大跨度斜拉桥全寿命健康监测几个关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度桥梁的轻柔化以及结构形式与功能的日趋复杂化,加大了桥梁施工的难度,也对桥梁运营养护提出了更高的要求。一方面大跨度桥梁的建设是一个漫长而复杂的过程,其间要经过多次结构体系的转换,且易受到外界环境的影响,因此尚未成型的桥梁结构在施工期间的安全性能较成桥状态脆弱。若桥梁建设过程中使用的施工方法或工艺不当,将导致成桥时主梁的线型和内力分布严重不合理,进而加快桥梁的老化速度,降低桥梁的服务能力和使用寿命,严重者还易造成安全事故;另一方面,桥梁结构在正常运营过程中,由于环境侵蚀,车辆超载等因素的作用,将不可避免地出现各种损伤和病害,进而影响桥梁结构的使用性能和安全性能。因此,为了保证桥梁结构在施工和运营过程中的安全,必须从施工开始即对大跨度桥梁结构进行全寿命健康监测,包括传统意义上的施工控制、成桥荷载试验和运营健康监测。三者在监测内容、监测手段、技术路线上有相同之处,可共享监测设备及监测信息,故可将三者综合考虑,进行三位一体计,从而建立桥梁结构的全寿命健康监测系统。无论是从经济角度还是从系统和监测信息的完整性以及信息的衔接角度来看,建立全寿命健康监测系统都是最合理的。它可以实现对桥梁结构重要参数的全寿命周期内的跟踪监测,全面掌握当前桥梁结构的真实状态,并预测未来结构的行为与状态,因而能够尽早地发现和预报桥梁结构的损伤,及时采取必要地养护维修方法,从而杜绝或减少桥梁安全事故的发生。
     本文以峪道河斜拉桥为背景,综合运用有限元理论、静动力模型修正、模态参数识别、优化算法与结构仿真等理论和方法,对大跨度斜拉桥结构全寿命健康监测系统中的几个关键问题进行了深入和系统的研究,主要研究工作和成果包括如下几个方面:
     1.研究了大跨度斜拉桥施工过程中的索力、应力和挠度监测方法,完成了峪道河大桥的施工监控。通过对平行钢绞线斜拉索施工工艺的深入分析,建立了平行钢绞线斜拉索挂索、张拉过程中索-梁-塔力学模型,推导了钢绞线单根张拉时的初始拉力计算公式。对采用光纤光栅应变传感器进行应力测量时的温度补偿进行了研究,给出了埋入式光纤光栅温度补偿计算公式。在峪道河大桥的施工控制过程中,索力、应力和挠度实测值与理论预测值基本一致,证明了所提出的施工控制方法的有效性,保证了桥梁施工过程中的结构安全。
     2.提出了一种基于振动信号统计特征的损伤识别方法。首先推导了正弦激励和白噪声激励下结构的位移响应,进而得到各测点位移响应的统计特征(相关系数、回归系数和协方差之比)表达式。由于这些统计特征中包含了结构的刚度信息,故可通过其变化识别结果损伤产生的刚度下降,形成基于振动信号统计特征的损伤识别方法。与传统损伤识别方法相比,该方法只需对两测点位移响应进行简单的线性回归计算,无需进行复杂的频谱分析,且具有很好的抗噪性。三种常见桥梁结构(简支梁桥、连续梁桥和斜拉桥)损伤的数值模拟结果表明,基于振动信号统计特征的损伤识别方法能够对损伤位置、程度和范围进行有效的识别。
     3.提出了一种基于主梁挠度在线监测的损伤预警方法。不失一般性,假设桥梁结构为对称结构,以保证主梁跨中挠度的测量精度为目标,给出了确定倾角仪数量和布设位置的方法,即倾角仪数量为采用振型分解法计算跨中挠度所需用奇数阶振型数目的两倍,且关于跨中对称布置在奇数阶振型的倾角最大处。不同荷载形式下三种常见桥梁结构的数值模拟结果表明,该方法能够较为精确地测量主梁跨中挠度。另一方面,假设一段时间内过桥车辆的统计特征不变,则主梁挠度统计特征的变化仅取决于结构的刚度改变,故通过对在线监测所得的主梁挠度进行统计分析和假设检验,即可根据其统计特性的变化情况进行损伤预警。数值模拟结果表明,根据挠度统计特性的变化能够有效地进行结构损伤预警,但无法准确判断损伤位置和程度。
     4.提出了一种基于索力增量变化的损伤识别方法。假设斜拉桥主梁为弹性地基梁,可以证明,只有集中荷载作用附近区域内的斜拉索索力有明显改变,且损伤单元内力的释放等同于在该单元两端反向施加集中力,即结构损伤只引起损伤单元附近几个斜拉索索力的变化。因此,根据集中荷载作用下索力的变化情况可以确定损伤位置,然后借助于有限元模型修正技术进一步实现对损伤程度的识别。另一方面,将过桥车队简化为均布荷载加集中荷载,可以证明斜拉索最大索力回归系数仅决定于索力影响线面积之比,且单元损伤只影响其附近斜拉索的索力影响线面积。因此,可以通过正常运营过程中各索力回归系数的变化进行损伤位置判断,从而克服了在车载未知情况下无法估计索力大小的缺陷。数值模拟计算结果表明,通过同一荷载(单一重车)作用下的索力增量变化能够有效地识别主梁和斜拉索损伤,而由索力回归系数的变化只能识别斜拉索损伤。
     5.提出了面向养护策略的大跨度桥梁技术状态评估方法。养护策略包括养护时机和养护规模两项内容,养护时机由主要受力构件的最不利状态决定,而养护规模则由各构件技术状态的加权平均确定。本文提出的面向养护策略的大跨度桥梁技术状态评估方法采用各构件的建设费用作为其进行评估时的权重,从而避免了采用层次分析法确定构件权重时的主观随意性,使得不同的技术人员更易得到趋同的评估结果。此外,文中还以峪道河斜拉桥为例,详细介绍了使用该法进行桥梁技术状态评估的步骤。
     6.提出了一种由简单到复杂、由粗糙到精确的分层次桥梁承载能力评估方法。该方法通过检测或监测信息,估算或反算抗力钢筋的有效面积,进而实现对截面抗力的修正;将过桥车辆等效为滤过泊松过程,通过现场交通流量调查(车辆组成、车速和车流量),确定一段时期内车辆荷载效应最大值的分布,并根据95%的保证率下的荷载效应值与其设计值之比,确定更加符合桥梁实际运营情况的车辆荷载效应修正系数;提出了由设计可靠度到目标可靠度的荷载效应分项系数调整方法,并结合材料强度统计特性的现场检测信息,给出了现由真实可靠度到目标可靠度的荷载效应分项系数修正公式。该方法的本质就是在保证桥梁结构安全的前提下,充分挖掘桥梁结构的潜在承载能力,以避免不必要的浪费。
     7.根据施工控制与健康监测相结合、检测与监测相结合、实时监测与适时监测相结合以及健康监测与管理系统结合,注重实用性,兼顾经济性和科学研究的原则,设计了峪道河大桥健康监测系统,完成了各类传感器的布设,并介绍了健康监测软件的基本功能与实现方法。
The design of large span bridge is increasingly flexible, meanwhile, structure form and function is increasingly complicated. As a result, the bridge construction and maintenance is more difficult. The construction of long span bridge is a long and complicated process. With times transformation of structure system, the bridge is vulnerable affected by environment. Bridge under construction is weaker than the bridge after completion. The improper construction method could cause serious unreasonable girder liner type and force distribution. Moreover, the bridge aging rate is accelerated and the service capacity with bridge life is deteriorated. Therefore, safety accidents will occur with serious cases. In order to ensure the safety condition of bridge under its construction and operation, comprehensive monitoring and testing is needed. The construction control, loading test and operation monitoring are the three stages for bridge health information acquisition. The contents, methods, and techniques are the similar in these three stages. In order to share the equipments and information, these stages are combined to the unified life cycle monitoring system. From the point of information integrity and economic, the bridge life cycle healthy monitoring is reasonable. This monitoring system can track the important parameters of the bridge to explore the bridge’s real condition and predict the future condition. The damage can be detected earlier, and maintenance can be done timely to prevent safety accident.
     Based on Yudaohe cable-stayed bridge, A deep study have been done on the structure damage detection and condition assessment using the Finite Element Method, dynamic model updating methods, modal parameters identification, optimal algorithm, and structural simulation. The main contents of this dissertation are described as follows:
