考虑几何非线性斜拉桥索力优化及成桥索力调整方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜拉桥作为一种由索、塔和梁组成的组合体系桥梁结构,以其跨越能力大,结构新颖而成为现代桥梁工程中发展最快、最具有竞争力的桥型之一。斜拉索是斜拉桥的重要组成部分,它承担了施工阶段和成桥后正常运营阶段的大部分荷载,索力合理与否直接决定了斜拉桥施工阶段结构的受力安全和成桥后结构内力的合理分布。因此,斜拉桥索力的优化对斜拉桥成桥后内力状态是否合理具有重要的影响作用。
     对于大跨径斜拉桥来说,其几何非线性的影响已经不能忽视。因此在索力的优化中也有必要考虑其影响。然而现有斜拉桥索力优化程序大多在线性条件优化得出索的初始拉力。虽然许多学者对斜拉桥的非线性索力做了大量研究,也取得了一定成果,但是其优化方法得出的是斜拉桥成桥后斜拉索的内力,并没有介绍如何得出拉索的初始拉力
     本文在现有研究的基础上,围绕非线性下斜拉桥成桥状态合理初始索力的确定这一主题展开工作,归纳起来有以下几个方面:
     (1)分析了大跨径斜拉桥几何非线性的主要影响因素,包括斜拉索的垂度效应、弯矩与轴向力组合效应和大变形效应,同时对目前斜拉桥几何非线性问题的分析理论和研究水平进行了综述,相应讨论了各非线性影响因素的处理方法,即分别采用等效弹性模量法、引入稳定性函数和实时修正结构的几何位置。
     (2)斜拉桥索力的正确确定是实现合理成桥状态的首要任务,通过调整索力来改变结构的受力分配,对优化其受力尤其重要。本文回顾了国内外确定斜拉桥合理成桥索力方法的研究现状与发展水平,对斜拉桥成桥索力优化的现状作了初步的分析,并归纳出了斜拉桥优化的原则。
     (3)分析斜拉桥的三大几何非线性因素对斜拉桥拉索合理初始拉力的影响。在几何非线性的三大因素中,以斜拉索垂度效应影响最大,大位移效应次之,梁一柱效应影响最小。以郧阳汉江公路大桥为算例,利用Midas/Civil现有的线性优化功能,进行迭代求出其非线性下拉索的初始拉力
As a kind of flexible structure with great ability of span, cable-stayed bridge has quiet great progress in recent years. The cable is one of the key parts of cable-stayed bridge. It takes on most part of the Load in constructing and constructed of cable-stayed bridge. Rational cable force can guarantee the structure safety in construction and make the structure's internal force reasonable after construction.Therefore; the cable force optimization of the cable-stayed bridge has important effect on internal force after construction whether reasonable.
     For long-span cable-stayed bridge, the geometric nonlinear effects can not be ignored. Therefore, the optimization of the cable force is necessary to consider its impact. However, the existing cable tension optimization program based on linear conditions obtain the initial cable tension. Although many scholars have done a lot of the nonlinear cable forces of cable-stayed bridge research, and achieved certain results, but its optimization method derived from the internal forces of cable-stayed Cable Stayed Bridge, and does not describe how you reached the initial tension of the cable.
     This paper based on the existing researches on cable-stayed bridge, centers around the calculate methods for rational cable force. Which can be summarized as follows:
     (1) Geometric nonlinear behaviors in large span cable-stayed bridges have been analyzed, which include the sag of inclined cable stays caused by their own dead weight; the interaction of large bending and axial deformation in bending members; and the large displacements effects. Then analyzing theories and researching levels of geometric nonlinear problems of modern cable-stayed bridges have summarized. And methods of modeling cable-stayed bridges for nonlinear finite element analysis have been discussed, which are the equivalent modulus of elasticity, introducing stability functions and continuously modifying geometry of structure. Then in this thesis some basic methods for geometric nonlinear analysis of cable-stayed bridges have also been discussed and algorithm of co-moving coordinate iteration combined incremental and iterative approach is established.
