摩擦型抗浮地锚的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市建设的不断发展,大量带有地下室的高层建筑物、地下车库、地铁、地下商场等地下建筑物、构筑物的抗浮问题变得越来越突出,在解决抗浮问题中摩擦型地锚得到了广泛应用。虽然有关抗浮地锚的理论研究已取得长足发展,但由于影响地锚承载力的因素较多,这也使得合理进行地锚设计存在一定的难度。因此,本文对实际工程中的抗浮地锚进行现场试验测试,并采用可以考虑土体应变硬化-软化与体积剪胀模型的数值分析方法进行验证,在此基础上对层状土体中拉力摩擦型地锚和群锚的受力特性进行了深入的研究分析。本课题研究成果无论在理论还是在工程应用上,有具有重大的意义。主要研究工作如下:
     通过现场试验,抗浮地锚进行等级荷载张拉时,随着荷载的逐级增加,地锚锚头位移以及沿地锚不同部位的受力也逐渐增加;并且在不同等级荷载情况下,随着深度地锚各部位的轴力逐渐减小,从而说明抗浮地锚受拉时,荷载传递是由锚头向底部传递。通过数值分析,得到了与现场试验结果相近的规律,验证了数值分析方法的合理性和有效性。
     本文对成层土体中的摩擦型地锚进行了受力分析,随着地下水位的升高,地锚锚固力将会降低;锚固在基础底板下的垂直地锚,在开挖深度大于5m后,锚固力受超固结比的影响而趋于定值。将层状土体简化成单层土体来计算地锚的锚固力其误差不大。但在层状土体中的地锚宜采用双层保护,以免水泥浆体开裂,造成钢绞线锈蚀,影响地锚的长期锚固力。地锚的拉拔力随SPT-N值、覆土深度、锚固段长度及地锚直径的增加而提高,其中在受力范围内又以增加地锚锚固段长度的效果最佳。
     对群锚研究而言,由数值分析发现,对于2×2排列的群锚,水平间距为2D(D:地锚直径)时,群锚效应系数有75%~80%;当水平间距大于6D后,群锚效应系数可达98%以上,甚至不受群锚效应的影响。群锚周围土体的屈服区域随覆土深度增加而增加,增加地锚的水平间距能减少地锚拉拔力受群锚效应的影响。比较2×2与3×3排列群锚的群锚效应与水平间距的关系中发现,在相同的水平间距下3×3排列的群锚受群锚效应的影响比2×2排列群锚显著。
With the development of city construction, buoyancy effects of buildings, such as tall building, subway, underground supermarket and so on, are getting more and more serious; at the same time, anchors are widely employed to withstand uplift forces. During the last many years various researchers have proposed approximate techniques to estimate the uplift capacity of soil anchors. The majority of past research has been experimentally based and, as a result, current design practices are largely based on empiricism. In contrast, very few rigorous numerical analyses have been performed to determine the ultimate pullout load of anchors because of many factors involved in this procedure. To evaluate the uplift behavior of shaft tension anchors in layered soils and frictional anchor groups, a constitutive model for a strain hardening–softening and volumetric dilatancy model was quoted, a series of triaxial CID and CU tests on clay and sand were performed to obtain the parameters needed for the soil model. In addition, filed tests on a single shaft anchor and an anchor group were conducted in layered soils. Thus, study results will prove very useful for future research and design of anchors in practice. The following conclusions can be drawn:
     As to tension anchor, with the increasing of loading, the head displacement and the force of anchors were also increased. Under the same loading level, the normal forces of the anchor decreased as the embedment depth increased. The uplift load was transmitted from top to the bottom along the bounded length. The load-displacement relations and ultimate loads calculated from numerical analyses produced good agreement with those measured by field tests not only for the single anchor but also for the anchor group.
     As to the anchor in layer soil, the higher elevations of ground water table the less anchorage capacity. For a vertical anchor which wad anchored on foundation mat, the effect of over consolidation ratio on anchorage capacity was not evident, when depth of excavation was greater than 5m. There is not much distinction on anchorage capacity between an anchor installed in a pure soil and a layer soil, if their average SPT blow counts are equal. However, when an anchors was located in a layer soil, the friction stress occurs discontinue behavior, the double protection should be used in fixed length for keeping long term anchorage capacity. Whether SPT blow count, overburden depth, fixed length or diameter of an anchor increased, the anchorage capacity also increased. Increasing fixed length should be the optimum method to increase the anchorage capacity.
