超深开挖对坑底抗压桩竖向承载力及沉降特性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层建筑和大型地下结构的发展促进了超深和超大基坑开挖的兴起,超深开挖强烈的卸荷和回弹作用,必然影响坑底抗压工程桩的承载力和沉降特性。
     首先进行了四组离心机模型试验,不但考察了超深基坑开挖对坑底抗压桩的竖向承载力特性和沉降特性的影响。而且,对比了具有不同表面粗糙度的桩在深开挖条件下,不同的响应。结果表明:对于光滑桩,超深开挖降低影响桩的承载力和刚度。对于粗糙桩,由于强烈的剪胀效应,模型试验的结果反而是超深开挖提高的桩的承载力和刚度。此外,超深开挖都造成了桩身产生拉力。
     采用ABAQUS中无剪胀效应接触面模型和摩尔库伦模型,对光滑桩展开有限元数值分析。结果表明,超深开挖卸荷效应降低了光滑桩法向应力,从而降低了承载力和刚度,而回弹效应不会造成承载力损失,但会减小桩的刚度。
     进而,改变桩的长度,开挖半径,桩的模量等,对超深开挖条件下的光滑桩进行了参数分析。结果表明,随着相对开挖深度和相对开挖宽度的增大,光滑桩的承载力和刚度损失值增大,而桩身拉力先大后小,出现峰值。此外,随着桩土模量比的增大,拉力越大,而且在开挖过程中出现的越早。
     改进了考虑剪胀效应的Norsand模型,使其弹性模量与围压和孔隙相关。引入了修正摩尔库伦模型,考虑桩土接触面剪胀效应,并应用Bolton公式对模型进行改进,使剪胀和强度可以反映围压的影响。
     在此基础上,模拟了粗糙桩的离心机试验。分析了超深开挖条件下的粗糙桩竖向传力机制,并与离心机试验结果进行了对比验证。结果表明,开挖增大了土的剪胀性,在加载过程中增大了桩的法向应力,提高了接触面剪切强度,从而使粗糙桩承载力和刚度提高。
The high-rise buildings and large underground structures promote the development of super-deep excavations. The intense stress relief and basal heave will influence the capacity and settlement behavior of the compression piles beneath excavations.
     Firstly, four centrifuge modeling tests are carried out. The effect of deep excavation on the capacity and settlement behavior of piles is investigated. Also, the responses of piles with different surface roughness are compared. The results show that the deep excavation could reduce the capacity and stiffness of smooth piles. However, for the rough piles the capacity and stiffness are increased due to excavation. Beside, for both cases the excavation could lead to the tension in piles. The finite element analysis is conducted on the smooth piles using the interface model without dilation and Mohr-Coulomb model in ABAQUS. It is found that the stress relief during excavations reduces the normal stress of piles. Hence, the capacity and stiffness decrease. The basal heave would not lead to a reduction of capacity, but it could reduce the stiffness of pile.
     Furthermore, the parametric study on smooth piles under the condition of deep excavation is conducted by changing the length of pile, the radius of excavation and the modulus of pile. It is shown that the reduction of smooth pile increase with the increasing of normalized excavation depth and radius. The heave-induced tension in pile increases at the first and then decreased. Moreover, as the the modulus ratio of pile to soil increases, the tension in pile increases and appears earlier during excavation.
     The Norsand model with considering dilation is modified to make the modulus as a function of confining pressure and void ratio. The Modified Mohr-Coulomb model with dilation is introduced to capture the dilation of the pile-soil interface. The Bolton’s equation is adopted in the moidified interface model, which could consider the effect of confining pressure on the dilation and strength.
     On this basis, the centrifuge tests of rough pile are simulated. The mechanism of vertical load transfer of the rough pile is analyzed and the results of numerical simulation are compared with that of the centrifuge tests. It is found that the excavation enhance the dilation of the soil. This leads to an increase of normal stress and shear strength of the interface. Therefore, the capacity and stiffness of rough pile is increased.
引文
[1]黄绍铭,高大钊主编.软土地基与地下工程[M].北京:中国工业建筑出版社, 2005(第二版).
