham.Dept of Civil Eng.,4.April 1984.
    [43] A.Woods,C.P.Pope.On the range of simplified one dimensional theories for alculating unsteady flows in railway tunnels.Proc.Third Int. Symp.on the Aerodynamics and Ventilation of Venicle tunnels,Sheffield,UK,19.- 21.3.1979. BHRA Cranfield, Paper C2.
    [44] J.A.Fox and D.A.Henson. The prediction of the magnitudes of pressure transients generated by a train entering a single tunnel Proc. Inst. of Civil Engineering. 1971: Vol.49
    [45] A.E.Wards,B.Dayman.Alleviation of the tunnel entry pressure transients:2. Theoretical modeling and experimental correlation.Proc Third Int.Symp.on the Aerodynamics and Ventilation of Venicle tunnels,Sheffield,UK, 19.-21.3.1979. BHRA Cranfield,Paper D1.
    [46] F.A.Fox,N.N.Higton.Pressure transients prediction in railway tunnel complexas. Proc Third Int.Symp.on the Aerodynamics and Ventilation of Venicle tunnels, She- ffield,UK, 19.-21.3.1979.BHRA Cranfield,Paper D1.
    [47] N.N.Parametric study of pressure changes in tunnels.Part 1:Single trains simple tun nels.ORE-UTC-Report C149/RP4,1982.
    [48] N.N.Parametric study of pressure changes in tunnels.Part 2:Single trains simple tun nels.ORE-UTC-Report C149/RP6,1983.
    [49] L.Gackenholz.Beitrag zur Erimittlung der aerodynamicschen Verhaltnisse in lange Eisenbahntunnels bei schnellen Zugdurchfahrten. Dissertation TU-Hannover(1973).
    [50] A.Yamamoto.Aerodynamies of train and tunnel.Proc.1st Int.Conf.on Vehicle Mech,, Detroit(1968).pp. 151-163.
    [51] K.Sutter.Der Luftwiderstand auf Eisenbahnzuge in Tunneln. Dissertation ETH Zurich.Oldenbourg,Munchen 1930.
    
    
    [52] J.Valensi,D.Favier, D.Magallen.Theoretical and experimental investigation of the piston effect in a twin tunnel.Proc Second Int.Symp.on the Aerodynamics and Ventilation of Vehicle tunnels, Cambridge, UK, 23.-25.3.1976.BHRA Cranfield,Paper E3
    [53] G.Fukuchi.A method of aerodynamics drag abatement for high speed train in single-tunnel.Proc.First Int.Conference on Vehicle Mechanics, Detroit. 1968,pp 68-87.
    [54] J.L.Peters.Aerodynamics of very high speed trains and maglev vehicles:State of the art and future potential.Proc.Int.Ass.Vehicle Design,SP 3(1983).Impact of aerody- namics on Vehicle Design.ISBN 0 90777601 9.PP 308-431.
    [55] D.W.Peacock.Approxmate method of calculation of air resistance of trains in tunnels(quasi-steady conditions).British Railways,Research & Development Division.Tech.memo AERO 29.(Jan. 1971).
    [56] B.Dayman,D.W.Kurtz.Experimental studies telating to the aerodynamics of trains traveling in tunnels at low speeds. Proc Third Int.Symp.on the Aerodynamics and Ventilation of Venicle tunnels,Canterbury,UK, 10.- 12.4.1973. BHRACranfield, Paper G2.
    [57] P.Pellis.Resistenze dell' aria marcia dei treni galleria.Ingeneria Ferroviaria. Nov. 1977,pp 867-875.
    [58] P.Marty,G.Coulmy,T.S.Luu.Etudes experimentales sur 1' aerodynamique des trains circulant a geande vitesse.14eme Colloque d' Aero dynamique appliquee (AAAF),Toulouse Nov. 1977.
    [59] K.Foerster.The crossing of two high-speed trains in a tunnel. Proc Fourth Int. Symp on the Aerodynamics and Ventilation of Vehicle tunnels,York,UK,23.-25.3. 1982.BHRA Cranfield,Paper C3.
