桥式起重机载荷谱获取方法及疲劳剩余寿命评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
起重机械是国民经济建设中不可缺少的特种设备,其运行的安全性和经济性是公众和政府的关注点。起重机的设计能力与实际使用的差异性,导致起重机使用寿命与设计寿命的差异。因此,有效可靠地定量评估和预测起重机的剩余寿命,在安全期内进行维护和补强,发挥起重机的经济效益,降低更新置换成本,同时确保安全可靠运行,是国内外所关注和亟待解决的重大命题。
     疲劳核算点应力谱的获取和编制,是对桥式起重机进行疲劳可靠性分析和寿命评估的基础。通过样机现场实测,可以获得高置信度的应力谱,但对不同使用工况、不同类型的起重机,采用现场试验测试方法获取应力谱,周期长、成本高、难度大。仿真模拟速度快、成本低、但与实际工况存在差异,置信度不高。为解决此关键问题,将探索一种“扬长避短+组合策略”获取桥式起重机应力谱的新方法。
     首先通过有限元分析以及根据真实金属结构截面按1:2比例制作的模型梁的试验结果,确定桥式起重机金属结构疲劳寿命评估与可靠性分析的核算点。然后选取起重机装配车间一台75t/28.5m桥式起重机作为分析样机,在危险截面贴应变片进行一个工作周期的实际应力-时间历程测试。同时通过人工或仪器,记录影响疲劳核算点应力谱的每一实际起升循环的起升载荷、起升和卸载位置及起重小车是否通过主梁跨中等关键参数。对这些关键参数进行统计分析拟合优度检验,得到最佳刻划关键参数的统计分布模型。同时通过对一段时间起升次数分析,确定日平均起升次数。然后基于关键参数的概率分析模型,采用蒙特卡洛方法中的拉丁超立方抽样法(LHS)模拟生成一个检验周期内起升载荷大小、起升和卸载位置及起重小车是否通过主梁跨中四个关键参数的模拟随机数。
     其次借助于Matlab的Simulink仿真软件建立桥式起重机仿真模型。为了验证仿真模型的精度,首先比对6个典型起升载荷位于跨中时的疲劳核算点试验和仿真应力数据,其次比对具有相同起升载荷、起升和卸载位置的试验和仿真应力-时间历程。通过对比误差均在可信范围内,表明可以采用仿真模型模拟起重机工作过程应力-时间历程。
     然后利用生成的检验周期内的关键参数模拟随机数,通过仿真模型进行起吊循环仿真,获得疲劳核算点的仿真应力-时间历程,采用自编雨流计数程序,对仿真应力-时间历程数据进行等值数压缩、峰谷值检测、无效幅值去除、双参数雨流计数的数据压缩处理,得到检验周期内二维仿真应力谱。同时对一个工作周期的试验应力-时间历程数据采用相同的处理,得到二维试验应力谱。为疲劳剩余寿命评估及可靠性分析提供基础数据。
     提出对在役和新品桥式起重机金属结构疲劳剩余寿命的评估方法与步骤。根据评估前关键部件金属结构的无损探伤结果和受载情况,将桥式起重机寿命评估分为有限寿命和无限寿命,根据不同情况采用不同的评定准则。因为起重机金属结构为焊接结构,即使焊接质量满足相关标准规定,焊缝表面和内部仍然存在一定数量的肉眼看不到,但不容忽视的初始缺陷,且这些缺陷技术上可测到,所以重点提出了有裂纹金属结构疲劳剩余寿命评估方法。利用断裂力学和损伤容限理论,建立有裂纹金属结构疲劳剩余寿命估算和检测周期内安全性评定的数学模型,并且探讨起重机金属结构疲劳剩余寿命估算中关键参数的取值。
     起重机金属结构所受应力为随机应力,即使经过雨流计数获得应力谱也不能运用建立的数学模型进行寿命估算和可靠性分析,因此提出当量应力法、Miner理论法和循环续循环计算三种方法处理随机应力或应力谱。
     根据起重机工作特点,基于断裂力学和可靠性理论,建立桥式起重机金属结构疲劳剩余寿命可靠性随机过程安全余量方程,并且研究确定每一检测时间关节点安全余量方程中各关键参数分布及其分布参数取值。针对安全余量方程高度非线性且失效概率很小的特点,提出基于Monte Carlo法的改进的数字模拟法一重要抽样法来进行可靠性分析估算。为了构造重要抽样函数采用多约束非线性优化方法—逐步二次规划(SQP)方法寻找设计点,运用试验应力谱和仿真应力谱,针对金属结构U6和U7两种设计寿命,对样机50年的25个检测时间关节点进行疲劳剩余寿命可靠性分析。为了了解影响桥式起重机金属结构疲劳剩余寿命可靠性的关键参数中哪些分布参数对可靠性影响大,比较敏感,对疲劳剩余寿命可靠性进行关键参数分布参数的敏感度分析。最后对工作六年的样机金属结构进行疲劳剩余寿命可靠性敏感度分析。
The lifting equipment is indispensable to the national economic construction as special equipment, and its operation safety and economy are concerned by the public and government. The differences between design and actual usage result in the variation of service life and design life for bridge crane. Therefore, assessing reliably and predicting the remaining life of the bridge crane, doing the maintenance and reinforcement in a safe period can play the economic benefits and reduce the updated replacement cost to ensure safety and reliable operation, which are major propositions for attention and resolved.
     The fatigue analysis and life assessment are based on the acquisition and preparation of the stress spectrum in the fatigue accounting points, and the stress spectrum of high confidence can be obtained by the prototype. It costs much more time and is difficult to test the bridge crane in different usage occasions and different types by trials. The simulation is fast, low cost, but it has differences with the actual working conditions, so the confidence level is not high. In order to solve this critical problem, this paper will take a strategy of "take chance and overcome own weakness" for the bridge crane stress spectrum.
