超细径光纤微张力测量装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤器件在光纤通信系统及光纤传感系统中是必不可少的器件。在光纤器件制造中采用超细径光纤不仅可以减小器件和相应部件的体积,而且可以提高器件性能。光纤直径的减小对光纤器件制作过程中的微张力检测提出了更高的要求,因此,研究超细径光纤微张力测量装置具有重要的应用价值。
     本文采用悬臂弯曲原理结合光电四象限测量方法,建立微张力测量模型,并通过噪声分析确定微力测量装置的分辨率同结构参数之间的关系。通过数值分析方法对微力测量装置的结构参数进行优化,在满足微力测量范围的前提下,计算出微力测量装置的最小分辨率以及相应的结构参数。根据优化参数建立微力测量装置并对其测量范围,重复精度和分辨率进行测试,通过最小二乘法对微力测量装置的输出信号进行拟合。
     采用有限元分析对超细径光纤在熔融拉伸过程中受到的电磁拉伸力的磁场进行仿真分析,通过数值分析对超细径光纤在熔融拉伸过程中受到的电磁力拉伸力同导线线径、线圈匝数、通电电流之间的关系进行拟合,得到超细径光纤熔融拉伸过程中受到的电磁拉伸力。基于粘弹性理论和麦克斯韦模型,建立超细径光纤熔融加热过程中微张力的理论模型。通过有限元分析对超细径光纤熔融拉伸过程中,超细径光纤的温度场和应力进行仿真分析。仿真结果表明,超细径光纤靠近高压加热电弧位置温度最高,两个电弧中间位置的光纤温度最低;超细径光纤熔融拉伸过程中应力随时间不断减小,超细径光纤靠近高加热电弧区域应力减小最多。
     建立超细径光纤熔融拉伸过程中微张力测量系统,利用标定后的微张力测量装置,测量超细径光纤的拉伸力和熔融拉伸过程中微张力的变化。通过改变超细径光纤熔融拉伸过程中的参数,测量不同参数对超细径光纤微张力的影响规律。实验结果表明,当拉伸速度一定时,光纤两端施加的初始拉力越大,拉伸结束时光纤拉力减小越多。当拉伸力一定时,光纤熔融拉伸的速度越大,拉伸结束时光纤拉力减小越多。
Fiber devices are essential in fiber communication systems and various types of fiber sensing system. During the manufacture of fiber devices, it can not only reduce the volume of device and its corresponding parts, but also significantly improve device performance by using ultra-thin fiber. Reducing the diameter of fiber puts forward higher requirements to micro-tensile measurement during the process of fiber device production. Therefore, research on the device for measuring micro-tensile of ultra-thin fiber has important value for application.
     The paper which is based on the principle of cantilever-bending and photoelectricity four-quadrant measurement establishes the model of micro-force measuring device, and defines the relationship between the resolution and structural parameters by noise analysis. When the device for measuring micro-force meets the measurement range, Structure parameters are optimized by numerical analysis and the minimum resolution and structural parameters are calculated. The device based on the optimal results for measuring micro-force is built and measuring range, repeatability and resolution of the device is tested. The output signal of device by is fitted by least-squares method.
     The magnetic field which provides the tension for ultra-thin fiber is simulated by finite element analysis. The tension for ultra-thin fiber is obtained when the relationship between electromagnetic force and wire diameter, coil turns and current power is fitting by numerical analysis. Based on the theory of viscoelastic and the Maxwell model, the model on the micro-tensile when ultra-thin fiber is melt is established. The temperature and stress during the process of melting and stretching is by simulated by finite element analysis. The simulation results show that when the parts of ultra-thin which are near high-pressure heating arc position, the temperature is higher than any other part, and the temperature in the middle arc of two fiber-optic is minimum; the micro-tensile is reducing during the process of melting and stretching, and the micro-tensile of ultra-thin fiber which are near the high heating arc region reaches to the minimum.
     The system for measuring the micro-tensile of ultra-thin fiber during the process of melting and stretching is established and used for measuring both the micro-tensile and the change during the process of melting and stretching. By changing the parameters of the process for measurement, it can get the discipline of the tension of ultra-thin fiber. Experimental results show that the increasing of the initial micro-tensile strength, melting speed and the distance between measurement device and high heating arc region make micro-tensile decrease significantly.