     When a 2×2 anchor group with spacing of 2D (D: anchor diameter), efficiency of the anchor group was calculated to be only 75%~80%. There is no interference when spacing was 6D, and the efficiency of an anchor group could more than 95%. The yielding zone of the anchor groups increase as overburden depth increase. The efficiency of anchor groups can be eliminated as the anchors spacing are increase horizontally. It can be found that from the numerical results, the efficiency of 3×3 anchor group is greater than that of 2×2 anchor group.
引文
[1] Adams J I, Hayes D C. The uplift capacity of shallow foundations. Ontario Hydro Research Quarterly, 1967,19 (1):1-13.
    [2] American Concrete Institute (ACI), Building Code Requirements For Reinforced Concrete and Commentary, ACI 318-95, ACI 318 R-95, Farmington Hill, Mich, 1995.
    [3] Baker W H, Kondner R L. Pullout load capacity of circular earth anchor buried in sand. National Academy of Sciences, Highway Research Board, Report,1966, 108:1-10.
    [4] Balla A.The resistance to breaking out of mushroom foundation for pylons. In: Proc of the 4th International Conference on Soil Mechanics and Foundation Engineering,1961. 69-76.
    [5] Benmokrane B, Xu Hai-xue , Bellavance E. Bond strength of cement grouted glass fiber reinforce plastic(GFRP) anchor bolts . Int J Rock Mech. Min Sci & Geomech Abstr , 1996, 33(5):455-465.
    [6] Bowles J E. Foundation Analysis and Design, Fifth Edition, Mcgraw-Hill Book Company, New York, 1996.
    [7] Briaud J L. Should Grouted Anchors Have Short Tendon Bond Length. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(2): 110-119.
    [8]蔡承恩.砂土中锥型扩座地锚荷重-位移关系之预测模式,台中:朝阳科技大学硕士学位论文, 1999.
    [9]陈国周,贾金青.拉力型锚杆应力分布的非线性分析.地下空间与工程学报, 2008,4(1): 45-50.
    [10] Chen W F. Limit Analysis and Soil Plasticity. Amsterdam: Elsevier Science, 1975.
    [11] Chen W F, Han D J. Plasticity for Structural Engineers, Springer-Verlag, New York, 1987.
    [12] Chen W F, Saleeb A F. Constitutive Equations for Engineering Material, Vol. 1, Wiley- Interscience, New York, 1981.
    [13]陈棠茵,王贤能.抗浮锚杆应力-应变状态的线弹性理论分析.岩土力学, 2006,27(11): 2033-2036.
    [14]程良奎,范景伦,韩军,等.岩土锚固.北京:中国建筑工业出版社, 2003.
    [15]程良奎.岩土锚固研究与新进展.岩石力学与工程学报, 2005,24(21):3803-3811.
    [16] Clemence S P, Veesaert C J. Dynamic pullout resistance of anchors in sand. In: Proc of International Symposium on Soil Structure Interaction,India,Roorkee,1977.389-397.
    [17] Cornforth D H. Prediction of Drained Strength of Sands form Relative Density Measurements, Evaluation of Relative Density and Its Role in Geotechnical Peojects Involing Cohesionless Soils, ASTM, 1973, STP 523: 281-303.
    [18] Das B M, Seeley G R. Inclined Load Resistance of Anchors in Sand, Journal of Geotechnical Engineering Division, ASCE, 1975, 101(GT9):995-998.
    [19] Davis E H. Theories of plasticity and the failure of soil masses. In: Soil Mechanics, London,1968, 341-380.
    [20] Deasi C S, Christian J T. Numerical Methods in Geotechnical Engineering, McGraw-Hill Book Company, New York, 1978.
    [21] Dickin E A, Leung C F. Centrifugal model tests on vertical anchor plates. J Geotech Eng Div, ASCE,1983,109:1503-1525.
    [22] Dickin E A, King G W. Numerical modeling of the load–displacement behavior of anchorwalls. Comput Struct,1997,63(4):849-858.