     First of all, this paper aims to determine the accounting point of the fatigue analysis and life assessment of the metal structure of the bridge crane by finite element analysis and the trial results of model beam produced based on a true main beam cross-section ratio of1:2. Select a75t/28.5m bridge crane using assembly workshop as the prototype, paste strain gauges on the dangerous sections, and perform the actual time-stress history test for a work cycle. Simultaneously, some key parameters can be recorded by manual or instrument, including each actual lifting loop lifting weight, lifting and unloading position, and whether the crane car goes across the beam midpoint, which would affect the stress spectrum of the fatigue accounting point.
     Then, conduct the statistical analysis of the goodness of fit test for these parameters, and get the statistical distribution model which best depicts the key parameters. At the same time, analyze the lifting times for a period of time to determine the average daily lifting number. Then, based on the probabilistic analysis model of the key parameters, use the Latin Hypercube Sampling (LHS) of Monte Carlo method, to simulate the pseudo random numbers. The four critical parameters include a lifting load size, the liter and unloading position, and whether the lifting car goes through the main beam mid-span in the inspection cycle.
     Second, create the bridge crane simulation model by means of Matlab Simulink simulation software. In order to verify the accuracy of the simulation model, firstly compare6typical fatigue accounting point tests and simulation stress data with the lifting load in the mid-span, and then the tests and simulation stress-time history with the same lifting load, and, the lifting and unloading position. By comparing, the error is in the credible range, and it indicates that the simulation model can be used to simulate the stress-time history in the work process.
     Then, with the simulation model through lifting loop simulation, the analog random numbers of key parameters generated in the inspection cycle can be used to obtain the simulation stress-time course of the fatigue accounting point. The paper can get the two-dimensional simulation stress spectrum in the test cycle, using self rainflow counting procedure to do the equivalent number compression, peak-valley value detection, invalid amplitude removing and dual-parameter rainflow counting data compression processing. At the same time, with the same processing of stress-time history data in a work cycle, a two-dimensional test stress spectrum can be obtained to provide basic data for the remaining the fatigue life assessment and reliability analysis.