     1. The monitoring method and analysis techniques of cable forces, stress, and deflection is studied. The construction of parallel strand cable is researched, and the mechanic model of construction is established. The initial tension of single strand is given. The temperature modification technique for FBG strain sensors is studied, and the modification formulation is given. The measurement value of cable forces, stress and deflection is consistent with the prediction value in the construction control of Yudaohe bride, and the bridge construction safety is assured.
     2. A structure damage detection method based on statistical characteristics of vibration signals is presented. Displacement responses under sine and white noise excitation are pursued firstly, and then the expression of displacement response statistical characteristics between different nodes is given. Because there is lots of structural stiffness information in the statistical characteristics, the feasibility of taking the statistical characteristics as a damage detection index has been proved in theory. Compared with the normal damage detection method, Spectrum Analysis with complicated calculation is avoided, and only regression analysis with simple calculation is needed. With another advantage of satisfactory noise immunity, this damage detection index is very suitable for on line structure healthy monitoring. Based on simulation for three normal types bridge (simple supported bridge, continue bridge and cable-stayed bridge), the identification efficiency of damage location, degree and extension has been proved.
     3.A structure damage early warning method based on girder deformations monitoring is presented. The girder deformations under the truck loads have been fitting with the vibration modals. The modal order for fitting is determined by the deformations contribution of various vibration modals. Taking the symmetry of normal bridges into account, the number and installation positions of the inclinometers have been presented for mid-span displacement. The inclinometer number cannot be less than twice of the odd modal order, and the symmetrical positions with the maximum angles on the odd vibration modals have been selected for installation. Displacement simulations for three type bridges under different class loads have calculated. The results show that the mid-span displacement can be efficiently fitting. The statistical characteristics of traffic are supposed unchanged in a period. So the change of main girder deformation is determined by the deterioration of structural stiffness. Statistic Analysis and Hypothesis Testing have been done to the main girder displacement data for damage promotion. Using different Hypothesis Testing methods for various bridges with different spans, simulation results show that statistic characteristic of mid-span displacement is sensitive to structure damages.
     4.A structure damage detection method based on line cable force monitoring is presented. As a typical cable supported structure, the cable forces of cable-stayed bridge contain lots of structure information. Therefore, the prerequisite for using cable forces to damage detection is sufficient. First, the main girder is equivalent to an elastic foundation beam, and only few cable forces near the load change under the concentrated load. The internal forces of the damage element are released, and cause the same effect of acting the concentrated forces on the node of damage element. So the conclusion that damage only caused few cable forces change nearby is given. With this conclusion, structural damage positions detection can be done based on the change of cable forces under the fixed truck load. Damage degree can be identified with Model Updating technique. The truck troop can be simplified to a uniform load with a concentrated load. The regression relationship between the cable forces can be found, and the regression relationship is determined by the areas of cable force influence lines. As the change of the influence line only appear nearby the damage element, so the damage position location identification can be finished with the cable forces regression ratios. The disadvantage that the rationality of cable forces is difficult to judge with the unknown truck load is avoided. Simulation has been done to prove the damage detection efficiency of cable forces regress ratios.