    [23] Dickin E A, Laman M. Uplift response of strip anchors in cohesionless soil. Advances in Engineering Software, 2007, 38(1):618-625.
    [24] Duncan J M, Chang C Y. Nonlinear Analysis of Stress and Strain in Soils, Journal of the Soil Mechanics and Foundations Division, ASCE, 1970,96(SM5):1629-1653.
    [25] Drucker D C, Prager W, Greenberg H J. Extended limitdesign theorems for continuous media. Quarterly of Applied Mathematics,1952, 9(4):381-391.
    [26] Fellenius W. Mechanics of Soil[M]. 1926, Statika Gruntov, Gosstrollzdat.
    [27] FIP Commission on Practical Construction. Recommendations for the Design and Construction of Pre-stressed Concrete Ground Anchors, FIP, Wexham Springs, 1982, 31.
    [28] Geddes J D, Murray E J. Plate anchor groups pulled vertically in sand. Journal of Geotechnical Engineering, ASCE,1996, 7:509-516.
    [29] Ghaly A, Hanna A. Ultimate pullout resistance of single vertical anchors. Can Geotech J, 1994,31(5):661-672.
    [30] Ghaly A, Hanna A and Hanna M. Uplift Behavior of Screw Anchors in Sand. I:Dry Sand, Journal of Geotechnical Engineering Division, ASCE, 1991, 117(5): 773-793.
    [31] Giffels W C, Graham R E, Mook J F. Concrete cylinder anchors proved for 345-KV tower line. Electrical World, 1960, 154:46-49.
    [32] Hanna T H. Foundation in Tension-Ground Anchors, McGraw-Hill Book Company, New York, 1982.
    [33] Hansen B. Line Ruptures Regarded as Narrow Rupture Zones: Basic Equation Based on Kinematic Considerations, Proceedings, Conference on Earth Pressure Problems, Brussels, 1958, 1: 39-48.
    [34] Head K H. Manual of soil Laboratory Testing, John Wiley and Sons. Inc, New York, 1986.
    [35] Hill R. The mathematical theory of plasticity.1956, Oxford: Clarendon.
    [36] Hobst L and Zajic J Z. Anchoring in Rock and Soil, Elsevier Scientific Publishing Company, New York, 1983.
    [37] Hsu S T. A Constitutive Model for The Uplift Behavior of Anchors in Cohesionless Soils, Journal of the Chinese Institute of Engineers, 2005, 28(2): 305-317.
    [38] Hsu S T, Liao H J. Uplift Behavior of Cylindrical Anchors in Sand, Canadian Geotechnical Journal, 1998, 35(1):70-80.
    [39] Ilamparuthia K, Muthukrishnaiah K. Anchors in sand bed: delineation of rupture surface. Ocean Engineering,1999, 26:1249-1273.
    [40] ITASCA Consulting Group, Inc, FLAC:Fast Lagrangian Analysis of Continua, Version3.3, Vol. 1-3, Minnesota, 1996.
    [41] Janbu N. Soil Compressibility as Determined by Oedometer and Triaxial Tests, European Conference on Soil Mechanics and Foundation Engineering, Wissbaden, Germany, 1963,1: 19-25.
    [42] Jeng S F, Huang H T. The Holding Mechanism of Under-reamed Rockbolts in Soft Rock, International Journal of Rock Mechanics and Mining Sciences, 1999, 39: 761-775.
    [43]贾金青,宋二祥.滨海大型地下工程抗浮锚杆的设计与试验研究.岩土工程学报, 2002, 24(6):769-771.
    [44] Khadilkar B S, Paradkar A K, Golait Y S. Study on rupture surface and ultimate resistance ofanchor foundations. In: Proc of 4th Asian Regional Conference on SM and FE, Bangkok, Thailand, vol.1,1971.121-127.
    [45] Kim N K. Performance of Tension and Compression Anchors in Weathered Soil, Journal of Geotechnical Engineering, ASCE, 2003, 129(12):1138-1150.
    [46] Knut H A, Philippe J, Dirk L, Hans P J. Centrifuge tests on installation of suction anchors in soft clay. Ocean Engineering,2005,32:845-863.
    [47]孔宪宾.土-锚杆界面模型的试验研究.河海大学学报, 2001,29(5):103-105.