     Finally, put forward the remaining fatigue life assessment methods and steps of the crane in service and new crane, divide the crane into a finite-life and infinite-life crane according to the NDT results and loading of the key components (the main beam) before the pre-assessment, and raise the assessment criteria for crane safety in different situations. As crane metal structure is welded structure, even if the welding quality meets the standard requirements, the weld surface and interior have a certain number of initial defects, which the naked eye can not see but can not be ignored. As these defects can be technically measured, the paper puts forward the remaining fatigue life assessment methods for the cracked metal structure. Using fracture mechanics theory and damage tolerance concept, establish a mathematical model of a cracked mental structure fatigue remaining life estimation and security assessment in the detection cycle, and discuss the key parameter value of the crane structure remaining life assessment.
     As crane metal structure suffers a random stress, the stress spectrum, even if got by rainflow counting, can not be used to establish mathematical model for life estimation and reliability analysis.
     Therefore, this paper proposes equivalent stress method, Miner theory method, and the cycle continued circulation calculation three approaches to handle the random stress or stress spectrum.
     According to the characteristics of Cranes, based on the fracture mechanics and reliability theory, establish the remaining life reliability safety margin equation of stochastic processes for the mental structure, and determine the key parameters distribution and distribution parameters values of safety margin equation in joint points each detecting time. As safety margin equation is highly nonlinear and failure probability is very small, put forward the improved digital simulation based on the Monte Carlo method-the importance sampling method to analyze the reliability estimation, In order to construct the importance sampling, take Multi-constrained nonlinear optimization methods-sequential quadratic programming (SQP) method to find the design point, using test stress spectrum and simulation stress spectrum, for the design life of both U6and U7, and, do the reliability analysis of fatigue remaining life for25detection time joint points of the prototype. To learn about which distribution parameters of key parameters are more influential, more sensitive to the reliability, do the distribution parameters sensitivity analysis for the residual fatigue life reliability, and, finally, do the remaining fatigue life reliability sensitivity analysis for the prototype metal structure working for6years.
引文
[1]国家质量监督检验检疫总局令第92号.起重机械安全监察规定[EB],2006.
    [2]肖晓晖,吴功平,李立斌.塔式起重机疲劳载荷谱的编制[J].应用力学学报,2003.20(4):86-88
    [3]高镇同.疲劳载荷谱的编制[J].航空学报,1980,2(1):36-47.
    [4]起重机设计规范[S].GB/T3811-2008,中国标准出版社:北京.
    [5]王金诺,程文明.桥门式起重机疲劳裂纹扩展寿命的模拟估算[J].起重运输机械,2001(2):14.
    [6]阎楚良,高镇同.飞机高置信度中值随机疲劳载荷谱的编制原理[J].航空学报,2000.21(2):118-123.
    [7]阎楚良,卓宁生,高镇同.雨流法实时计数模型[J].北京航空航天大学学报,1998.24(5):623-624.
    [8]阎楚良,张书明,卓宁生.飞机机翼结构载荷测量试验力学模型与数据处理[J].航空学报,2000.121(6):57-59.
    [9]高镇同,熊峻江.高置性度典型实测载荷谱确定的最少观测次数[J].机械强度,1996,18(1):18-22.
    [10]龙靖宇,张轶蔚.起重机建模及载荷历程动态仿真[J].起重运输机械,2005,(8): 51-54.
    [11]罗丹,原思聪,王晓云.基于ANSYS的塔式起重机疲劳载荷谱的编制[J].建筑机械,2007:63-67.
    [12]张轶蔚.桥式起重机主梁随机疲劳载荷的计算机仿真[J].起重运输机械,2007,(4):52-57.