     5.A method of condition assessment of long span bridge based on management strategies is presented. Maintenance timing and scale are included in management strategies. The maintenance timing is determined by the worst condition of the main components, and the maintenance scale is determined by the weight average conditions of all components. In order to avoid individual subjectivity of calculating components weights by AHP method, the components construction costs is treated as the weights and different engineers can easily obtain the same result. An example of Yudaohe cable-stayed bridge is given to illustrate the procedures using this bridge condition assessment method.
     6. A bridge loading carrying capacity evaluation method with several rating levels is given to formulate a procedure from simple rough level to complex exact level. Section resistance, load effect and partier factors influence the bridge loading carrying capacity together. As the effective areas of reinforcement can be evaluated by inspection or monitoring information, so the section resistances can be modified. The truck rank is taken as a Filtered Poisson Process. With sited traffic investigation, the maximum distribution of load effects can be identified in a period. The load effect with 95% guaranteed rate is compared with its design value to formulate the modified factor. Partial factors are calculated from design reliability to target reliability. With more statistical properties information of the material strength, the modification from actual reliability to target reliability can be realized. The essential idea of this method is to exploit the potential capacity to avoid unnecessary waste with the promise of bridge safety.
     7. With the combination of bridge design, construction, inspection and maintenance codes, the principle of healthy monitoring system is considering the practical applicability, economical efficiency, and scientific research. The Yudaohe bridge healthy monitoring system is introduced. The contents include various sensors arrangement with corresponding acquisition equipments and basic functions of healthy monitoring software.
引文
1 E. J. Wallbank. The performance of concrete in bridges: a survey of 200 highway bridges. London: Her Majesty’s Stationery Office, 1989:
    2 F. Moses, Bridge capacity assessment and control of posting, permit and legal vehicle loads. London: Elsevier Science Publishers Ltd., 1990:405~415
    3刘自明,王邦媚.既有桥检测评估的若干要点[J].桥梁建设, 2002, 3:1~6
    4旧桥的检测、评定与加固(译文集)[M].交通部公路科学院研究所. 1985
    5秦权.桥梁结构的健康监测[J].中国公路学报, 2000,13(2):37~42
    6李亚东.既有桥梁评估初探[J].桥梁建设, 1997, 3:18~21
    7李宏男,李东升.土木工程结构安全性评估、健康监测及诊断评述[J].地震工程与工程振动, 2002, 22(3):82~90
    8 Sukun Kim, Shamim Pakzad, David Culler. Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks [C]. IEEE Information Processing in Sensor Networks, 2007, 254:263
    9 JMW Brownjohn, A Pavic, P Carden. Modal Testing of Tamar Suspension Bridge. IMAC XXV, Orlando, USA, 2007
    10 Gethin Wyn Roberts1, Chris Brown2, Xiaolin Meng1. Deflection Monitoring of theForth Road Bridge by GPS. ION GNSS 18th International Technical Meeting of theSatellite Division, 2005, Long Beach, CA, 1016~1021
    11 KOH H.M., LEE H.S., KIM S.,“Monitoring of Bridges in Korea”, Encyclopedia of Structural Health Monitoring, John Wiley & Sons, Ltd., 2008~2960
    12 H. M. Koh, J. F. Choo. Applications and Researches in Bridge Health Monitoring Systems and Intelligent Infrastructures in Korea. Structural Health Monitoring and Infrastructure. Ou, Li & Duan, 2006, Taylor & Francis Group, London, 151~160
    13 Sumitro, S. Current and future trends in long span bridge health monitoring system in Japan. Proceedings of the Seventh International Symposium on Smart Structures and Materials, SPIE, Newport, CA, 2001
    14 S.Sumitro, T.Okamoto, Y.Matsui. Long Span Bridge Health Monitoring System in Japan, Proc. SPIE.4337-67, 2001, 517~524
    15 Kashima, S. Yanaka, Y. Monitoring the Akashi Kaikyo Bridge: First Experiences . Structural Engineering International, 2001, 11(4): 120~123
    16 Brincker, R., J. Frandsen, P. Andersen. Ambient Response Analysis of the Great Belt Bridge. Proc. of the 18th International Modal analysis Conference, San Antonio, Texas, 2000
    17 T.H.T. Chana, L. Yua, H.Y. Tam. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma Bridge: Background and experimental observation, Engineering Structures, 2006, 28:648~659
    18缪长青,韩惠婷,李爱群等.江阴大桥原结构安全监测系统设计分析.公路交通科技, 2007, 24(11):81~86
    19邱法维,杜文博,钱稼茹等.虎门大桥应变监测数据处理系统设计.桥梁建设, 2003, 2:66~69
    20郭彤.大跨悬索桥状态评估实用方法研究与应用.南京:东南大学, 2005:109~117
    21 A. K. Dutta, A. Dutta. Design of an active controller for Quincy Bayview Bridge, Illinois, U.S.A., against seismic excitation-Part I: Model updating. Structure Control Health Monitor, 2008, 15:1057~1077
    22 J. Dowd, M. Poser, K. H. Frank. Bending Fatigue of Cable Stays. Journal of Bridge Engineering. 2001, 6(6):639~644
    23 K. Soyluk, A.A. Dumanoglu . Comparison of asynchronous and stochastic dynamic responses of a cable-stayed bridge. Engineering Structures, 2000,22: 435~445
    34 Kim, K .S , Paik, S. H., Optical fiber monitoring system of bridges in Korea. International Workshop on Structural Health Monitoring. Stanford, 1997, 555~563
    25 Man-Chung Tang, Dennis J. Jang. Seohae Grand Bridge. Journal of the Transportation Research Board, 2000, 1696:273~285
    26 H. M. Koh, S. Kim, J. F. Choo. Recent Development of Bridge Health Monitoring System in Korea. Sensing Issues in Civil Structural Health Monitoring, 2005, 33~34
    27 Christine Connolly. Fibre-optic-based sensors bring new capabilities to structural monitoring. Sensor Review, 2006, 26(3): 236~ 243
    28 Peter Thomson, Johannio Marulanda C., Johannio Marulanda A. Real-time health monitoring of civil infrastructure systems in Colombia. Health Monitoring and Management of Civil Infrastructure Systems, Newport Beach, CA, USA. 2001, 113~121
    29 Myroll F ,Dibiagio E. Instrumentation for monitoring the Skarnsunder Cable-stayed Bridge[A]. Krokeborg J Proceedings of the 3rd Symposium on Strait Crossing. Rotterdam:Balkema ,1994. 207~ 215.