    [2]孙钧.城市环境土工学[M].上海:上海科学技术出版社, 2005.
    [3] Poulos, H.G.,Chen, L.T. Pile response due to unsupported excavation-induced lateral soil movement[J]. Canadian Geotechnical Journal, 1996, 33(4), 670-677.
    [4] Poulos, H.G.,Chen, L.T. Pile response due to excavation-induced lateral soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2), 94-99.
    [5] Leung, C.F., Lim, J.K., Shen, R.F.,Chow, Y.K. Behavior of pile groups subject to excavation-induced soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1), 58-65.
    [6] Leung, C.F., Ong, D.E.L.,Chow, Y.K. Pile behavior due to excavation-induced soil movement in clay. II: Collapsed wall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(1), 45-53.
    [7] Ong, D.E.L., Leung, C.E.,Chow, Y.K. Pile behavior due to excavation-induced soil movement in clay. I: Stable wall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(1), 36-44.
    [8] Ong, D.E.L., Leung, C.F.,Chow, Y.K. Behavior of pile groups subject to excavation-induced soil movement in very soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10), 1462-1474.
    [9] Lim, J.K., Shen, R.F.,Chow , Y.K. Behavior of pile groups subject to excavation-induced soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1), 58-65.
    [10] Goh, A.T.C., Wong, K.S., Teh, C.I.,Wen, D. Pile response adjacent to braced excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4), 383-386.
    [11] Finno, R.J., Lawrence, S.A., Allawh, N.F.,Harahap, I.S. Analysis of performance of pile groups adjacent to deep excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1991, 117(6), 934-955.
    [12]郑刚,颜志雄,雷华阳,雷扬.基坑开挖对临近桩基影响的实测及有限元数值模拟分析[J].岩土工程学报, 2007, 29(5), 638-643.
    [13]杨敏,周洪波,杨桦.基坑开挖与临近桩基相互作用分析[J].土木工程学报, 2005, 38(4), 91–96.
    [14]蒋建平,高广运,汪明武.大直径超长桩有效桩长的数值模拟[J].建筑科学, 2003, 19(3), 27-29.
    [15]赵艳,侯健群,吴永红,等.天津站交通枢纽轨道换乘中心工程设计概述[A].张在明,杨秀仁主编.岩土工程的安全与品质--2007海峡两岸岩土工程地工技术交流研讨会[C].北京:中国建材工业出版社, 2007, 4, 53-58.
    [16]郑刚,顾晓鲁.天津市深大基坑的关键技术问题[R].天津:天津大学, 2006.
    [17]刘玉琦,李竹,侯振荣.天津站交通枢纽工程规划设计方案与施工关键技术综述[A].张在明,杨秀仁主编.岩土工程的安全与品质--2007海峡两岸岩土工程地工技术交流研讨会[C].北京:中国建材工业出版社, 2007, 4, 12-20.
    [18]田巧焕,王世清.天津站交通枢纽轨道换乘中心工程设计概述[A].张在明,杨秀仁主编.岩土工程的安全与品质--2007海峡两岸岩土工程地工技术交流研讨会[C].北京:中国建材工业出版社, 2007, 4, 12-20.
    [19]郦建俊,黄茂松,木林隆,王卫东,陈峥.分层地基中扩底桩抗拔承载力的计算方法研究[J].岩土力学, 2008, 30(7), 1997-2003.
    [20]孙亚哲,高倚山,王沪生.超长大直径钻孔灌注桩荷载传递机理研究[J].上海地质, 2007, 28(1), 58-62.
    [21]朱火根,孙加平.上海地区深基坑开挖坑底土体回弹对工程桩的影响[J].岩土工程界, 2004, 8(3), 43-46.
    [22]徐情根,徐醒华,梁朝晖,等.深基坑开挖对坑底桩基的影响[J].广东土木与建筑, 2006, 34(1), 33-34.
    [23]陈孝贤.深基坑开挖坑底土体隆起对工程桩影响的探讨[J].福建建设科技, 2006, 21(3), 15-16.
    [24] Burland, J.B.,Hancock, R.J.R. Underground car park at the House of Commons,London:Geotechnical aspects[J]. The Structural Engineer, 1977, 55(2), 87-100.