    [13]Y Maeda, M Yoshimi, E Yoshihisa. Stress Spectrum of the Jib of Rough Terrain Crane with Carrying a Load[J]. Nippon Kikai Gakkai Kotsu, Butsuryu Bumon Taikai Koen Ronbunshu,2003,12:257-258.
    [14]N Zrnic, D Oguamanam, S Bosnjak. Dynamics and modelling of mega quayside container cranes[J]. FME Transactions, 2006,34:193-198.
    [15]B Leitner, J Maca. Analysis of working loads and a fatigue life prediction of a special railway crane load-bearing structure [J]. Mechanics Transport Communications,2008, (3):26-31.
    [16]KA Dahmen, Y Ben-Zion, JT Uhl. Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches [J]. Physical review letters,2009,102 (17):175501-1-4.
    [17]MB Ali, S Abdullah, MZ Nuawi. Evaluating charpy impact signals using power spectrum densities:a finite element method approach[J]. International Journal of Mechanical and Materials Engineering,2011,6 (1):92-101.
    [18]K Barbe, R Pintelon, J Schoukens. Welch method revisited:nonparametric power spectrum estimation via circular overlap[J]. Signal Processing,2010,58(2) 553-565.
    [19]P Broersen. Practical aspects of the spectral analysis of irregularly sampled data with time-series models[J]. Instrumentation and Measurement,2009,58 (5): 1380-1388.
    [20]G Box, G Jenkins. Time series analysis forecasting and control [M]. A JOHN WILEY & SONS, INC., PUBLICATION, San Francisco,1970.
    [21]J P Burg. The relationship between maximum entropy spectra and maximum likelihood spectra[J]. Geophysics,1972,37:375-376.
    [22]P Stoica, R Moses. Introduction to Spectral Analysis [M]. Upper Saddle River, New Jersey:Prentice-Hall Press,1997.
    [23]A Schuster. On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena[M].Terrestrial magnetism and atmospheric electricity,1898,1 (3):13-41.
    [24]JG Proakis, DG Manolakis. Digital Signal Processing:Principles, Algorithms, and Applications[M]. Upper Saddle River, New Jersey:Prentice-Hall Press, 1996.
    [25]MS Bartlett. Smoothing periodograms from time series with continuous spectra[J]. Nature,1948,161:686-687.
    [26]P Welch. The use of fast fourier transform for the estimation of power spectra:A method based on time averaging over short, modified periodograms[J]. Audio and Electroacoustics,1967, AE-15:70-73.
    [27]SO Connor, J Kim, JP Lynch. Fatigue life monitoring of metallic structures by decentralized rainflow counting embedded in a wireless sensor network[J]. Proceedings of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems,2010, Philadelphia, Pennsylvania, USA: SMASIS2010-3839.
    [28]胡宗武,董邦宣.雨流法与疲劳寿命估算[J].机械强度,1985,4:52-60.
    [29]苏禾.随机疲劳载荷谱[J].机械设计与制造,1984, (1):5-10.
    [30]王宏伟,邢波,骆红云.雨流计数法及其在疲劳寿命预算中的应用[J],矿山机械,2006,34(3):95-97.
    [31]严楚良,卓宁生,高镇同.雨流法实时计数模型[J].北京航空航天大学学报,1998,24(5):622-624.
    [32]李秀川,王文涛.变幅疲劳应力的统计与分析[J].工业建筑,1998,28(3)22-24.
    [33]P Johannesson. Extrapolation of load histories and spectra[J]. Fatigue Fract Engng Mater Struct,2006,29:201-207.
    [34]PAR JOHANNESSON. Extrapolation of Rainflow Matrics[J].Manufactured in The Netherlands,2001,4 (3):241-262.
    [35]I Rychlik. A new definition of the rainflow cycle counting method[J]. International Journal of Fatigue,1987,9:119-121.
    [36]董乐义,罗俊,程礼.雨流计数法及其在程序中的具体实现[J].计算机技术与应用,2004,24(3):38-40.