    30 F.M. Livesey, G.L. Larose. The Pont de Normandie during construction, aeroelastic modelling of behavior. Journal of Wind Engineering and Industrial Aerodynamics ,1996,25:203~215
    31 Ni, Y. Q., Zhou, H. F., Chan, K. C., Modal Flexibility Analysis of Cable-Stayed Ting Kau Bridge for Damage Identification. Computer-Aided Civil and Infrastructure Engineering, 2008, 23: 223~236
    32 Ko, J.M., Sun, Z.G. and Ni, Y.Q., "Multi-stage identification scheme for detecting damage incable-stayed Kap Shui Mun Bridge", Engineering Structures, 2002, 24( 7): 857~868
    33 Wong K.Y., Hui M.C.H. The structural health monitoring approach for Stonecutters Bridge. Proceeding of IABSE Conference, Shanghai, 2004
    34王应军.大型斜拉桥长期健康监测系统的关键技术研究.武汉:武汉理工大学, 2006:66~78
    35史家钧邵志常.上海徐浦大桥结构状态监测系统,中国土木工程学会桥梁及结构工程学会第十三届年会,北京, 1998
    36吴大宏.基于遗传算法与神经网络的桥梁结构健康监测系统研究.成都:西南交通大学, 2000:218~220
    37苏木标,杜彦良,孙宝臣等.芜湖长江大桥长期健康监测与报警系统研究.铁道学报, 2007, 29(2):71~76
    38李枝军,李爱群,韩晓林.基于最大熵谱和模糊聚类分析的斜拉桥拉索索力测试与评估.工程力学, 2009, 26(11):88~94
    39宋雨.文晖大桥健康监测与评估管理系统主要问题研究.南京:东南大学, 2003:22~40
    40胡卫军.重庆大佛寺长江大桥连通管式光电挠度测量系统的实用化研究.重庆:重庆大学, 2003:1~5
    41谢晓尧.红枫湖大桥健康监测系统关键技术研究.武汉:武汉理工大学, 2007:14~33
    42侯立群.大型斜拉桥基于健康监测的模型修正-损伤诊断与预警方法.哈尔滨:哈尔滨工业大学, 2009:66~77
    43李爱群,缪长青,李兆霞.润扬长江大桥结构健康监测系统研究.东南大学学报(自然科学版), 2003, 33(5):544~548
    44 Curran P. Tilly G. Design and monitoring of the Flintshire Bridge, UK. Structural Engineering International. 1999, 3:225~228
    45 Sloan, T. D. Boyd, J. W. Kirkpatrick, J. Monitoring the inservice behaviour of the Foyle Bridge. Structural Engineer. 1992, 70: 130-134
    46 Xianping Li,Ian N Robertson. Long-Term Performance Predictions of the North Halawa Valley Viaduct. Manoa: University of Hawaii, 2003:5~9
    47 A. A. Mufti, G. Tadros, P. R. Jones. Field assessment of fibre-optic Bragg grating strain sensors in the confederation bridge. Canadian Journal of Civil Engineering, 1997, 24(6): 963~966
    48 Murugesh, G., Health monitoring of the new Benicia Martinez Bridge. Proceedings of the Seventh International Symposium on Smart Structures and Materials, SPIE, Newport, CA, Washington D.C., 2001:256~267
    49张通.大跨刚构-连续梁桥的全寿命性能监测与分析.哈尔滨:哈尔滨工业大学, 2008:19~21
    50 Barrish, R. A. Jr., Grimmelsman, K. A., Aktan, A. E.. Instrumented monitoring of the Commodore Barry Bride. Proceedings of SPIE, 2000, pp. 112~122
    51何旭辉.南京长江大桥结构健康监测及其关键技术研究.南京:东南大学, 2004:23~43
    52 Larson C. B., Zimmerman D. C., Marek E. L. A comparison of modal test planning techniques: excitation and sensor placement using the NASNS-bay truss. Proceedings of the 12th IMAC Conference, 1994, 205~21
