基于三维地质模型的地下厂房参数化设计与方案优选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国修建水电工程,常会遇到地下厂房的设计问题。地下厂房是一个庞大的地下空间结构,洞室之间的空间关系错综复杂,地下厂房设计工作由初步设计到最终设计方案的确定经历多个阶段,设计方案需要反复修改,设计工作量大。影响地下厂房设计最主要的因素是地质条件,然而地下厂房一般都布置在高山峡谷中,地下厂房工程区域的地质条件往往十分复杂。二维的地下厂房设计方法,难以满足直观、快速、交互设计的需求。根据参数化设计原理,运用人机交互技术、参数化建模技术和数据库技术,基于三维地质模型,对地下厂房参数化设计理论与应用进行了深入研究,主要研究成果在于以下三个方面:
     (1)探讨了地下厂房参数化设计的相关问题,提出了地下厂房参数化设计的概念和基于三维地质模型的地下厂房参数化设计方法。地下厂房参数化设计包含了自顶向下和自底向上的设计过程;基于三维地质模型,通过对地下厂房参数化设计约束的识别、表达和求解,进行地下厂房位置、轴线方位和横断面的设计;基于三维建模的关键算法,构建地下厂房设计方案的三维模型。
     (2)针对地下厂房设计的复杂性和多样性,提出了地下厂房设计多方案优选方法。考虑到影响地下厂房设计的综合因素,构建了地下厂房设计方案的评价指标体系,通过计算地下厂房设计方案评价指标的权重,对地下厂房设计方案的相对优劣程度进行定量分析,为地下厂房设计方案的评价和优选提供了分析手段。
     (3)基于地下厂房参数化设计的理论与方法,研制开发了地下厂房参数化设计系统。通过用户需求分析,确定了地下厂房参数化设计系统的开发原则和目标,进行了地下厂房参数化设计系统的总体设计和功能设计,阐述了地下厂房参数化设计系统的应用流程,实现了地下厂房参数化设计系统的洞室轴线设计、洞室三维建模、设计方案分析和设计成果输出四个模块的功能开发,该系统在功能上满足地下厂房设计的基本要求。
     本文的研究是结合某抽水蓄能电站的地下厂房设计来开展的,地下厂房参数化设计系统具有重要的工程应用价值,有助于提高水电工程地下厂房的设计效率和设计水平。
Design of underground powerhouse is often involved in hydropower engineering in China. Underground powerhouse is a large underground structure group with some anfractuous structures in space. There are some phases for design of underground powerhouse from initial design to final design. Design scheme is often amended repeatedly, and therefore much work is involved in design of underground powerhouse. Geological condition is the most important factor that impacts design of underground powerhouse. Underground powerhouse is often designed in the mountains. Geological conditions are often complicated in the region of underground powerhouse. 2D design of underground powerhouse has some limitations that it is difficult to design intuitively, quickly and interactively. The theory and the application for 3D parametric design of underground powerhouse are studied deeply using interactive technology, parameterized modeling technology and database technology based on the theory of parametric design and 3D geological model. The three main achievements are as follows:
     (1) Academic issues related to parametric design of underground powerhouse are discussed. The concept for parametric design of underground powerhouse and the method for parametric design of underground powerhouse based on 3D geological model are proposed. The top-down and bottom-up design process is involved in parametric design of underground powerhouse. Based on 3D geological model, the location, the direction of the axis and the cross-section of underground powerhouse are designed through identification, expression and solving of constraints associated in parametric design of underground powerhouse. 3D model for design scheme of underground powerhouse is built based on the key algorithm of 3D modeling.
     (2) According to complexity and diversity of design of underground powerhouse, the method for schemes optimization analysis of underground powerhouse is proposed. The general factors related to design of underground powerhouse are considered, and deliberated index system of design scheme of underground powerhouse is built. The evaluation and optimization method of design scheme of underground powerhouse is achieved through weight calculation of deliberated index and quantitative analysis of design schemes of underground powerhouse.