    [48]孔宪宾,佘跃心,汪洪武,等.土-锚杆界面模型的改进和应用.力学与实践, 1999, (5): 17-21.
    [49] Kulhawy F H. uplift behavior of shallow soil anchor-an overview. Proceedings of a Session Sponsored by the Geotechnical Engineering Division, ASCE, New York, 1985,1-25.
    [50] Kulhawy F H, Trautmann C H, Beech J F, O’Rourke T, McGuire W, Wood W A, Capano C. Transmission line structure foundations for uplift compression loading. Report EL-2870,Electric Power Research Institute, Palo Alto, California, 1983,412-425.
    [51] Kumar J. Upper bound solutions for pullout capacity of anchors on sandy slopes. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21:477-484.
    [52] Kumar J. Uplift resistance of strip and circular anchors in a two layered sand. Soils and Foundations, 2003, 43(1):101-107.
    [53] Lade A M, Duncan J M. Elastoplastic stress-strain theory for cohesionless soils, Journal of the Geotechnical Engineering Division, ASCE, 1975,101(GT10):1037-1053.
    [54] Lee C J, Bolton M D, Tabbaa, A A. Numerical modeling of group effects on the distribution of dragloads in pile foundations. Géotechnique,2002,52(5):325-335.
    [55]廖洪钧.出入境管理局办公大楼新建工程抗浮地锚证明试验报告,财团法人台湾营建研究中心研究报告, TS-81247,台北, 1992.
    [56]廖洪钧.砂土中单段锚碇端受力行为和群锚行为之研究,台北:国科会专题研究报告, 1992.
    [57]廖洪钧.砂土中摩擦型地锚锚碇行为(II),国科会专题研究报告, NSC83-0410-E-011-005,台北, 1994.
    [58]廖洪钧.土壤中叶片扩孔式扩座地锚之锚碇力,中华民国第三届大地工程学术研讨会论文集, 1998: 617-681.
    [59]廖洪钧、陈珍贵和张光甫.紧密砂土中地锚间距对扩座地锚锚碇行为影响之研究,中国土木水利工程学刊,1993,5(1): 45-55.
    [60]廖洪钧,许世宗.紧砂中压力式垂直扩座地锚锚碇端之受力行为,中国土木水利工程学刊, 1994, 6(2): 137-148.
    [61]李寻昌,门玉明,王娟娟.锚杆抗滑桩体系的群桩、群锚效应研究现状分析.公路交通科技, 2005,22(9):52-55.
    [62] Liao H J, Ou C D, Hsu S T. Anchorage Behavior of Shaft in Alluvial Soil, Journal of Geotechnical Engineering, ASCE, 1996, 122(7): 526-533.
    [63] Liao Samson S C, Robert V Whitman. Overburden correction factors for SPT in sand. Journal of Geotechnical Engineering, ASCE, 1986, 112(3): 373-377.
    [64]林煜融.台北盆地中摩擦型地锚之受力行为.台中:,朝阳科技大学硕士论文, 2001.
    [65] Littlejohn G S. Design estimation of the ultimate load-holding capacity of ground anchors.Ground Engineering, 1980, 13(8): 25-39.
    [66] Littlejohn G S. Recent developments in ground anchor construction. Ground Eng., 1968, 1(3): 32-36.
    [67] Littlejohn G S. Soil Anchors, ICE Conference on Ground Engineering, London, 1970, 33-44.
    [68] Lyamin A V, Sloan S W. Lower bound limit analysis using nonlinear programming. International Journal for Numerical Methods in Engineering, 2002a,55(5):573-611.
    [69] Lyamin A V, Sloan S W. Upper bound limit analysisusing linear finite elements and nonlinear programming.International Journal for Numerical and Analytical Methods in Geomechanics, 2002b,26:181-216.
    [70] Merifield R S, Sloan S W, Yu H S. Stability of plate anchors in undrained clay. Geotechnique, 2001, 51(2): 141-153.
    [71] Merifield R S, Lyamin A V, Sloan S W. Stability of Inclined Strip Anchors in Purely Cohesive Soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(6): 792-799.
    [72] Merifield R S, Lyamin A V, Sloan S W and Yu H S. Three-Dimensional Lower Bound Solutions for Stability of Plate Anchors in Clay, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129(3): 243-253.