    53 Guyan R J. Reduction of Stiffness and Mass Matrices. AIAA Journal.1965, 3(2):380~387.
    54 Breitfeld T. A Method for Identification of a Set of Optimal Measurement Points for Experimental Modal Analysis. The International Journal of Analytical and Experimental Modal Analysis.1996, 11:254~273
    55 Larson C B, Zimmerman D C, Marek E L.A Comparison of Modal Test Planning Techniques: Excitation and Sensor Placement Using the NASN 8-bay Truss. In: Allemang R ed. Proceedings of the 12th IMAC conference.1994:205~211
    56 Clerck J P, Avitabale P. Development of Several New Tools for Modal Pretest Evaluation. In: Wick A L ed. Proceedings of 14th IMAC conference.1996:1527~1532
    57 D. C. Kammer. Sensor Placement for On-orbit Modal Identification and Correlation of Large Space Structures. Journal of Guidance, Control and Dynamics.1991, 14(2):251~256
    58 H. B. Kim, Y. S. Park. Sensor placement Guide for Structural Joint Stiffness Model Improvement. Mechanical Systems and Signal Processing.1997, 11(5):651~672
    59 Baruh H, Choe K. Sensor failure detection method for flexible structures. Journal of Control and Dynamics, 1987, 10(5):474-482
    60 Shih Y T, Lee A C, Chen J H. Sensor and actuator placement for modal identification. Mechanical Systems and Signal Processing, 1998, 12(5):641-659
    61 Xing guangqian, Bamum P. M. Actuator placement using degree of controllability for discrete-time systems. Journal of Dynamic Systems, Measurement, and Control, 1993, 114:508-516
    62 Sunar M, Rao S. S. Thermo piezoelectric control design and actuator placement. AIAA Journal, 1997, 35(2):534-539
    64 Hafkta R T, Adelman H M. Selection of actuator locations for static shape control of large space structures by heuristic integer programming. Computers and structures, 1985.3506-3514
    64 Hakim S,Fuches M. B. Optimal actuator placement with minimum worst case distortion criterion. In: Baker M ed. Proceedings of SDM Conference. AIAA-95-1137, 1995. 3506-3514
    65李戈,秦权,董聪.用遗传算法选择悬索桥监测系统中传感器的最优布点.工程力学,2000,17(2):25-35
    66 Metropolis N, Rosenbluth A, Rosenbluth M, et al. Equation of state calculation by fastcomputing machines, Journal of Chemical Physics,1953,21(6):1092~1108
    67 Kirkpatrick S, Gelatt C, Vecchi M. Optimization by simulated annealing, Science, 1983, 220:671~680
    68 SoPhia Hassiotis, Garrett D. Jeong. Identification of Stiffness Reductions Using Natural Frequencies. Journal of Engineering Mechanics, 1995,10:1106~1113
    69 A. Morassi, N. Rovere. Localizing a Notch in a Steel Frame From Frequency Measurements. Journal of Engineering Mechanics, 1997, 5:422~433
    70 V. Ramamurti,Sumanta Neogy. Effect of Cracks on The Natural Frequency of Cantilevered Plates-A Rayleigh-Ritz Solution. MECH. STRUCT. & MACH., 1998, 26 (2):131~143
    71 Sreenivas Alam Pallietal. Signal versus Noise in Damage Detection by Experimental Modal Analysis. Journal of Structural Engineering, 1997, 2:237~245
    72 G. C. Yao et al. Damage Diagnosis of Steel Frame Using Vibration Signature Analysis. Journal of Engineering Mechanics, 1992, 118(9):1949~1961
    73钱管良,顾松年,姜节胜.板裂纹位置的确定.应用力学学报, 1992, 9(1):44~53
    74郭国会等.基于振型变化的框架结构破损评估.重庆建筑大学学报, 1998, 20(6):79~82
    75 A. K. Pandey, M. Biswas. Damage detection from changes in curvature mode shapes. Sound and Vibration,1991,145(2):321~332.
    76袁向荣.梁的破损对频率、振型及振型曲率的影响.振动、测试与诊断, 1994, 2:40~44
    77徐宜桂,史铁林,杨叔子.基于神经网络的结构动力模型修改和破损诊断研究.振动工程学报, 1997, 10(1), 8~12
    78李德葆.试验应变模态分析原理和方法.清华大学学报, 1990, 30(2): 22~26.
    79 Chance J, Tomlison G. R., Worden K. A simplified approach to the numerical and experimental modeling of the dynamics of a cracked beam. Proceeding of the 12th International Modal Analysis Conference, 1994: 778~785.