    [25] Iwasaki, Y., Watanabe, H., Fukuda, M., Hirata, A.,Hori, Y. Construction control for underpinning piles and their behaviour during excavation[J]. Geotechnique, 1994, 44(4), 681-689.
    [26] Troughton, V.M. The design and performance of foundations for the Canary Wharf development in London Docklands[J]. Geotechnique, 1992, 42(3), 381-393.
    [27] Wright, R.H.,Doe, G. Littile Britain Project: Construction of basement[J]. Proceedings of International Conference on Piling and Deep Foundations, 1989, 1, 221-230.
    [28] Troughton, V.M.,Platis, A. The effect of changes in effective stress on a base ground pile in sand[J]. Proceedings of the International Conference on Problem of Pile Foundation Engineering, 1989, 1, 445-455.
    [29]郦建俊,黄茂松,王卫东,陈峥.开挖条件下抗拔桩承载力的离心模型试验[J].岩土工程学报, 2010, 32(3), 388-396.
    [30]罗耀武.大面积深开挖对抗拔桩承载性状的影响研究. [博士学位论文D].杭州:浙江大学, 2010.
    [31]陈锦剑,吴琼,王建华,夏小和.开挖卸荷条件下单桩承载力特性的模型试验研究[J].岩土工程学报, 2010, 32(S2), 85-88.
    [32] Zheng, G., Peng, S.Y., Diao, Y.,Ng, C.W.W. In-flight investigation of excavation effects on smooth single piles[A]. 7th International Conference on Physical Modelling in Geotechnics[C]. Zurich, Switzerland, 2010, 2, 847-852.
    [33] Mc Namara, A.M. Influence of heave reducing piles on ground movements around excavations. [博士学位论文D]. London: City University, 2001.
    [34]胡琦,凌道盛,陈云敏,程泽海,冉龙.深基坑开挖对坑内基桩受力特性的影响分析[J].岩土力学, 2008, 30(07), 1965-1970.
    [35]陈锦剑,王建华,范巍,王卫东.抗拔桩在大面积深开挖过程中的受力特性分析[J].岩土工程学报, 2009, 31(3), 402-407.
    [36]郑刚,刁钰,吴宏伟.超深开挖对单桩的竖向荷载传递及沉降的影响机理有限元分析[J].岩土工程学报, 2009, 31(6), 837-845.
    [37]李文平.基坑开挖对桩基承载力的影响及β法的工程应用[J].岩土工程学报, 2010, 32(supp.2), 259-262.
    [38]黄茂松,郦建俊,王卫东,陈峥.开挖条件下抗拔桩的承载力损失比分析[J].岩土工程学报, 2008, 30(9), 1291-1297.
    [39]黄茂松,任青,王卫东,陈峥.深层开挖条件下抗拔桩极限承载力分析[J].岩土工程学报, 2007, 29(11), 1689-1695.
    [40] Eurocode7. Geotechnical design[S]. London, 2004.
    [41] Al-Tabbaa, A. Theoretical analyses of heave induced pile tension in straight-shafted bored piles[A]. 4th International Conference on Problem of Pile Foundation Engineering[C]. Russian, 1994, 1, 234-239.
    [42] Lee, C.J., Al-Tabbaa, A.,Bolton, M.D. Development of tensile force in piles in swelling ground[A]. Proceedings of the Third International Conference on Soft Soil[C]. Hong Kong, 2001, 1, 345-350.
    [43] Wan, F.S.K. Experimental and theoretical analysis of a bored pile in swelling ground. [硕士学位论文D]. Birmingham: University of Birmingham, 1995.
    [44] Zeevaert, L. Foundation engineering for difficult subsoil conditions[M]. New York: Van Nostrand Reinhold Company, 1985.
    [45] O'reilly, M.P.,Al-Tabbaa, A. Heave induced pile tension: a simple one-dimension analysis[J]. Ground Engineering, 1990, 25(5), 28-33.
    [46] Lambe, T.W. Stress path method[J]. Journal of the Soil Mechanics and Foundation Division,ASCE, 1967, 93(SM6), 309-331.