    [73] Meyerhof G G, Adams J I. The ultimate uplift capacity of foundations. Canadian Geotechnical Journal, 1968, 5(4): 225-244.
    [74] Meyerhof G G. Uplift resistance of inclined anchors and piles. In: Proc of the 8th International Conference on Soil Mechanics and Foundation, Engrg Moscow, 1973, 2:167 -172.
    [75] Miura S and Toki S. A Sample Preparation Method and Its Effect on Static and Cyclic Deformation- Strength Properties of Sand, Soils and Foundations, 1982, 22(1): 61-77.
    [76] Mukherjee. Uplift capacity of piles in sand.Ph.D. Thesis, IIT, Kharagpur,India,1997.
    [77] Murray E J, Geddes J D. Uplift of anchor plates in sand. Journal of Geotechnical Engineering Division, ASCE,1987,113:202-215.
    [78] Nebecker S R, Randolph M F. The static equilibrium of drag anchors in sand, Canadian Geotechnical Journal, 1996(33): 574-584.
    [79] Neely W J, Montague-Jones M. Pull-out Capacity of straight shafted and underreamed ground anchor. Die Siviele Ingenieur in Suid-Africa Jaargang, 1974,16(14): 131-134.
    [80] Nequssey D, Wijewickereme W K D, Vaid Y P. Constant-volume friction angle of granular materials. Canadian Geotechnical Journal, 1988, 25: 50-55.
    [81] Ostermayer H, Scheele F. Research on Ground Anchors in Noncohesive Soils, Speciality Session No. 4, 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, 1977, 92-97.
    [82] Ovesen N K. Discussion on“The use of physical models in design”. In: Proc 7th Eur. Conf. Soil Mech, Brighton, 1979,4:319-323.
    [83] Ovesen N K. Centrifuge tests of the uplift capacity of anchors. In: Proc of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, 1981.717-722.
    [84]潘殿琦,吴银柱,吴丽萍.土层锚杆抗拔力的影响因素及其计算公式的修正.地质找矿论丛, 1999,14(2):87-91.
    [85] Patra N R, Pise P J. Uplift capacity of pile groups in sand. Electronic Journal of Geotechnical Engineering, EJGE, 2003.
    [86] Rowe P W. The relation between the shear strength of sand in triaxial compression, plane strain and direct shear. Geotechnique, 1969, 19(1): 75-86.
    [87] Rowe R K, Davis E H. The behaviour of anchor plates in sand. Geotechnique,1982,32(1): 25-41.
    [88] Sapio G. Comportamento di Tiranti de Anchoraggio in Formazioide Argile Preconsolidation, XII Convegno Nationale de Geotechnical, Consenza, Italy, 1975.
    [89] Saran S, Ranjan G, Nene A S. Soil anchors and constitutive laws. Journal of Geotechnical Engineering Division, ASCE, 1986, 112(12): 1084-1100.
    [90] Sawwaf M E, Nazir A. The effect of soil reinforcement on pullout resistance of an existing vertical anchor plate in sand. Computers and Geotechnics, 2006,4(1):1-10.
    [91] Shanker K, Basudhar P K, Patra N R. Uplift capacity of pile groups embedded in sands: predictions and performance. Soils and Foundations, 2006, 46(5): 605-612.
    [92] Shanker K, Basudhar P K, Patra N R. Uplift capacity of single piles: predictions and performance. Geotech Geol Eng, 2007, 25: 151-161.
    [93] Shields O R, Schnabel H and Weatherby D E. Load Transfer in Pressure Injected Anchor, Journal of Geotechnical Engineering Division, ASCE, 1978(GT9): 1183-1196.
    [94] Srirama R, Phanikumar B R, Dayakar B, Suresh K. Pullout Behavior of Granular Pile-Anchors in Expansive Clay Beds In Situ. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2007, 133(5): 531-538.
    [95] Stewart W. Uplift capacity of circular plate anchors in layered soil. Canadian Geotechnical Journal, 1985, 22(4): 589-592.
    [96] Su W and Fragaszy R J. Uplift Testing of Model Anchor, Journal of Geotechnical Engineering Division, ASCE, 1988, 114(9): 961-983.