    80 Chen J. C., Garba J. A. On-orbit damage assessment for large space structures. AIAA, Journal,1988,26(9):1119~1126
    81 Ricles K. Damage detection in structures by modal vibration characterization. Journal of Structural Engineering, 1999, 125(12):1384~1392
    82 Ricles J. M., Kosmatka J. B. Damage detection in elastic structures using vibratory residual forces and weighted sensitivity. AIAA Journal, 1992, (30):2310~2316
    83周先雁,沈蒲生,易伟建.混凝土平面杆系结构破损评估理论及实验研究.湖南大学学报, 1995, 22(4):104~109
    84刘济科,杨秋伟.基于残余力向量的结构损伤识别两步法.中山大学学报, 2004, 43(4):1~4
    85王中要,郭秀文,王珂等.用残余力向量进行连续梁损伤诊断.昆明理工大学学报, 2000,25(5):64~67
    86 A. K. Pandey, M. Biswas. Experimental Verification of Flexibility Difference Method for Locating Damage in Structures. Journal of Sound and Vibration, 1995, 184(2):311~328
    87綦宝晖等.一种析架结构损伤识别的柔度阵法.计算力学学报, 2001, 18(l):42~47
    88綦宝晖等.基于柔度阵的悬臂弯剪型建筑结构损伤识别方法.工业建筑, 2000, 30(4):65~66
    89郑栋梁等.结构早期损伤识别技术的现状和发展趋势.振动与冲击, 2002, 21(2): 1~10
    90 Liang Z et al. On Detection of Damage Location of Proceeding of IMAC, 1996, 308~312
    91史治宇等.结构破损定位的单元模态应变能变化率法.振动工程学报, 1998, 11(3):356~360
    92史治宇等.基于模态应变能诊断结构破损的修正方法.东南大学学报, 2000, 30(3):84~87
    93 S. K. Thyaaarajan et al. Detecting Structural Damage Using Frequency response Functions. Journal of Sound and Vibration, 1998, 210(l):162~170
    94 Mark J. S. et al. Detecting Structural Damage Using Transmittance Function. Proeeeding of 15th IMAC,Florida, 1997, 635~644
    95郑明刚等.基于频响函数的结构损伤检测.机械科学与技术, 2001,20(3):458
    96李晏,石来德.利用应变传递特性诊断箱型梁裂纹的实验研究.同济大学报, 1999, 27(5):618~620
    97 Zhang J., Xu Y L, Xia Y, et al. A new statistical moment-based structural damage detection method. Structural Engineering and Mechanics, 2008, 30(4):445~446
    98 M. Sanayei, R. B. Nelson. Identification of structural element stiffness from incomplete static test data. SAE Tech. Papers. No. 861793:7.1237~7.1248
    99 M. Sanayei, O. Onipede. Damage assessment of structures using static test data. AIAA Journal, 1991, 29(7):1174~1179
    100 M. Sanayei, O. Onipede, S. R. Babu. Selection of noisy measurement locations for error reduction in static parameter identification. AIAA Journal, 1992, 30(9):2299~2309
    101 M. R. Banan, K. D. Hjelmstad. Parameter estimation of structures from static response I: computational aspects. Journal of Structural Engineering, ASCE, 1994, 120(11):3243~3258
    102 M. R. Banan, K. D. Hjelmstad. Parameter estimation of structures from static response II: numerical simulation studies. Journal of Structural Engineering, ASCE, 1994, 120(11):3259~3283
    103 K. D. Hjelmstad, S. Shin. Damage detection and assessment of structures from static response. J. Engr. Mech., ASCE, 1997, 123(6):568~576
    104 M. Sanayei, M. J. Saletnik. Parameter estimation of structures form static strain measurements I: Formulation. Journal Structure Engineering, 1996, 122(5):555~562
    105 M. Sanayei, M. J. Saletnik. Parameter estimation of structures form static strain measurements II: Error sensitivity analysis. Journal Structure Engineering, 1996, 122(5):563~572
    106 M. Sanayei et al. Structural model updating using experimental static measurements. Journal Structure Engineering, 1997, 123(6):792~798
    107 PeiLing Liu, ChungChi Chian. Parametric identification of truss structures using static strains. Journal Structure Engineering, 1997, 123(7):927~933
    108崔飞、袁万城、史家钧.基于静态应变及位移测量的结构损伤识别法.同济大学学报, 2000, 28(1):5~8
    109 A. B. Mehrabi, H. Tabatabai, H. R. Lotfi. Precursor transformation method for damage detection in structures. SPIE ,1998,3325:232~243
    110孙宗光,高赞明,倪一清等.斜拉桥桥面结构损伤位置识别的指标比较.工程力学, 2003, 20(1):27~31
    111孙宗光,伍雪南,苏健.基于斜拉索张力测定的斜拉桥健康诊断.公路交通科技, 2008, 25(8):57~60
    112 X. G. Hua; Y. Q. Ni, Z. Q. Chen et al. Structural Damage Detection of Cable-Stayed Bridges Using Changes in Cable Forces and Model Updating. Journal of Structural Engineering, 2009, 13(9):1093~1106
    113 U.S. Department of Transportation. Bridge Inspector’s Reference Manual. Washington:Federal Highway Administration, 2002:4.1.8~4.1.10