    [47] Lade, P.V.,Duncan, J.M. Stress-path dependent behavior of cohesionless soil[J]. Journal of the Geotechnical Engineering Division, ASCE, 1976, 102(GT1), 51-68.
    [48] Ng, C.W.W. Stress paths in relation to deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5), 357-363.
    [49]吴宏伟,施群.深基坑开挖中的应力路径[J].土木工程学报, 1999, 32(6), 53-58.
    [50]徐日庆,龚晓南.土的应力路径非线性行为[J].岩土工程学报, 1995, 17(4), 56-60.
    [51]刘国彬,侯学渊.软土的卸荷模量[J].岩土工程学报, 1996, 18(6), 22-27.
    [52]刘国彬,刘金元,徐日庆.基坑开挖引起的土体力学特性变化的试验研究[J].水文地质与工程性质, 2000, 44(1), 22-27.
    [53]郑刚,颜志雄,雷华阳,王沛.天津市区第一海相层粉质黏土卸荷变形特性的试验研究[J].岩土力学, 2008, 30(05), 1237-1242.
    [54]郑刚,颜志雄,雷华阳,王晟堂.天津市区第一海相层粉质黏土卸荷路径下强度特性的试验研究[J].岩土力学, 2009, 31(05), 1201-1208.
    [55]何世秀,韩高升,庄心善,吴香国.基坑开挖卸荷土体变形的试验研究[J].岩土力学, 2003, 25(01), 17-20.
    [56]何世秀,龙立华,杨雪强,何怡.黏性土卸载屈服特性试验研究[J].岩土力学, 2008, 30(S1), 449-452.
    [57]何世秀,朱志政,杨雪强.基坑土体侧向卸荷真三轴试验研究[J].岩土力学, 2005, 27(06), 869-872+892.
    [58]曾国熙,潘秋元,胡一峰.软粘土地基基坑开挖性状的研究[J].岩土工程学报, 1988, 10(3), 13-22.
    [59]潘林有,程玉梅,胡中雄.卸荷状态下粘性土强度特性试验研究[J].岩土力学, 2001, 23(04), 490-493.
    [60]魏汝龙.正常压密粘土在开挖卸荷后的不排水抗剪强度[J].水利水运科学研究, 1984, 13(4), 39-43.
    [61]矫德全,陈愈炯.土的各向异性和卸荷体缩[J].岩土工程学报, 1994, 16(4), 9-16.
    [62]李广信,郭瑞平.土的卸载体缩与可恢复剪胀[J].岩土工程学报, 2000, 22(2), 158-161.
    [63] Mayne, P.W., Kulhawy, F.H.,Kay, J.N. Observations on the development of pore-water stresses during piezocone penetration in clays[J]. Canadian Geotechnical Journal, 1990, 27(4), 418-428.
    [64] Feda, J. K0-coefficient of sand in triaxial apparatus[J]. Journal of Geotechnical Engineering, 1984, 110(4), 519-524.
    [65] Mayne, P.W.,Kulhawy, F.H. K0-OCR relationship in soil[J]. Journal of Geotechnical Engineering Division, 1982, 108(6), 851-872.
    [66] Duncan, J.M.,Seed, R.B. Compaction-induced earth pressure under K0-conditions[J]. Journal of Geotechnical Engineering, 1986, 112(1), 1-22.
    [67] Chen, T.J.,Fang, Y.S. Earth pressure due to vibratory compaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4), 437-444.
    [68] Jaky, J. Pressure in silos[A]. Proc. 2nd Int. Conf. Soil Mech. Found. Engrg[C], 1948, 103-107.
    [69] Brooker, E.W.,Ireland, H.O. Earth pressure at rest related to stress history[J]. Canadian Geotechnical Journal, 1965, 2(1), 1-15.
    [70] Schmidt, B. Earth pressure at rest related to stress histrory[J]. Canadian Geotechnical Journal, 1966, 3(4), 239-242.
    [71] Worth, C.P. General theories of earth pressure and deformation[A]. The 5th European conference on soil mechanics and foudation engineering[C]. Madrid, 1973, 1, 33-52.