     (2) Cable-stayed bridge is to realize the correct cable force to determine reasonable bridge state priority, and through the adjustment to the stress of the structure change of cable force distribution, to optimize the force is especially important. At first the research results about cable force optimization both at home and abroad are reviewed, and then the present situation of cable force optimization is preliminarily analyzed, and the optimization principle of cable-stayed bridge is concluded in the paper.
     (3) Analysis of the cable-stayed bridge three geometric nonlinear factors on cable-stayed Bridges of reasonable initial tension influence. In the three factors of geometric nonlinearity, cable sag effect has the most obvious effect on the moment of main girder and nonlinear of large displacement has greater effect, while the combined effect of moment and axial force has the least influence. As Yuyang Hanjiang Highway Bridge for example, using the Midas/Civil existing linear optimization function iteration calculate the nonlinear of the cable-stayed under initial tension.
引文
[1]Michel Virlogeux. Recent Evolution of Cable-stayed Bridges, Engneering Structures.1999 (7):737-755.
    [2]Chelsea Honigmann, David P.Billington, Hon.M.ASCE.Comceptual Design fod the Sunniberg Bridge, journal of bridge engineerinh,2003:5-6.
    [3]Rene Walther, BernardHouriet, Walmar Isler, Pierre Moia. Cable-Stayed Bridges. Thoms Telford,1988.
    [4]Walter Podolny and Iohn B. Scalzi. Construction and Design of Cable-Stayed Bridges. John Wiley and Sons,1986.
    [5]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.4.
    [6]H.J. Ernst. DerE-Modul von Seilen unter Beruch sichtigun des Durehanges Der Bauingeniear. Feb.1965.
    [7]Man Chung Tang Analysis of Cable-Stayed Girder Bridges. Journal of Structural Divison[J], ASCE. May 1971.
    [8]Fleming JF. Nonlinear Static Analysis of Cable-stayed Bridge Structures[J]. Computers and Structures,1979.
    [9]Fleming JF, Egeseli EA. Dynamic behavior of a cable-stayed bridge[J]. Earthquake Engineering and structural Dynamics 1980.
    [10]Fleming JF. Computer analysis of structure system[M]. New York:McGraw-Hill Book Co.1989.
    [11]Nazmy A. S, Abdel-Ghaffar A. M. Three-dimensional nonlinear static analysis of cable-stayed bridges[J]. Computers and Structures.1990.
    [12]Wang PH, Tseng TC, Yang CG Initial shape of cable-stayed bridges[J]. Computers and 1993,46:1095-1106.
    [13]Wang PH, Yang CG Parametric studies on cable-stayed bridges[J], Computers and Structures,1996.
    [14]Wang PH, Lin HT, Tang TY. Study on nonlinear analysis of a highly redundant cable-stayed bridge[J]. Computers and Structures,2002,80:165-182.
    [15]Wang PH, Tang TY, Zheng HN. Analysis of cable-stayed bridges during construction by cantilever methods[J]. Computers and Structures,2004,82:329-346.
    [16]Wang YC. Geometric nonlinear behavior of cable-stayed bridges[D]. USA:University of Colorado at Boulder.1994.
    [17]Seif SP, Dilger W H. Nonlinear Analysis and Collapse Load of p/c Cable-stayed Bridges[J] Journal of Structural Engineering.1990,116(3):829-849.
    [18]Virlogeux M. Erection of cable-stayed bridges[A]. Proceedings of the Seminar of Cable-Stayed Bridges, Recent Developments and Their Future [C]. Japan:Yokohama, 1991.77-106.
    [19]Ottosen, N. S. Constitutive model for short-time loading of concrete. Journal of the Engineering, Mechanics Division.1979,105(1):127-141.
    [20]Wempner GA. Discrete approxiations related to nonlinear theories of solids[J]. International Journal of Solids and Structures,1971,7:1581-1599.
    [21]尹超.大跨径斜拉桥几何非线性分析.西南交大硕士论文,2002.
    [22]宋小彬.红沙斜拉桥几何非线性分析.重庆大学土木工程学院硕士论文,2006.