     (3) The system for parametric design of underground powerhouse is developed based on the theory and the method for parametric design of underground powerhouse. The principle and aim of the system is confirmed through demand analysis of designers. The holistic design and functional design of the system are achieved. The application process of the system is expounded. The functions of the system including axis design module of underground powerhouse, 3D modeling module of underground powerhouse, analysis module of design scheme and output module of design scheme are developed. The functions of the system satisfy the requirements of application in design of underground powerhouse.
     The theory, the method and the system for parametric design of underground powerhouse have been studied with application in the design of underground powerhouse in a pumped storage power station project. The system for parametric design of underground powerhouse has important value of engineering application. It is helpful to improve the efficiency and the level of the design of underground powerhouse in hydropower engineering.
引文
[1]李明超,大型水利水电工程地质信息三维建模与分析研究:[博士学位论文],天津:天津大学,2006
    [2]潘家铮,水工隧洞和调压室,北京:水利电力出版社,1990
    [3]汪胡桢,水工隧洞的设计理论和计算,北京:水利电力出版社,1977
    [4]熊启钧,高昌侠,隧洞,北京:水利电力出版社,1983
    [5]汪胡桢,地下洞室的结构计算,北京:电力工业出版社,1982
    [6]董玉德,离线参数化理论与方法,合肥:中国科学技术大学出版社,2004
    [7] Ivan Sutherland. Sketchpad: A man-machine graphical communication system. In: Proceedings of the 1963 Spring Joint Computer Conference. Baltimore, MD: Spartan Books, 1963:45~53
    [8] Light R.A., Gossard D.C. Modification of geometric models through variational geometry. Computer-Aided Design, 1982,14(4):209~214
    [9] Hillyard R.C., Braid I.C. Analysis of dimensions and tolerances in computer aided mechanical design. Computer-Aided Design, 1978,14(3):66~80
    [10] Lin V.C., Gossard D.C., Light, R.A. Variational geometry in computer-aided design. Computer and Graphics, 1981,15(3):171~177
    [11] Gero J.S. Expert systems in computer-aided design. North-Holland, Amsterdam,1987
    [12] Aldefeld B. Variation of geometries based on a geometric reasoning method. Computer-Aided Design, 1988, 20(3):117~126
    [13] Barford L A. A graphical language-based editor for generic solid models represented by constraints[PhD Dissertation]. New York: Cornell University, 1987
    [14] Borning A.H. The programming language aspects of Thinklab, a constraint oriented simulation laboratory. ACM TOPLAS, 1981, 3(4):353~387