    [37]Dong Cong, Rong Haiwu, Xia Renwei. The Distribution model of fatigue life and its good-of-fit test [J]. Chinese J. of Aeronautics 1995,8(3):185-190.
    [38]费鹤良.分布拟合检验方法综述[J].上海师范学院学报(自然科学版),1982,2:129-142.
    [39]董聪,戎海武,杨庆雄.先进拟合优度检验方法及应用[J],强度与环境,1994,1:23-31.
    [40]李剑,张群会.两参数威布尔分布中参数的极大似然估计量的迭代求解方法[J].机械强度,1994,16(3):67-68.
    [41]GH Lemon. Maximum likelihood estimations for the three parametersWeibull distribution based on censored samp les[J]. Technmetrics,1975,17 (2):247-254.
    [42]杨谋存,聂宏.三参数Weibull分布参数的极大似然估计数值解法[J].南京航空航天大学学报,2007,39(1):31-34.
    [43]M Tiryakioglu, DHudak. On estimating Weibull modulus by the linear regression method[J]. Journal of Materials Science,2007:42 (24):10173-10179.
    [44]庄渭峰.用微机实现威布尔参数的双线性回归最小二乘估计[J].电子产品可靠性与环境试验1999, (5):2-7.
    [45]傅惠民,高镇同.确定威布尔分布三参数的相关系数优化法[J].航空学报,1990,11 (7):323-327.
    [46]史景钊,蒋国良.用相关系数法估计威布尔分布的位置参数[J].河南农业大学学报,1995,29.167-171
    [47]张秀之.概率权重矩法及其在Weibull分布参数估计中的应用[J].海洋预报,1994,11 (3):56-61.
    [48]邓建,古德生,李夕兵.确定可靠性分析Weibull分布参数的概率加权矩法[J].计算力学学报,2004,21(5):609-613.
    [49]郑荣跃,秦子增Weibull分布参数估计的灰色方法[J].强度与环境,1989,(2): 34-40.
    [50]GW Gang. Moment estimators for the 3-parameter Weibull distribution[J], IEEE Transactions on Reliability,1988,37 (3):156-164.
    [51]胡文中.用矩法估算Weibull分布三参数[J].太阳能学报,1997,17(4):348-452.
    [52]刘飞,王祖尧,窦毅芳等.基于Gibbs抽样算法的三参数威布尔分布Bayes估计[J].机械强度,2007,29(3):429-432.
    [53]史景钊,杨星钊,陈新昌.3参数威布尔分布参数估计方法的比较研究[J].河南农业大学学报,2009,43(4):405-409.
    [54]EL Lehmannl. On likelihood ratio tests[J]. IMS Lecture Notes-Monograph Series 2nd Lehmann Symposium-Optimality,2006,49:1-8.
    [55]PJ Bickel, KA Doksum.数理统计—基本概念及专题[M].兰州:兰州大学出版社,2004:102-105.
    [56]WAJ Albert. Uber Treibseile am Harz. Archiv fur Mineralogie[M], Georgnosie.Bergbau und Hiittenkunde 10,1837
    [57]WJM Rankine. On the causes of the unexpected breakage of the journals of railway axles, and on the means of preventing such accidents by observing the law of continuity in their construction[J]. Minutes of the Proceedings,1843,2: 105-107.
    [58]VA Passipoularidis, TP Philippidis, P Brondsted.Fatigue life prediction in composites using progressive damage modelling under block and spectrum loading[J]. International Journal of Fatigue,2011,33 (2):132-144.
    [59]V Kliman, J Jelemenska. Fatigue reliability evaluation of structure under random loading using safety criterion-Part I[J]. Metallic Materials,2001,39:99-217.
    [60]B Leitner. Fatigue Life Of Large Welded Steel Machine Structures[C]. Proceedings of international young science workers conference, University of Zilina,2007:147-150.