    [60] M.Schultz and H.Sockel,Pressure transients in short tunnels.Paper to be Presented at the 7th Int Symp on the Aerodynamics and Ventilation of Vehicle Tunnels. BHRG Cranfield,UK,Nov 1991.
    [61] Iida, M.,Matsumura,T.,Nakatani,K.,Fukuda,T. & Maeda, T. 1996 Optimum nose shape for reducing tunnel sonic boom. Institution of Mechanical Engineers (London) PaperC514/015/96.
    [62] M.Kazuyase,et al. Attenuation of compression waves in a high-speed railway tunnel simulator.7th ISAVVT,BHRA, 1991.
    
    
    [63] Matsuo,K.,Aoki,T.,Mashimo,S. & Nakastu,E.1997 Entry Compression wave generated by a high-speed train entering a tunnel. Proceedings of the 9th Aerodynamics and Ventilation of Vehicle Tunnels. BHR Group Conference Series Publication No. 27, pp.925-934, ISBN 1 86058 0920.
    [64] Matsuo,K.,Aoki,T.,Mashimo,S.Nakastu,E.Entry Compression wave generated by a high-speed train entering a tunnel. In:Proceedings of the International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels,9th,Aosta Valley,Italy. 1997.
    [65] S.Aita,CFD aerodynamics of the French high-speed train.SAE 920343 1992.
    [66] S.Aita,N.Montmayeur,JF.Levy,A.Tabbal and G.Munck.Computational fluid dynamics for industrial development and design activities.IBM CFD W-ORKSHOP, Rome(Italy).
    [67] S.Aita,N.Montmayeur,JF.Levy,A.Tabbal and G.Munck.Pam-fluid,A multipurpose CFD code applied to research and design activities in automotive industry.VDI Congress,Wursburg(W.G)
    [68] 骆建军,高波,王英学.高速列车穿越隧道时二维非定常流的数值模拟.铁道学报.Vol.25.No.2,April 2003.
    [69] 骆建军,高波,王英学.高速列车穿越隧道时压力变化的数值模拟.中国铁道科学.Vol.24,No.3,Unly,2003.
    [70] 骆建军,高波,王英学.高速列车突入隧道与缓冲结构数值模拟.空气动力学报.Vol.21,No.3,Sep,2003
    [71] N.N.Problems arising from the running of high speed trains in tunnels:final report. ORE-UIC-Report C 149/RP13,1985
    [72] N.N.Synthesis of the results obtained in the aerodynamic acoustic and thermal fieds(final report). ORE-UIC-Report C167/RP12,1987
    [73] R.G.Gawthorpe, C.W.Pope. The measurement and interpretation of transient pressures generated by trains in tunnels. Second International Symposium on the Aerodynamics and Ventilation of Vehicle tunnels.Paper c3-35~c3-54.
    [74] Woods.W.A,Pope.C.W. A generalized flow prediction method for the unsteady flow generated by a train in a single track tunnel [J] . Wind Engineering and industrial aerodynamics,7(1981) pp331-360.
    [75] 小沢智,森藤良夫,前田达夫,木下真夫:出口微気圧波实验.铁道技术研究报告.No.1023,1976.4.
    
    
    [76] 野上佑作,水田孝:新干线附近发生噪音(第一报),日本公共卫生学会稿集,1975.10.
    [77] 西胁仁一,森卓支:新干线大野发生低周波噪音测定.日本音乐学会讲演论文集,1976.10.
    [78] 小沢智,内田俊秀,前田达夫:入口缓冲棚备后微气压波降低.铁道技术研究报告.No.1054,1977.9.
    [79] Howe,M.S. 1998a Mach number dependence of the compression wave generated by a high-speed train entering a tunnel.Journal of Sound and Vibration 212,23-36.
    [80] D.Choudhury. Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Ine.Technical Memorandum TM - 107,1993.
    [81] S.Sarkar and L.Balakrishnan. Application of a Reynolds - Stress Turbulence Model to the Compressible Shear Layer.ICASE Report 90 - 18,NASA CR 182002,1990.