    [15] Suznki H, Ando H, Kimura F. Geometric constraints and reasoning for geometrical CAD system. Computer and Graphics, 1990, 14(2):211~224
    [16] Roy U, Liu C R, Woo T C. Review of dimensioning and tolerancing: representation and processing. Computer-Aided Design, 1991,23(7):466~483
    [17] Verroust A, Schonek F, Roller D. Rule-oriented method for parameterized Computer-Aided Design. Computer-Aided Design, 1992,24(10):531~540
    [18] Buchanan S A, et al. Constraint definition system: A computer-algebra based approach to solving geometric-constraint problems. Computer-Aided Design, 1993, 25(12): 741~750
    [19] Yaacov Helor, et al. Relaxed parametric design with probabilistic constraints. Computer-Aided Design, 1994, 26(6): 426~433
    [20]高小山,黄磊东,蒋鲲,求解几何约束问题的几何变换法,中国科学(E辑),2001,31(2):182~191
    [21] Jae Yeol Lee, et al. Geometric reasoning for knowledge-based parametric designs using graph representation. Computer-Aided Design, 1996,28(10): 831~841
    [22] Gao X S, Chou S C. Solving geometric constraint systemsⅡ: A symbolic approach and decision of re-constructability. Computer-Aided Design, 1998,30(2): 115~122
    [23] Bouma W, Fudos I, Hoffmann C, et al. Geometric constraint solver. Computer-Aided Design, 1995, 27(6):481~501
    [24] Chang-Xue Feng, Kusiak A. Constraint-based design of parts. Computer-Aided Design, 1995, 27(5):343~352
    [25] Anderl R, Mendgen R. Modeling with constraints: Theoretical foundation and application. Computer-Aided Design, 1996, 28(3):155~168
    [26] Joan-Arinyo R, Soto A. A correct rule-based geometric constraint solver. Computer and Graphics, 1997, 21(5): 599~609
    [27]陈立平,向文,张新访,周济,基于实例图形的几何约束满足策略,计算机辅助设计与图形学学报,1996,8(5):381~388
    [28]刘武民,尺寸驱动的参数化绘图方法的研究,武汉工学院学报,1993,15(3):64~72
    [29]葛建新,彭群生,董金祥,沈剑,基于约束的形状自动求解新算法,计算机学报,1995,18(2):114~126
    [30]薛鸿源,周济,用约束网络表示二维图形的二叉树算法,计算机辅助设计与图形学学报,1996,8(6):470~474
    [31]钱小平,向文,黄彤军,周济,基于规则求解的约束驱动的变量几何造型系统,计算机辅助设计与图形学学报,1995,7(3):166~171
    [32]沈剑,王勇,董金祥,基于变分几何的参数化设计绘图方法,计算机辅助设计与图形学学报,1996,8(6):464~469
    [33]孟祥旭,参数化设计模型的研究与实现:[博士学位论文],北京:中国科学院计算技术研究所,1998
    [34]谭建荣,张东亮,彭群生,基于约束关系自组织的离线参数化技术,自然科学进展,1996,6(6):734~740
    [35]兰箭,张荣成,王耕耘,李志刚,基于图的参数化设计方法,计算机辅助设计与图形学学报,1997,9(4):356~361
    [36]张国伟,秦士存,俞新陆,面向对象的参数化设计系统的研究与开发,计算机辅助设计与制造,1996,(8):16~18
    [37]李东浩,彭润华,吴君华,参数化设计中图形信息的前置处理技术,计算机辅助工程,2000,9(3):54~58
    [38]郑忠俊,邓金权,甘辉,面向参数设计的工程数据库管理系统,计算机应用,2001,21(12):92~93
    [39]杨宁,娄臻亮,罗中华,基于工程优化设计的模具参数化CAD系统,模具工业,2003,(9):9~12
    [40]潘双夏,张帅,冯培恩,基于工程约束的产品参数化建模策略研究,计算机辅助设计与图形学学报,2001,13(9):840~845