    [72] Meyerhof, G.G. Bearing capacity and settlement of pile foundations[J]. Journal of Geotechnical Engineering Division, 1976, 102(3), 195-228.
    [73] Hanna, A.,Al-Romhein, R. At-rest earth pressure of overconsolidated cohesionless soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(3), 408-412.
    [74]刘国彬,黄院雄,侯学渊.基坑回弹的实用计算法[J].土木工程学报, 2000, 33(4), 61-67.
    [75]徐彪,刘佳.对深基坑坑底隆起问题的探讨[J].广西工学院学报, 2004, 15(1), 66-68.
    [76]宰金珉.开挖回弹预测的简化方法[J].南京建筑工业学院学报, 1997(2), 23-27.
    [77] Talor, R.N. Geotechnical Centrifuge Technology [M]. London: Taylor & Francis 2007.
    [78] Schofield, A.N. Interlocking, and peak and design strengths[J]. Geotechnique, 2006, 56(5), 357-358.
    [79] Schofield, A.N. Interlocking, and peak and design strengths(Discussion)[J]. Geotechnique, 2008, 58(6), 527-532.
    [80] Schofield, A.N. The Mohr Coulomb Error[R]. Cambridge: Cambridge University, 1998.
    [81] Schofield, A.N. A note on Taylor's interlocking and Terzaghi's true cohesion error[J]. Geotechnical News, 1999(12), 56-58.
    [82] Schofield, A.N. Centrifuge development can correct soil mechanics errors.[A]. Centrifuge 98, Balkema, Rotterdam[C]. Rotterdam, 1998, 923-929.
    [83] Schofield, A.N. Cambridge geotechnical centrifuge operations[J]. Geotechnique, 1980, 30(3), 227-268.
    [84] De Souza, E. A centrifuge for solving mining problems[A]. Physical modelling in geotechnics: ICPMG'02.[C]. Newfoundland, 2002, 49-54.
    [85] Springman, S.M., Laue, J., Boyle, R., White, J.,Zweidler, A. The ETH Zurich geotechnical drum centrifuge[J]. International Journal of Physical Modelling in Geotechnics 2001, 1(1), 59-70.
    [86] Laue, J., Nater, P., Springman, S.,Gr amiger. Preparation of soil samples in drum centrifuges[A]. Physical modelling in geotechnics: ICPMG'02[C]. Lisse, 143-148.
    [87] Wood, D.M. Geotechnical Modelling[M]. London: Spon Press, 2004.
    [88] Ng, C.W.W., Van Laak, P., Tang, W.H., Li, X.S.,Zhang, L.M. The Hong Kong Geotechnical Centrifuge[A]. Proceedings of the Third International Conference on Soft Soil[C]. Hong Kong, 2001, 1, 225-230.
    [89] Ng, C.W.W., Van Laak, P.A., Zhang, L.M., Tang, W.H., Zong, G.H., Wang, Z.L., Xu, G.M.,Liu, S.H. Development of a four-axis robotic manipulator for centrifuge modeling at HKUST[A]. Proc. Int. Conf. on Physcial Modeling in Geotechnics[C]. Hong Kong, 2002, 71-76.
    [90] Oda, M., Koishikawa, I.,Higuchi, T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1), 25-38.
    [91] Ishihara, K. Liquefaction and flow failure during earthquakes[J]. Geotechnique, 1993, 43(3), 351-415.
    [92] Verdugo, R.,Ishihara, K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2), 81-91.
    [93] Kishida, H.,Uesugi, M. Tests of the interface between sand and steel in the simple shear apparatus[J]. Geotechnique, 1987, 37(1), 45-52.
    [94] Fioravante, V. On the shaft friction modelling of non-displacement piles in sand[J]. Soils and Foundations, 2002, 42(2), 23-33.
    [95] Boulon, M.,Foray, P. Physical and numerical simulation of lateral shaft friction along offshore piles in sand[A]. Procedings of 3rd International Conference on Numerical Methods in Offshore Piling[C]. Nantes, 1986, 127-146.