引文
[1]赵仲刚,赵立琦. GOP-22-01型保偏光纤耦合器.光纤与电缆及其应用技术. 1999, 3:18~22
    [2]黎敏,田芊,廖延彪.飞速发展中的光纤陀螺技术[J].光学精密工程. 1998.6: 1~9
    [3]邹燕等.光纤陀螺光路小型化技术研究[J].军械工程学院学报. 2007:78~80
    [4]林荣新.在线光纤拉丝张力和直径测量装置[J].光纤通信技术. 1989: 23~24
    [5]梁铨廷.保偏光纤应力的自动测量[J].广州师院学报. 1995: 64~66
    [6]孟照魁,张春熹,杨远洪,续永刚.光纤缠绕过程中的张力分析[J].北京航空航天大学大学学报. 2005:35~36
    [7]邱召运.微张力测量模型设计与实验研究[J].传感技术学报. 2009:54~58
    [8]卢晓光.压电薄膜微力传感器特性研究[D].大连:大连理工大学硕士学位论文. 2006, 1(1-2):20~22
    [9]刘梦伟.基于双压电PZT薄膜单元的悬臂梁式微力传感器研究[D].大连:大连理工大学硕士学位论文. 2006: 12~13
    [10]孟汉柏. PTPZTPT薄膜微力传感器的研究[D].大连:大连理工大学硕士学位论文. 2007:17~19
    [11]王敏锐. ZnO薄膜压电微力传感器执行器研究[D].大连:大连理工大学硕士学位论文. 2006:30~32
    [12] Domanski K, Grapiec Petal. Design, fabrication and characterization of force sensors for nanorobot[J]. Microelectronic Engineering, 2005: 171~177
    [13]荣伟彬,王家畴,陈立国.基于MEMS技术的微操作三维力传感器研究[J].仪器仪表学报. 2007: 91~1198
    [14] Felix Beyeler, Simon Muntwyler, Bradley J. Nelson. Asix-axis MEMS force-torque sensor with micro-newton and nano-newtonmeter resolution[J]. Micro-electromech. 2009: 41~43
    [15] Sun Y, Nelson B J, Potasek D P and Enikov E. A bulk microfabricated multiaxis capacitive cellular force sensor using transverse comb drives[J]. Micromech. 2002: 170~177
    [16]李丽娟.目标激光散射特性在钢板表面微观轮廓精度测量中的应用研究[D].长春:长春理工大学硕士学位论文. 2005:431~436
    [17]胡晓明.扫描探针显微镜的基础知识[J].现代物理知识, 1997:30~32
    [18] Sharpe W N Jr, Yuan B and Edwards R L. A new technique for measuring the mechanical properties of thin films[J]. Microelectromech, 1999: 40~42
    [19]刘荣梅,梁大开,王妮.光纤力学性能的试验研究[J].实验力学. 2007: 45~48
    [20] Hiroshige Ohno, Hiroshi Naruse, Akiyoshi Shimada. Industrial applications of the BOTDR optical fiber strain sensor[J]. Optical Fiber Technology. 2001, 7(1): 45~56
    [21] E.P.S. Tan and C.T. Lim. Novel approach to tensile testing of micro- and nanoscale fibers[J]. Rev Sci Instrμm. 2004; 75(8): 581~585
    [22] Y. Zhou and B.J. Nelson. Adhesion Force Modeling and Measurement for Mirco-manipulation[C]. SPIE Conf. on Microrobotics and Manipulation, Boston, USA, 1998:169~180
    [23] M. Wang, D. Xu, K. Ravi-Chandar, and K. M. Liechti. On the Development of a Mesoscale Friction Tester[J]. Exp. Mech. 2007: 55~58
    [24] L.Y. Beaulieu, M. Godin, O. Laroche, V. Tabard-Cossa. A complete analysis of the laser beam deflection systems used in cantilever-based systems[J]. Ultra-micro-scopy. 2007: 422-430
    [25]钱建强等.四象限光电探测器用于二维小角度测量的研究[J].仪器仪表学报. 2002: 23~24
    [26] Xiaomei Yu, Ting Li, Dacheng Zhang. Noise Analyzing of Piezoresistive SiliconMaterials[J]. Solid-State and Integrated Circuits Technology. 2004: 2194~ 2197
    [27] Seung Seoup Lee, Yutaka Miyatake, Ichiro Shirak. Optimization of the piezo-resistive AFM cantilever design for use at cryogenic temperatures[J]. Solid-State Sensors, Actuators and Microsystems. 2005: 356~376
    [28]黄渊.基于光学读出的微悬臂梁生化传感技术研究[D].合肥:中国科学技术大学硕士学位论文. 2009: 356~376
    [29]杨翠等.四象限光电探测器定位误差分析[J].传感器与微系统. 2009: 125~134
    [30] Yun Liu, TanMin. A new pre-alignment approach based on four-quadrant- photo detector for IC mask [J]. International Journal of Automation and Computing. 2007, 4 (2): 208~216
    [31]沈颖.关于动态测试中的噪声干扰[J].凉山大学学报. 2001: 129~134
    [32] Augusto Garcia-Valezuela and Joel Villatoro. Noise in optical measurements of cantilever de?ections[J]. Journal of Applied Physics. 1998: 356~376
    [33]白泰礼,邓铁六.检测系统分辨力定量计算的研究[J].电子科技大学学报. 2007: 125~134
    [34]帅词俊.熔锥型光纤器件的流变成形机理、规律与技术研究[D].长沙:中南大学博士学位论文. 2006: 910~915
    [35]王炯.光纤耦合器流变制造过程有限元分析与实验研究[D].长沙:中南大学硕士学位论文. 2005: 272~278
    [36]帅词俊等.光纤器件流变成形中的热力耦合数值分析[J].中国机械工程. 2006: 35~36
    [37]帅词俊等.光纤耦合器预拉时熔锥区的热分析[J].中南大学学报. 2004: 26~34
    [38]金日光等.应力—温度等效性及WLF方程参数的物理意义[J].北京化工学院学报. 1994: 26~34
    [39]帅词俊等.光纤器件流变制造过程数值分析与试验[J] .机械工程学报. 2007: 115~121
    [40] Masao Tachikura.Fusion mass-splicing for optical fibers using electric discharges between two pairs of electrodes[J]. Appl. Opt. 1984: 153~156
    [41]帅词俊等.光纤耦合器熔融拉锥粘弹性建模与分析[J].中南大学学报. 2006: 129~134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700