    [97] Tagaya K, Tanaka A, Aboshi H. Application of finite element method to pullout resistance of buried anchor. Soils and Foundations, 1983, 23(3): 91-104.
    [98] Taylor R L, Carpenter N J, Katona M G. Lagrange constraints for transient finite element surface contact. International Journal for Numerical Methods in Engineering,1991, 32(1):103-128.
    [99] Terzaghi K. Relation Between Soil Mechanics and Foundation Engineering: Presidential Address, Proceedings, First International Conference on Soil Mechanics and Foundation Engineering, Boston, 1936, 3: 13-18.
    [100] Thorne C P. Penetration and Load Capacity of Marine Drag Anchors in Soft Clay. Journal of Geotechnical Engineering Division, ASCE, 1998, 124(10):945-953.
    [101] Toshinori S and Tadatsugu T. Scale Effect of a Shallow Circular Anchor in Dense Sand, Soils and Foundation, 1999, 38(2): 93-99.
    [102] Turner J P and Kullhawy F H. Drained Uplift Capacity of Drilled Shafts under Repeated Axial Loading, Journal of Geotechnical Engineering Division, ASCE, 1990, 116(3): 470-491.
    [103] Vanitha L, Patra N R, Chandra S. Uplift capacity of pile group anchors. Geotech Geol Eng, 2007, 25: 339-347.
    [104] Vermeer P A and deBorst R. Non-associated Plasticity for Soils, Concrete and Rock, Heron, 1984, 29(3): 5-64.
    [105] Vermeer P A, Sutjiadi W. The uplift resistance of shallow embedded anchors. In: Proc of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1985, 4: 1635-1638.
    [106]王少濂.砂土中扩座地锚互制行为之研究,台中:朝阳科技大学硕士学位论文, 2003.
    [107]王贤能,周逢君,徐金台.深圳地区抗浮锚杆应用现状及分析.徐帧祥,闫莫明,苏自约主编.岩土锚固技术与西部开发[C].北京:人民交通出版社, 2002.
    [108]王贤能,叶蓉,周逢君.土层抗浮锚杆试验破坏标准选取的建议.地质灾害与环境保护, 2001, 12(3): 73-77.
    [109]魏晋业.拉力式地锚于粉土质土壤中之受力行为,国立海洋大学硕士学位, 2000.
    [110]魏新江,张世民,危伟.全长粘结式锚杆抗拔力计算公式的探讨.岩土工程学报, 2006,28(7):902-905.
    [111]温进涛,朱维申,李术才.锚索对结构面的锚固抗剪效应研究.岩石力学与工程学报, 2003,22(10) :1699-1703.
    [112]吴曙光,张永兴,康明.压力型和拉力型锚杆工作性能对比研究.水文地质工程地质, 2008,(5):45-49.
    [113]吴伟特.台北盆地地盘分区土壤之工程特性,地工技术杂志, 1988,22: 5-27.
    [114]许明,张永兴,阴可.砂浆锚杆的锚固及失效机理研究.重庆建筑大学学报, 2001,23 (6):10-15.
    [115]许世宗.砂土中垂直地锚之锚碇行为,台北:1995,国立台湾工业技术学院博士学位论文.
    [116]许世宗,廖洪钧.砂土中多段锚碇承压式地锚之锚碇行为,中国土木水利工程学刊,2000, 12(1): 91-100.
    [117]许世宗,卢锡焕.变直径扩座地锚在粉土质细砂中之锚碇行为,中华民国第六届大地工程学术研讨会论文集, 1995: 515-524.
    [118]曾国机.土层抗浮锚杆受力机理研究分析.重庆大学硕士学位论文, 2004.
    [119]曾国机,胡志,胡岱文等.下沉式广场抗浮锚杆的应用及试验分析.重庆建筑大学学报, 2004,26(6):35-39.
    [120]张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型.岩土工程学报, 2002,24(2): 188-192.
    [121] Zhang Z S. Finite Element Analysis for Retaining Structure with Anchor Slabs, Fifth International Conference on Numerical Methods in Geomechanics, Nagoya, 1985: 797-803.
    [122]中国土木水利工程学会,地锚设计与施工准则暨解说,1998.
    [123]朱维申,任伟中.船闸边坡节理岩体锚固效应的模型试验研究.岩石力学与工程学报, 2001,20(5):720-725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700