    [82] Choi Y H, Merkle C L. The Application of Preconditioning in Viscous Flow [J] . J. Comput.Phys, 105,1993
    [83] E.Turkel.Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations," Journal of Computational Physics, Vol.72,1987,pp.277 - 298.
    [84] K.H.Chen,J.S.Shuen.Three Dimensional Coupled Implicit Methods for Sprary Combus tion Flow at all Speed[J] . AIAA Paper 94 - 3047, Jun.1994.
    [85] B.Van Leer,W.T.Lee and P.Roe.Characteristic Time Stepping or Local Preconditioning of the Euler Equations.AIAA Paper 91 - 1552,1991.
    [86] S.Venkateswaran,J.M.Weiss and C.L.Merkle.Propulsion Related Flow - Fields Using the Preconditioned Navier - Stokes Equations, AIAA Paper 92 - 3437,July, 1991.
    [87] P.L.Roe.Characteristic based scheme for the Euler equations.Annual Review of Fluid Mechanics,Vol. 18,1986,pp 337-365.
    [88] P.L.Roe.Characteristic Based Schemes for the Euler Equations.Annual Review of Fluid Mechanics, Vol. 18,1986,pp.337 - 343.
    [88] P.E.Buelow, S.Venkateswaran and C.L.Merkle.Grid Aspect Ratio Effects n the Convergence of Upwind Sehemes.AIAA Paper 95 - 0565,Jan. 1995.
    [90] athur, S.R.,and Murthy,J.Y.,A Pressure - Based Method for Unstructured Meshes. Numerical Heat Transfer,Vol.31,No.2,1997,pp. 195 - 216.
    [91] ameson A.,Time Dependent Calculations Using Multigrid with Applications to Un-
    
    steady Flow Past Airfoils and Wings.AIAA 91 - 1596,1991.
    [92] Gaitonde.A dual-time method for the solution of the unsteady Euler equation[J] . Aeronautical, 1994.10.
    [93] B.E.Launder and D.B.Spalding.The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering,3:269 - 289,1974.
    [94] J.R.Viegas,M.W.Rubesin and C.C.Horstman.On the Use of Wall Functions as Boundary Conditions for Two - Dimensional Separated Compressible Flows.Technical Report AIAA - 85 - 0180,AIAA 23th Aero-space Metallu - rgical Society,Palm Desert,CA, 1987.
    [95] Ogawa,T.and Fujii,K.,Numerical simulation of compressible flows induced by a tra in moving into a tunnel.CFD Journal, 1994,3,1.
    [96] Ogawa,T.and Fujii,K.,Numerical simulation of compressible flows induced by a tra in moving into a tunnel.AIAA Paper 93-2951,1993.
    [97] A.Godfrey.Step toward a Robust Preconditioning[J]. AIAA - 940520,1995.
    [98] Turkel E,Radespiel,Kroll N.Assessment of two Preconditioning Methods for Aerodynamics Problem[J] .Computer & Fluids, 1997,26(6):613 - 634.
    [99] D.L.Damofal Eigenmode Analysis of Boundary for the One - Dimensiona 1 Proconditioned Euler Equations[J] .N19990009096.
    [100] V.Bourquin,M.Mossi,R.Gregoire,J.M.Retry.The importance of aerodynamics on the design of high-speed transportation systems in tunnel: an illustration with the TGV and the Swissmetro WCRR97.Vol.E.pp. 507-513
    [101] B.Auvity,M.Bellenoue,T.Kageyama.,Structure and evolution of the airflow generated by a slender body enter near a tube. European Journak of Mechanics B/Fluids 21(2002)157-170.
    [102] S.Ozawa, Countermeasures to reduce booms from exit of SHINKSEN tunnels. Japanese Railway Engineering.1984: Vol.24, No.2
    [103] A.Yamamoto.Pressure variation aerodynamics drag of trains and natural ventilation in SHINKSEN Type Tunnel. QR of RTRI.1974:207--214.