    [61]J Leander. Improving a bridge fatigue life prediction by monitoring[D]. KTH School, Sweden,2010.
    [62]T Lassen, JD Srensen. A probabilistic damage tolerance concept for welded joints. Part 1:data base and stochastic modeling[J]. Marine Structures,2002, (15) 599-613.
    [63]PH Wirsching. Fatigue reliability and maintainability of marine structures [J]. Mar Struct,1990,13:265-83.
    [64]T Lassen. Markov modelling of the fatigue damage in welded structures under in-service inspection[J]. Int J Fatigue,1991,13:417-22.
    [65]Lassen T. The effect of the welding process on the fatigue crack growth in welded joints[J]. Welding J,1990,96:75-85.
    [66]TR Gurney. Finite element analysis of some joints with the welds transverse to the direction of stress[J]. Welding Res Int,1976,6:40-72.
    [67]N Shamsaei, A Fatemi. Deformation and fatigue behaviors of case-hardened steels in torsion:Experiments and predictions[J].International Journal of Fatigue,2009, (31):1386-1396.
    [68]A Bassetti, A Nussbaumer, MA Hirt. Crack repair and fatigue life extension of riveted bridge members using composite materials [C]. Bridge engineering conference ESE-IABSE-FIB,2000:227-238.
    [69]Z Domazet. Comparison of fatigue crack retardation methods[J]. Eng Fail Anal, 1996,3:137-47.
    [70]I Okura, T Fukui, K Nakamura. Application of CFRP sheets to repair of fatigue cracks in steel plates[J]. Constr Steel,2000,8:689-696.
    [71]MM Ratwani, HP Kan, JH Fitzgerald. Experimental investigation of fibre composite reinforcement of cracked metallic structures[C]. Composite materials: testing and design (sixth conference). ASTM STP 787,1982.
    [72]SC Jones, SA Civjan. Application of fibre reinforced polymer overlays to extend steel fatigue life[J]. Compos Constr,2003,7:331-338.
    [73]H Hosseini-Toudeshky, G Sadeghi, HR Daghyani. Experimental fatigue crack growth and crack-front shape analysis of asymmetric repaired aluminium panels with glass/epoxy composite patches[J]. Compos Struct,2005,71(3-4):401-406.
    [74]M Bocciarelli, P Colombi, G Fava. Fatigue performance of tensile steel members strengthened with CFRP plates[J]. Compos Struct,2009,87 (4):334-343.
    [75]J Deng, MMK Lee. Fatigue performance of metallic beam strengthened with a bonded CFRP plate[J]. Compos Struct,2007,78 (2):222-231.
    [76]CS Shin, CQ Cai. Evaluating fatigue crack propagation properties using a cylindrical rod specimen[J]. Int J Fatigue,2007,29 (3):397-405.
    [77]HY Ahmad, M P Clode, JR Yates. Prediction of fatigue crack growth in notched members[J]. Int. J. Fatigue,1997,19 (10):703-712.
    [78]H Terada, T Okada. Problems of laboratory tests for durability evaluation of full-scale structures[J]. International Journal of Fatigue,2009, (31):1068-1072.
    [79]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [80]卢汝生,成彤.桥梁结构疲劳特性分析发展历程与评定设计方法综述[J].公路交通技术,2004,(4):49-52.
    [81]高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天出版社,2000.
    [82]张红军,赵利华,张开林.基于断裂力学的齿轮箱螺栓的失效分析及改进研究[J].机车电传动,2007.3(2):25-28.
    [83]翟甲长,王生,徐克晋.断裂力学方法估算起重机箱型梁的疲劳寿命[J].山西机械,1994(2):33-34.
    [84]潘鲜,徐格宁.焊接箱型梁疲劳寿命分析与在线监测装置研究[J].起重运输机械,2006(1):13-15.
    [85]翟甲长,王生.桥式类型起重机箱型梁变幅疲劳试验研究[J].太原重型机械学院学报,1996.17(2):139-144.