    [96] Houlsby, G.T. How the dilatancy of soils affects their behaviour[A]. Proceedings of the Tenth European Conference on Soil Mechanics and Foundation Engineering[C]. Florence, 1991, 1189-1202.
    [97] Lehane, B.M., Gaudin, C.,Schneider, J.A. Scale effects on tension capacity for rough piles buried in dense sand[J]. Geotechnique, 2005, 55(10), 709-719.
    [98] Abaqus. ABAQUS V.6.8 User’s Manual[M]. Providence, 2008.
    [99] Menétrey, P.H.,William, K.J. Triaxial Failure Criterion for Concrete and its Generalization[J]. ACI Structural Journal, 1995, 92, 11-18.
    [100] Lee, C.J.,Ng, C.W.W. Development of Downdrag on Piles and Pile Groups in Consolidating Soil[J]. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 2004, 103(9), 904-914.
    [101] Lam, S.Y., Ng, C.W.W., Leung, C.F.,Chan, S.H. Centrifuge and Numerical Modelling of Axial Load Effects on Piles in Consolidating Ground[J]. Canadian Geotechnical Journal, 2009, 46(1), 10-24.
    [102] Poulos, H.G. Analysis of residual stress effects in piles[J]. Journal Of Geotechnical Engineering, 1987, 113(3), 216-229.
    [103] Byrne, P.M., Cheunga, H.,Yan, L. Soil parameters for deformation analysis of sand masses[J]. Canadian Geotechnical Journal, 1987, 24(3), 366-376.
    [104] Brinkgreve, R.B.J.,Vermeer, P.A., PLAXIS 3D foundation. 2001, Balkeman: Lisse.
    [105] Duncan, J.M., Byrne, P., Wong, K.S.,Mabry, P. The strength, stress-strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses[R]. Berkeley: University of California , Berkeley, 1980.
    [106] Broms, B. Negative skin friction[A]. Proc. 6th Asian Regional Conf. Soil Mech. Found. Engng[C]. Singapore, 1979, 2, 41-75.
    [107] Vesic, A.S. Tests on instrumented piles, Ogeechee River site [J]. J. Soil Mech. Found. Div., ASCE, 1970, 92(2), 561–504.
    [108] Turner, J.P.,Kulhawy, F.H. Physical modeling of drilled shaft side resistance in sand[J]. Geotechnical Testing Journal, 1994, 17(3), 282-290.
    [109] Lee, C.J., Bolton, M.D.,Al-Tabbaa, A. Numerical modelling of group effects on the distribution of dragloads in pile foundations[J]. Geotechnique, 2002, 52(5), 325-335.
    [110] Ng, C.W.W., Poulos, H.G., Chan, V.S.H., Lam, S.S.Y.,Chan, G.C.Y. Effects of tip location and shielding on piles in consolidating ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9), 1245-1260.
    [111] Poulos, H.G. Piles subjected to negative friction: A procedure for design[J]. Geotechnical Engineering, Southeast Asian Geotechnical Society, 1997, 28(1), 23-44.
    [112] Poulos, H.G. Pile behaviour - theory and application[J]. Geotechnique, 1989, 39(3), 365-415.
    [113] Jefferies, M.G. Nor-Sand: a simple cricital state model for sand[J]. Geotechnique, 1993, 43(1), 91-103.
    [114] Jefferies, M.G.,Shuttle, D.A. Dilatancy in general Cambridge-type models[J]. Geotechnique, 2002, 52(9), 625-638.
    [115] Dasari, G.R.,Soga, K. A guide book for soil models and soil-pipe analysis using ABAQUS[R]. Tokyo: Cambridge University, 2000.
    [116] Cheong, T.P. Numerical Modelling of Soil-Pipeline Interaction. [博士学位论文D]. Cambridge: Cambridge Unveristy, 2007.
    [117] Robert, D.J. Soil-Pipeline interaction in unsaturated Soils. [博士学位论文D]. Cambridge: Cambridge Unveristy, 2010.
    [118] Ghafghazi, M.,Shuttle, D. nterpretation of sand state from cone penetration resistance[J]. geotechnique, 2008, 58(8), 623-634.