    [104] 王铁城.空气动力学实验技术.航空工业出版社.1995
    [105] 陈克城.流体力学实验技术.机械工业出版社.1983
    [106] 清华大学水利学教研组.水利学(1980年修订本)上册.北京:人民教育出版社,1980.
    [107] Howe,M.S.1999 On the compression wave generated when a high-speed train
    
    enters a tunnel with a flared portal.Journal of Fluids and Structures 13,481-498.
    [108] Howe,M.S.1998b Prolongation of the rise time of the compression wave generated when a high speed train entering a tunnel. Proceedings of the Royal Society (London) A 455, 863 - 878.
    [109] Howe,M.S.1998c The compression wave produced by high-speed train entering a tunnel.Proceedings of the Royal Society (London) A 454, 1523 - 1534.
    [110] Auvity,B.,Bellenoue,M. & Kageyama,T.2001 Experimental study of the unsteady aerodynamic. eld outside a tunnel during a train entry. Experiments in Fluids 30, 221 - 228.
    [111] Auvity,B.1998 Phenomenes aerodynamiques instationnaires generees par l' entree d'un train dans un tunnel.Ph.D.Thesis,University of Poitiers, France.
    [112] Auvity,B.Kageyama, T.1996 Etude experimentale et numerique de l′ onde de compression generee par l'entree d'un train dans un tunnel.Comptes Rendus de l'Academie des Sciences,Paris,t.323,S!erie Ⅱb,Mecanique des Fluides,pp.87
    [113] Matschke,G.1999 Full scale tests on pressure wave e.ects in tunnel. TRANSAERO Symposium(Transient Aerodynamics Railway System Optimization),Paris, France.
    [114] T.Maeda,M.Kinoshita,H.Kajiyama, K.Tanemoto.Aerodynamic drag of Shinkansen electric cars(series 0,series 200,series 100).RTRI JNR1987;1371 (in Japanese).
    [115] T.Maeda. Aerodynamic drag of Shinkansen electric cars. RTRI JNR1987;1(3) (in Japanese).
    [116] T.Maeda,T.Matsumura, M.Iida,K.Nakatani,K.Uchida. Effect of shape of train nose on compression wave generated by train entering tunnel. In:International Conference on Speedup Technology for Railway and Magelev Vehicles, Yokohama,Japan, 1993.
    [117] F.K.Bannister and G.F.Mucklow Wave action following sudden release of compressed gas from a cylinder. Proc.Inst.Mech.Eng.,Vol.159. No. 42. (1948). p.269.
    [118] B.B.Cary Prediction of finite-amplitude waveform distortion with dissipation and spreading loss.J.Acous. Soc.Am..Vol.43.No.6(1968). p. 1364.
    [119] B.Auvity,M.Bellenoue.(1998)Vortex structure generated by a train-tunnel entry near the portal.In:Carlomagon GM;Grant I (eds) Proceedings of the 8th International Symposium on Flow Visualization.
    
    
    [120] B.Auvity,M.Bellenoue,T.Kageyama.Structure and evolution of the airflow generated by a slender body enter near a tube.European Journal of Mechanics B/Fluids 21(2002)157-170.
    [121] B.Auvity,M.Beilenoue,T.Kageyama.Experimental study of the unsteady aerodynamic field outside a tunnel during a train entry.Exp.Fluids 30(2)(2001)221-228. [20] A.Glezer, The formation of vortex rings, Phys. Fluids A 31(1988)3532-3542.
    [122] M.Gharib,E.Rambod,K.Shariff.A universal time scale for vortex ring formation. J.Fluid Mech.360(1998)121-140.
    [123] M.Nitsche,R.Krasny.A numerical study of vortex ring formation at the edge of a circular tube.J.Fluid Mech.276 (1994) 139-161.
    [124] T.T.Lim,T.B.Nickel.Vortex rings,in:S.I.Green(Ed.),Fluid Vortices, Kluwer,1995.
    [125] T.Maxworthy.Some experimental studies of vortex rings.J.Fluid Mech. 81(1977) 465-495.