    114 Highway Agency. Inspection of Highway Structures. Design manual for road and bridges. Volume 3 Section 4 Part 5 BA 63/94. London: HMSO, 1994
    115 The Forum of European National Highway Research Laboratories. Review of current practice for assessment of structural serviceability and classification of defects (D2). BRIME project report, 1999
    116中华人民共和国交通部.公路桥涵养护技术规范(JTG H11-2004).北京:人民交通出版社,2004
    117北京市政工程管理处.城市桥梁养护技术规范(CJJ 99-2003 ).北京:中国建筑工业出版社, 2004
    118翁燕.基于层次分析法的混凝土斜拉桥状态评估[D].西南交通大学, 2007
    119兰海,史家钧.灰色关联分析与变权综合法在桥梁评估中的应用[J].同济大学学报, 2001
    120宋雨.文辉大桥健康监测与状态评估管理系统主要问题研究[D],浙江大学,2003
    121相斌辉.变权综合法在斜拉桥健康状态评估中的应用研究[D].广西大学,2008
    122李蓉.基于层次分析法的桥梁健康状态模糊综合评估方法的研究及其应用[D].湖南大学, 2007
    123杨小森,闫维明,陈彦江等.面向养护策略的大跨度斜拉桥技术状态评估方法研究.公路, 2010, 214~216
    124交通部第二公路勘察设计院.公路旧桥承载能力鉴定方法.北京:人民交通出版社, 1989:33~36
    125 American Association of State Highway and Transportation Officials. The manual for bridge evaluation Washington: AASHTO, 2008:6~21
    126 The Highways Agency. BD21/01. The assessment of highway bridges and structures]. London: The Highways Agency, 2001:5/5-5/14
    127 T. Liu, R. W. Weyers. Modeling the dynamic corrosion process in chloride contaminated concrete structures. Cement and Concrete Research, 1998, 28(3):356~379
    128牛荻涛,王庆霖,王林科.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型.工业建筑, 1996, 26(4):8~10
    129牛荻涛,王庆霖,王林科.锈蚀开裂后混凝土中钢筋锈蚀量的预测.工业建筑, 1996, 26(4):11~13
    130惠云玲.钢筋性能试验研究分析.工业建筑, 1997, 27(6):10~13
    131惠云玲,李荣,林志坤等.混凝土基本构件钢筋锈蚀前后性能试验研究.工业建筑, 1997(6):14~18
    132朱娜.既有钢筋混凝土桥梁正截面抗弯承载力评估.成都:西南交通大学, 2006:45~47
    133何志川.半电池电位法检测混凝土中钢筋锈蚀的研究.哈尔滨:哈尔滨工业大学, 2008:58~62
    134钱觉时,徐姗姗,李美利等.混凝土电阻率测量方法与应用.山东科技大学学报(自然科学版), 2101,9(1):37~42
    135李扬海,鲍卫刚,郭修武等.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社, 1997:96-100
    136梅刚,秦权,林道锦.公路桥梁车辆荷载的双峰分布概率模型[J].清华大学学报(自然科学版), 2003, 43(10):1394-1404
    137郭彤,李爱群,赵大亮.用于公路桥梁可靠性评估的车辆荷载多峰分布概率模型[J].东南大学学报(自然科学版), 2008, 38(5):763-766
    138王硕.桥梁运营荷载状况研究.上海:同济大学, 2007:30~45
    139 Andrzej S. Nowak, Young-Kyun Hong. Bridge Live-load models [J]. Journal of Structural Engineering, 117(9):2757-2767
    140王磊,张建仁.基于平衡更新过程的既有桥梁车辆荷载效应模型[J].中国公路学报,2008, 21(5):50-56
    141 Ditlevsen O, Madsen H O. Stochastic vehicle-queue-load model for large bridges [J]. Journal of Engineering Mechanics, 1994, 120(9):1829-1847
    142 Ditlevsen O. Traffic loads on large bridges modeled as white-noise fields [J]. Journal of Engineering Mechanics, 1994, 120(4):681-694
    143建设部. GB50068-2001建筑结构可靠度设计统一标准.北京:中国建筑工业出版社,2001:3~4
    144柳颖臣.基于概率理论的预应力混凝土桥梁结构可靠度研究.西安:长安大学, 2008:44~51
    145刘泽欣.基于系统可靠度理论的梁式桥结构承载力评估研究.西安:长安大学, 2005:57~71
    146张俊娟.在役RC桥梁动态可靠度及剩余使用寿命预测.西安:长安大学, 2008:52~57
    147武电坤.基于桥梁远程监测信息的剩余寿命预测模式研究.重庆:重庆交通大学, 2009:107~123
    148罗书学.钻孔灌注桩极限承载力可靠指标和分项系数的计算.西南交通大学学报, 2000, 35:361~365
    149赵春风,卢隆宾,徐超等.预制桩竖向承载力的分项系数研究.岩土工程学报, 2003,
    25(2):154~156
    150卢家森,张其林,杨联萍等.建筑结构用钢丝束拉索的抗力分项系数研究.同济大学学报(自然科学版). 2005, 33(2):149~152
    151李欣,武岳,沈世钊.钢拉杆与钢绞线的抗力分项系数研究.土木工程学报, 2008, 14(9):8~13
    152王术新,姜哲.基于结构振动损伤识别技术的研究现状及进展.振动与冲击, 2004,
    23(4):99~102
    153杨晓明.土木工程结构的性能监测系统与损伤识别方法研究.天津:天津大学, 2006:86~90
    154陈晓强.基于能量指标的结构损伤识别理论与试验研究.武汉:华中科技大学, 2009:23~40
    155俞载道.结构动力学基础.上海:同济大学出版社, 1987:337~346
    156徐金峰.利用新型倾角仪测量桥梁挠度方法的理论分析研究.兰州:兰州交通大学, 2009:10~15
    157杨学山,侯兴民,廖振鹏等.桥梁挠度测量的一种新方法.土木工程学报, 2002, 35(2):92-96
    158 Xingmin Hou, Xueshan Yang, Qiao Huang. Using Inclinometers to Measure Bridge Deflection. Journal of Bridge engineering, 2005, 10(5):564-569
    159叶贵如,周玉龙.倾角仪在大跨度桥梁挠度检测中的应用.公路交通科技, 2009,26(11):103-106
    160 San-Shyan Lin and Jen-Cheng Liao. Lateral Response Evaluation of Single Piles Using Inclinometer Data. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(12):1566-1573
    161 San-Shyan Lin, Jen Cheng Liao, Wei F. Lee, etc. Deflection Prediction of Laterally Loaded Piles Using Inclinometer Data. Proceeding of Geo Trans, 2004:1209-1218