    [41]顾晓华,仲梁维,基于知识工程的参数化设计,机械设计与制造工程,2001,30(4):17~18,31
    [42]董玉德,谭建荣,刘衍聪,一种自学习模式参数化设计方法的研究,模式识别与人工智能,2000,13(2):205~209
    [43] Roller D, Schonck F, Verroust A. Dimension-driven geometry in CAD: A Survey. Theory and practice of geometric modeling. Spring-Verlag, 1989:509~523
    [44]陈德人,参数化设计模型与方法,浙江大学学报,1995,29(2):179~183
    [45]刘刚,资源信息系统中参数化图形设计方法研究:[博士学位论文],武汉:中国地质大学,2004
    [46]殷国富,陈永华,计算机辅助设计技术与应用,北京:科学出版社,2000
    [47]高小山,蒋鲲,几何约束求解研究综述,计算机辅助设计与图形学学报,2004,16(4):385~396
    [48] Light R.A. Variational geometry: modification of part geometry by changing dimensional values, in proceedings of conference on CAD/CAM technology in mechanical engineering, MIT, 1982
    [49] Kramer G.A. A geometric constraint engine. Artificial Intelligence, 1992, 58: 327~360
    [50] Nami Kin, et al. Geometrical constraint solving based on the extended Boltzmann machine. Computers on Industry, 1992, 19:239~250
    [51] Ando H., Suzuki H, Kimura F. A geometric reasoning system for mechanical product design. IFIP Computer Application in Production and Engineering. North-Holland, 1989:131~139
    [52]蒋峰,黄笃,廖成刚,某水电站地下厂房洞室群布置,水电站设计,2005,21(2):5~7
    [53]季国文,方圆形无压隧洞横断面水力计算,海河水利,1995,(3):30~32
    [54]李永刚,马蹄形隧洞水力计算迭代法,人民黄河,1995,(11):42~44
    [55]肖阳,马震岳,水工压力隧洞设计与计算方法研究,水电能源科学,2004,22(2):76~78
    [56]王波,鞠小明,张作光,无压引水隧洞水力过渡过程计算及试验研究,西北水力发电,2004,20(4):1~4,8
    [57]刘庆国,圆形无压隧洞水力计算,东北水利水电,2000,18(4):13~15
    [58]季国文,贾秀琴,圆形无压隧洞水力计算的简化公式,海河水利,1994,(6):32~33
    [59]张峰,李兆前,黄传真,参数化设计的研究现状与发展趋势,机械工程师,2002,(1):13~15
    [60] Hoffmann C M, Kim K J. Towards valid parametric CAD models. Computer-Aided Design, 2001, 33(1): 81~90
    [61]戚蓝,初始地应力场系统分析理论与方法研究:[博士学位论文],天津:天津大学,2002
    [62]熊卫,柴志阳,张晓瑞,宝泉抽水蓄能电站地下厂房布置,红水河,2002,21(1):24~27
    [63]刘惟,丁钢,赵世英,构皮滩水电站地下厂房设计,贵州水力发电,2004,18(6):34~38
    [64]成卫忠,棉花滩水电站地下厂房设计,水力发电,2001,(7):28~31
    [65]李广诚,王思敬,十三陵抽水蓄能电站地下厂房位置的选择,工程地质学报,1999,7(2):99~104,160
    [66]陈代华,水布垭地下电站洞室布置方案研究,人民长江,2007,38(7):30~32
    [67]宁华晚,索风营水电站地下厂房布置及设计优化,贵州水力发电,2004,18(3):21~25
    [68]尹晓林,廖成刚,王菊梅,溪洛渡水电站引水发电建筑物布置设计,水电站设计,1999,15(2):14~19
    [69]杨宜文,许晖,谢思思,小湾工程引水发电系统布置优化研究,水力发电,2004,30(10):27~29
    [70]张有天,论有压水工隧洞最小覆盖厚度,水利学报,2002,(9):1~5,13
    [71]徐伟林,水工压力隧洞最小埋深的探讨,小水电,2001,(2):19~21
    [72]钟登华,李明超,王刚,等,水利水电工程三维数字地形建模与分析,中国工程科学,2005,7(7):65~70
    [73]周建民,金丰年,王斌,等,不同破裂面条件下洞室轴线走向的计算方法,地下空间与工程学报,2005,1(3):367~369,373
    [74]李莉,何江达,余挺,等,关于地下厂房纵轴线方位的优化设计,四川大学学报,2003,35(3):34~37,41
    [75]李锦飞,琅玡山抽水蓄能电站厂房位置及轴线方向的优化选择,工程地质学报,2003,11(4):416~420
    [76]卿明江,郭志兵,紫坪铺水利枢纽工程引水发电隧洞轴线优化设计,水电站设计,2004,20(2):85~86,89