    [126] Pullin DI(1978) The large-scale structure of unsteady self-similar rolled-up vortex sheets.Journal Fluid Mechanics 88:401-430.
    [127] S.Ozawa.Studies of micro-pressure wave radiated from a tunnel exit. RailwayTechnical Research Report(in Japanese),No. 1121, 1979.
    [128] S.Ozawa.,T.Maeda.,T.Matsumura.,K.Uchida.,H.Kajiyama & K.Tanemoto Countermeasures to reduce micro-pressure waves radiating from exits of Shinkansen tunnels.Proceedings of 7th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels,pp.253-266,1991.
    [129] S.Ozawa,T.Maeda,T.Matsumura,K.Nakatani & K.Uchida.Distortion of compression wave during propagation along Shinkansen tunnel.Proceedings of 8th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels,pp.211-226,1994.
    [130] M.Iida,K.Matsumura,K.Nakatani,T.Fukuda,T.Maeda.Optimum nose shape for reducing tunnel sonic boom.International Railway Conference on Better Journey Time-Better Business,Stech'96,ImechE, 1996.
    [131] M.Iida,T.Fukuda,K.Kikuchi,K.Murata & N.Yamauchi Infrasound problems occurring near tunnel portals of high-speed railway.Proceedings of 4th World Congress on Railway Research, 1999.
    [132] A.Yamauchi Micro-pressure wave radiated from tunnel exit.Preprint of Physical Society of Japan(in Japanese),No.4,1977.
    
    
    [133] S.Ozawa Studies of micro-pressure wave radiated from a tunnel exit. Railway Te chnical Research Report(inJapanese),No, 1121,1979.
    [134] T.Maeda.Reduction of micro-pressure wave radiated from tunnel exit by branches in tunnel.Railway Technical Research Report (in Japanese),No, 1167,1981.
    [135] A.Yamauchi,S.Ozawa,T.Maeda,M.Kinoshita & K.Tanemoto. Reduction of micropressure Experiments at Haruna and Nakayama Tunnel in Joetsu. Railway Technical Research Report (in Japanese),No, 1250,1983.
    [136] T.Fukuda,M.Iida, K.Maeno & H.Honma. Distortion of compression wave during propagating through slab track tunnel with short side branches of Shinkansen tunnel.Proceeding of the 22nd International Symposium on Shock Waves,pp. 1017-1022,1999.
    [137] R.G.Gawthorpe,C.W.Pope.The measurement and interpretation of tranient pressures generated by trains in tunnels.Second International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels.C3.Paper 35-54.
    [138] R.G.Gawthorpe,C.W.Pop,Reduced cross sections for high-speed tunnels in shallow ground,STECH,Vol. Ⅱ,Yokohama,Japan, 1993,pp. 185-190.
    [139] M.Bellenoue,T.Kageyama,Train/tunnel geometry on the compression wave generated by a high-speed train,in:B.Schulte-Werning,R.Gregoire,A. Matschke(Eds.), TRANSAERO-A Europen Initiative on Transient Aerodynamics for Railway System Optimisation, Results of the Brite/Euram Project "Transient Aerodynamics for Railway System Optimisation",Notes on Numerical Fluid Mechanics, Springer,Berlin,2001,to appear.
    [140] S.Ozawa,T.Maeda,T.Matsumura,K.Uchida,Effect of ballast on pressure wave propagationg through tunnel,in:International Conference on Speedup Technology for Railway and Maglev Vehicles,YoKohama,Japan,1993,November 22-26.
    [141] T.Aoki,K.Matsuo,H.Hidaka,et aI,Attention and distorsion of propagating compression waves in a high-speed railway model and in real tunnel,in:20th International Symposium on Shock Waves,Marseille,France,1995.
    [142] T.Aoki,N.Kondoh,K.Matsuo,S.Mashimo,et al,Transient of unsteady boundary layer induced by propagation compression wave,in: 20th International Symposium on Shock Waves,Marseille,France, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700