    [23]叶瑞青.大跨径斜拉桥几何非线性分析[D].合肥工业大学硕士论文,2007.
    [24]陆从飞.大跨度斜拉桥几何非线性受力行为分析.西南交大硕士论文,2007.
    [25]杨琪.大跨度斜拉桥空间几何非线性仿真分析及其软件开发.西南交通大学博士学位论文,2001.
    [26]朱昭,王克海.几何非线性对大跨度斜拉桥的影响.全国桥梁结构学术大会论集.同济大学出版社,1992:985-988.
    [27]陈德伟.斜拉桥的非线性分析及工程控制[D].同济大学博士学位论文,1990.
    [28]潘家英,程庆国.大跨度悬索桥有限位移分析[J].土木工程学报,1994.
    [29]程庆国,潘家英,高路彬等.关于大跨度斜拉桥几何非线性问题.全国桥梁结构学术大会论文集.同济大学出版社,1992.
    [30]潘永仁.悬索桥的几何非线性静力分析及工程控制[D].上海:同济大学,1996.
    [31]华孝良,徐光辉.桥梁结构非线性分析[M].北京:人民交通出版社,1997.6.
    [32]谢贻权,林钟祥,丁皓江.弹性力学[M].杭州:浙江大学出版社,1988.3.
    [33]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000.8.
    [34]江见鲸.钢筋混凝土结构非线性有限元分析.西安:陕西科学技术出版社,1994.3.
    [35]蒋友谅.非线性有限元法.北京:北京工业学院出版社,1988.6.
    [36]王伯惠,伶仃洋.三大航道桥桥型方案探讨(二)伶仃西桥.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会论文集.厦门,1999.12.北京:人民交通出版社,2000.1.
    [37]贺拴海.桥梁结构理论与计算方法[M],人民交通出版社,2003.
    [38]龚尧南,王寿梅.结构分析中的非线性有限元素法.北京:北京航空学院出版社,1986.11.
    [39]Aslam Kassimali. Reza Abbasnia. Large Deformation Analysis of Elastic Space Frames. Journal Engineering. July,1981,117(7):pp.2069-4087.
    [40]T.Y.Kam. Large Deflection Analysis of Inelastic Plane Frames. Journal of Structural Engineering.
    [41]H.Adeli, LZhang. Fully Nonlinear Analysis of Composite Girder Cable-Stayed Bridges. Computers &Structures.1995,54(2):pp267-277.
    [42]Pao-Hail Wang, Chiung-Guei Yang. Studies on Cable-Stayed Bridges. Computers&1996, 60(3):pp.243-26.
    [43]丁岭江,何福保,谢贻权,徐兴.弹性和塑性力学中的有限单元法.北京机械工业出版社,1989.11.
    [44]王助成,邵敏.有限单元法基本原理和数值方法北京.清华大学出版社,1997.3.
    [45]方秦汉.芜湖长江大桥的技术创新.铁道建筑技术,2002(4):1-6.
    [46]王凯,郑宏扬,李敏.漳州战备大桥主桥斜拉索设计.桥梁建设,2002(Z):8-10.
    [47]严国敏.再论部分斜拉桥,兼论多塔斜拉桥.上海:第十三届全国桥梁学术会议论文集.1998:178-182.
    [48]陈亨锦,王凯,李承根.浅谈部分斜拉桥.桥梁建设,2002(1):44-47.
    [49]蔺鹏臻,孙红红,刘凤奎.小西湖矮塔斜拉桥特征参数研究.公路交通科技,2005(10):192-195.
    [50]刘凤奎,蔺鹏臻,陈权,刘世忠.矮塔斜拉桥特征参数研究.工程力学,2004,21(2):199-203.
    [51]蔺鹏臻.矮塔斜拉桥结构优化.兰州:兰州交通大学,2003(5).
    [52]陈宝春,彭桂瀚.部分斜拉桥发展综述.华东公路,2004(3):89-96.
    [53]乔建东,陈政清.确定斜拉桥索力的有约束方法[J].上海力学,1999,20(1):49-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700