    [119] Roscoe, K.H.,Schofield, A.N. On the Yielding of Soils[J]. Geotechnique 1958, 10(8), 22-53.
    [120] Bolton, M.D. Strength and dilatancy of sands[J]. Geotechnique, 1986, 36(1), 65-78.
    [121] Been, K., Jefferies, M.G.,Hachey, J. The critical state of sands[J]. Geotechnique, 1991, 41(3), 365-381.
    [122] Wang, Z.L., Dafalias, Y.F., Li, X.S.,Makdisi, F.I. State pressure index for modeling sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(6), 511-519.
    [123] Bishop, A.W. Strength of soils as engineering materials(6th Rankine Lecture)[J]. Geotechnique, 1966, 16(2), 89-130.
    [124] Matsuoka, H.,Nakai, T. Relationship among tresca, mises, mohr-coulomb and matsuoka-nakai failure criteria[J]. Soils and Foundations, 1985, 25(4), 123-128.
    [125] Matsuoka, H. On the significance of the "spatial mobilized plane"[J]. Soils and Foundations, 1976, 16(1), 91-100.
    [126] Matsuoka, H., Hoshikawa, T.,Ueno, K. General failure criterion and stress-strain relation for granular materials to metals[J]. Soils and Foundations, 1990, 30(2), 119-127.
    [127] Potts, D.M.,Zdravkovic, L. Finite Element Analysis for Geotechnical Engineering: Theory and Applications[M]. London: Thomas Telford Limited., 1999.
    [128] Roscoe, K.H.,Burland, J.B., On the generalized stress- strain behaviour of wet clay, in Engineering Plasticity, J. Heyman,F.A. Leckie, Editors. 1968, Cambridge University Press: Cambridge. p. 535-609.
    [129] Been, K.,Jefferies, M.G. State parameter for sands[J]. Geotechnique, 1985, 35(2), 99-112.
    [130] Hardin, B.O.,Black, W.L. Sand stiffness under various triaxial stresses[J]. Journal of Soil. Mechanics and Foundations Division, 1966, SM2, 27-42.
    [131] Santamarina, J.C.,Cascante, G. Stress anisotropy and wave propagation: A micromechanical view[J]. Canadian Geotechnical Journal, 1996, 33(5), 770-782.
    [132] Mitchell, J.K.,Soga, K.R.E. Fundamentals of Soil Behavior[M]. New York: John Wiley & Sons. , 2005.
    [133] Anastasopoulos, I., Gazetas, G., Asce, M., Bransby, M.F., Davies, M.C.R.,El Nahas, A. Fault rupture propagation through sand: Finite-element analysis and validation through centrifuge experiments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8), 943-958.
    [134] Anastasopoulos, I. Closure to "Fault rupture propagation through sand: Finite-element analysis and validation through centrifuge experiments" by I. Anastasopoulos, G. Gazetas, M. F. Bransby, M. C. R. Davies, and A. El Nahas[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6), 846-850.
    [135] Shibuya, S., Mitachi, T.,Tamate, S. Interpretation of direct shear box testing of sands as quasi-simple shear[J]. Geotechnique, 1997, 47(4), 769-790.
    [136] Vardoulakis, I.,Graf, B. Calibration of constitutive models for granular materials using data from biaxial experiments[J]. Geotechnique, 1985, 35(3), 299-317.
    [137] Soga, K.,Mitchell, J.K. Rate-dependent deformation of structured natural clays.[A]. Measuring and Modeling Time Dependent Soil Behavior,ACSE[C]. New York, 1996, 243-257.
    [138] Tatsuoka, F., Jardine, R.J., Lo Presti, D.C.F., Di Benedetto, H.,Kodaka, T. Characterizing the pre-failure deformation properties of geomaterials[A]. Proceedings of the 14th ICSMGE[C]. Rotterdam, 1997, 4, 2129-2164.
    [139] Asaka, Y., Tokimatsu, K., Iwasaki, K.,Shamoto, Y. A simple stress-strain relation based on stress-path behavior in strain-path controlled triaxial tests[J]. Soils and Foundations, 2003, 43(2), 55-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700