    [77]孙焕纯,王跃方,柴山,多变量、多约束连续或离散的非线性规划的一个通用算法,应用数学和力学,2005,26(10):1168~1174
    [78]何援军,计算机图形学,北京:机械工业出版社,2006
    [79]胡斌,深切峡谷区大型地下洞室群围岩稳定性的动态数值仿真研究:[博士学位论文],成都:成都理工学院,2001
    [80]李攀峰,金沙江溪洛渡水电站坝区地应力场及地下洞室群围岩稳定性数值模拟:[硕士学位论文],成都:成都理工学院,2001
    [81]黄克戬,地下洞室群开挖数值仿真研究与工程应用:[硕士学位论文],武汉:武汉大学,2004
    [82]孙红月,尚岳全,张春生,大型地下洞室围岩稳定性数值模拟分析,浙江大学学报,2004,38(1):70~73,85
    [83]汪易森,李小群,地下洞室群围岩弹塑性有限元分析及施工优化,水力发电,2001,(6):35~38,75
    [84]余卫平,汪小刚,杨健,等,地下洞室群围岩稳定性分析及其结果的可视化,岩石力学与工程学报,2005,24(20):3730~3736
    [85]王广德,石豫川,刘汉超,等,水利水电地下洞室围岩分类,水力发电学报,2006,25(2):123~127
    [86]杨柯,张立翔,李仲奎,等,地下洞室群有限元分析的地应力场计算方法,岩石力学与工程学报,2002,21(11):1639~1644
    [87]余卫平,杨健,汪小刚,等,峡谷地区大型地下洞室群岩体初始地应力场反演分析,水文地质工程地质,2007,(2):20~24
    [88]杨明举,常艄东,超大型地下洞室群施工开挖程序及围岩稳定分析,西南交通大学学报,2000,35(1):32~35
    [89]朱万成,唐春安,地下洞室开挖与支护有限元分析,岩土工程技术,2000,(1):2~6,24
    [90]梁声闻,杨新华,杨文兵,等,ANSYS前处理与AutoCAD的系统集成,华中科技大学学报,2004,21(1):81~83,96
    [91]张剑,AutoCAD与ANSYS接口设计,力学季刊,2005,26(2):257~262
    [92]严飞,韩磊,王林,AutoCAD与ANSYS数据接口的开发研究及在工程中的应用,中国市政工程,2004,(1):56~58
    [93]陈龙,顾冲时,侯祥东,AutoCAD与通用结构分析软件的联合建模,广西水利水电,2003,(4):35~37
    [94]白凤军,在AutoCAD中实现ANSYS与SAP2000接口文件,福建工程学院学报,2004,2(4):388~390
    [95]郑永兰,肖明,复杂地下洞室群三维有限元网格剖分在CAD中的实现,岩石力学与工程学报,2004,23(增2):4988~4992
    [96]闫军南,肖明,水电站地下厂房锚杆支护模型在CAD和ANSYS中的实现,湖北水力发电,2005,(1):23~26
    [97]赖文辉,吕娅,基于VB的水工隧洞渐变段衬砌工程量计算,微计算机信息,2007,23(5):193~194,207
    [98]崔思严,几种常用的具有复杂几何图形的水工建筑物工程量计算,水电站设计,2007,23(1):35~44
    [99]方德扬,圆形隧洞开挖纵横断面图绘制及方量计算系统的开发与应用,贵州水力发电,2001,15(3):90~92
    [100]张伟波,大型地下洞室群施工系统仿真理论与应用研究:[博士学位论文],天津:天津大学,2002
    [101]李景茹,大型工程施工进度分析理论方法与应用:[博士学位论文],天津:天津大学,2003
    [102]刘奎建,大型地下洞室群施工进度实时控制研究:[博士学位论文],天津:天津大学,2007
    [103]谢全敏,夏元友,边坡治理多层次多目标优化决策方法研究,武汉理工大学学报,2002,24(10):21~24
    [104]刘建民,跨流域调水工程施工进度优化与控制研究:[博士学位论文],天津:天津大学,2006
    [105]蒋宏业,梁光川,于磊,等,层次分析法在管道穿越河流方案选择中的应用,西南石油学院学报,2005,27(2):80~83
    [106]张亮亮,石振武,层次分析法在寒冷地区道路路线方案比选中的应用,森林工程,2007,23(6):54~57,63
    [107]陈宝,周丽珍,层次分析法在隧道布置型式中的应用研究,湖南科技大学学报,2005,20(3):42~44
    [108]刘怀相,曾胜,朱罡,基于层次分析法的边坡治理方案优化选择,中外公路,2007,27(5):27~31
    [109]高文翔,李杰林,周科平,等,基于层次分析法的竖井方案优化研究,矿业研究与开发,2007,27(5):45~47
    [110]李红,杨小凯,利用层次分析法确定水库选址问题,海河水利,2004,(4):54~55,58
    [111]姬东朝,宋笔锋,喻天翔,模糊层次分析法及其在设计方案选优中的应用,系统工程与电子技术,2006,28(11):1692~1694,1755
    [112]白俊文,侍克斌,用改进的层次分析法(AHP)进行坝基防渗方案的优选,水利与建筑工程学报,2004,2(4):11~13,22
    [113]丁俭,王华,赵敏,一种简明的群体决策AHP模型及新的标度方法,管理工程学报,2000,14(1):16~18
    [114]宋福根,现代企业决策支持系统原理和仿真,北京:科学出版社,2005
    [115]钟登华,郭享,李明超,等,基于三维地质模型的地下洞室参数化设计与方案优选,天津大学学报,2007,40(5):519~524

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700