    162 P. S. K. Ooi, T. L. Ramsey. Curvature and Bending Moments from Inclinometer Data. International Journal of Geomechanics, 2003:64-74
    163 Ray W. Clough. Dynamics of Structures (Third Edition). Computers & Structures, Inc. 1995:337~397
    164孙永生,王坤杨.正交级数.北京:北京师范大学出版社, 2007:238~250
    165宋一凡.桥梁动力学.北京:人民交通出版社, 2000:27~33
    166王星.非参数统计.北京:人民大学出版社, 2000:24~30
    167 W. J. Conover.实用非参数统计.北京:人民邮电出版社, 2006:252~260
    168王静龙,梁小筠.非参数统计分析.北京:高等教育出版社, 2006:168~174
    169张清华,李乔,唐亮.基于损伤敏感指标的斜拉桥结构损伤定位研究.工程力学, 2008:163~168
    170宗周红,任伟新,阮毅.土木工程结构损失诊断研究进展.土木工程学报, 2003, 36(5):105-110
    171陈宇.有限元模型修正技术在桥梁工程中的应用研究.成都:西南交通大学, 2006:22~25
    172张育智,李乔,单德山.复杂结构损失识别的广义子结构法[J].西南交通大学学报, 2009, 44(2):160~165
    173樊素英,李忠献.桥梁结构物理参数识别的双单元子结构法[J].工程力学, 2007, 24(6):68~72
    174窦晓娜.基于挠度影响线的桥梁结构损伤识别方法初步研究.重庆:重庆交通大学, 2008:34~65
    175郭骞.基于影响线的模型修正方法初步研究.重庆:重庆交通大学, 2008:33~41
    176刘云帅.基于挠度差值影响线的简支梁桥损伤识别研究.兰州:兰州理工大学, 2009:12~16
    177 Guido Roelfstra, Rade Hajdin, Bryan Adey. Condition Evolution in Bridge Management Systems and Corrosion-Induced Deterioration. Journal of Bridge Engineering, 2004, 9(3):268~277
    178牛映武.运筹学.西安:西安交通大学出版社, 2006:316~318
    179王莲芬,许树柏.层次分析法引论.北京:人民大学出版社, 1990:42~85
    179 FHWA. Guide for the Structure Inventory and Appraisal of the Nation’s Bridges. U.S. Department of Transportation, 1995
    180 H. Ping Tserng and Chin-Lung Chung. Health Assessment and Maintenance Strategy for Bridge Management Systems: Lessons Learned in Taiwan. Journal of Infrastructure Systems, 2008, 13:235-246
    181 Cornelia E. Demers, Rita A. Gregory, Mark N. Cost at Element Level. Journal of Infrastructure Systems . 2002,8(4):115-121
    182 American Association of State Highway and Transportation Officials. LRFD Bridge Design Specification [S]. Washington: AASHTO, 1994:55-61
    183 Oregon Department of Transportation. ODOT LRFR Manual [M]. Oregon Department of Transportation, 2008:27~31
    184 Rebecca Curtis, Roger Till. Recommendations for Michigan Specific Load and Resistance Factor Design Loads and Load and Resistance Factor Rating Procedures. 2008: 26~27
    185 The Highways Agency. BD44/96. The Assessment of Concrete Highway Bridges and Structures. London: The Highways Agency, 1996:5/7-5/8
    186中交公路规划设计院.公路桥涵通用设计规范.北京:人民交通出版社, 2004:25~25
    187中交公路规划设计院.公路钢筋混凝土及预应力混凝土桥梁设计规范.北京:人民交通出版社, 2004:25~27
    188董恩波,宛贺芹,王莉莉.用电位滴定法测定混凝土外加剂中氯离子含量.混凝土, 1991,5:31~39
    189 The highway agency, BA38/93. Assessment of the Fatigue Life of Corroded or Damaged Reinforcing Bars. London: The Highways Agency,1993:6-7
    190耿欧.混凝土构件中钢筋锈蚀速率预计模型研究.徐州:中国矿业大学, 2008:30~35
    191陈国华,王光信.电化学方法应用.北京:化学工业出版社, 2003:5~10
    192陕西建筑科学研究设计院.回弹法检测混凝土抗压强度技术规程(JGJ/T23-2001).中国建筑工业出版社, 2001
    193中国建筑科学研究院.超声回弹综合法检测混凝土强度技术规程(CECS 02:2005).北京:中国计划出版社, 2005
    194中国建筑科学研究院.钻芯法检测混凝土强度技术规程(CECS03:88).北京:中国工程建设标准化协会,1988
    195林升光.正常运行状态车辆荷载复合Poisson过程模型[J].福建师范大学学报(自然科学版),1995, 11(2):9-14
    196 Baidurya B. Reliability-Based Load and Resistance Factor Rating Using In-Service Data [J]. Journal of Bridge Engineering, 2005, 10(5):530-543
    197 Liu M, Dan M, Kim S. Bridge Safety Evaluation Based on Monitored Live Load Effects [J]. Journal of Bridge Engineering, 2009, 14 ( 4), :257-269
    198邓永录,梁之舜.随机点过程及其应用[M].北京:科学出版社,1992:327-342
    199李国强.工程结构荷载与可靠度设计原理[M].北京:中国建筑工业出版社,1999:137-138
    200余沛.中心点法在钢筋混凝土构件可靠度计算分析中的应用.重庆交通学院学报, 1998, 17(1):69~72
    201李云贵;赵国藩;张保和;.结构可靠度的渐近分析方法大连理工大学学报, 1994, 34(14):442~446
    202张建仁,刘扬.结构可靠度理论及其在桥梁工程中的应用.北京:人民交通出版社, 2003:7~10
    203曹居易;张宽权;张宽海;可靠指标模式中分离函数和分项系数的研究.四川建筑科学研究. 1982, 1:32~39
    204中华人民共和国交通部.公路工程结构可靠度设计统一标准(GB/T50283-1999).北京:中国计划出版社, 199:15~20
    205 Maeda, K. Otsuka, A., Takano, H. The Design and Construction of the Yokohama Bay Bridge. Cable-stayed bridges, Recent Developments and Their Future, Ito, M, et al, Elsevier Science Publishers, 1991, 337-395
    206 Wada, K. et al.. Construction of the Yokohama Bay Bridge superstructure. IABSE Proc, IABSE, Vol. 92(85), 1988
    207林元培.卡尔曼滤波法在斜拉桥施工控制中的应用.土木工程学报. 1983, 16(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700