    [86]袁熙,李舜铭.疲劳寿命预测方法的研究现状与发展[J].航空制造技术,2005(12):80-84
    [87]高镇同,熊峻江.疲劳/断裂可靠性研究现状与展望[J].机械强度,1995.17(3):.61-82.
    [88]J Kohout, J Vechet. A new function for fatigue curves characterization and its multiple merits[J]. Int J Fatigue,2001,23:175-183.
    [89]A Carpinteri, A Spagnoli, S Vantadori.Size effect in S-Ncurves:A fractal approach to finite-life fatigue strength[J]. International Journal of Fatigue,2009, 31 (5):927-933.
    [90]RP Singh, A Gupta.S-N curve vs fracture mechanics approach to fatigue analysis of steel jacket platforms Original Research Article[J]. International Journal of Fatigue,1988,10 (1):49-53.
    [91]D McClaflin, A Fatemi. Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects[J]. Int J Fatigue,2004,26: 773-784.
    [92]P Davoli, A Bernasconi, M Filippini. Independence of the torsional fatigue limit upon a mean shear stress[J]. Int J Fatigue,2003,25:471-480.
    [93]MD Chapetti. Fatigue propagation threshold of short cracks under constant amplitude loading[J]. Int J Fatigue,2003,25 (12):1319-1326.
    [94]S Suresh, RO Ritchie. The propagation of short fatigue cracks [J]. Int Metals Rev,1984,29 (6):445-476.
    [95]KJ Miller, WJ O'Donnell. The fatigue limit and its elimination[J]. Fatigue Fract Eng Mater Struct,1999,22 (7):545-557.
    [96]FO Riemelmoser, R Pippan. Consideration of the mechanical behaviour of small fatigue cracks[J]. Int J Fract,2002,118 (3):251-270.
    [97]R Pippan, G Strobl, H Kreuzer, C Motz. Asymmetric crack wake plasticity-areason for roughness induced crack closure[J]. Acta Mater,2004,52 (15):4493-4502.
    [98]B Holper, H Mayer, AK Vasudevan. Near threshold fatigue crack growth in aluminium alloys at low and ultrasonic frequency:influences of specimen thickness strain rate slip behaviour and air humidity [J]. Int J Fatigue,2003,25 (5):397-411.
    [99]S Stanzl-Tschegg. Fatigue crack growth and thresholds at ultrasonic frequencies[J]. Int J Fatigue,2006,28 (11):1456-1464.
    [100]B Atzori, P Lazzarin, G Meneghetti. Fracture mechanics and notch sensitivity [J]. Fatigue Fract Eng Mater Struct,2003,26 (3):257-267.
    [101]KO Findley, SW Koh, A Saxena. J-integral expressions for semi-elliptical cracks in round bars[J]. Int J Fatigue,2007,29 (5):822-828.
    [102]MD Chapetti, T Tagawa, T Miyata. Fatigue notch sensitivity of steel bluntnotched specimens[J]. Fatigue Fract Eng Mater Struct,2002,25 (2): 619-723.
    [103]D Taylor, JF Knott. Fatigue crack propagation behaviour of short cracks; the effect of microstructure[J]. Fatigue Fract Eng Mater Struct,1981,4 (2) 147-155.
    [104]张其林,靳慧,周奇才.焊接结构系统的疲劳可靠性分析[J].同济大学学报(自然科学版),2005.33(11):1428-1432.
    [105]田辰,阎宏生.基于神经网络响应面的疲劳裂纹扩展寿命的可靠性分析[J]. 机械强度,2004.26(1):58-62.
    [106]高镇同.疲劳应用统计学[M].1986,北京:国防工业出版社.
    [107]YX Zhao. On preventive maintenance policy of a critical reliability level for system subject to degradation[J]. Reliability Engineering and System Safety? 2003.79:301-308.
    [108]YX Zhao. A methodology for strain-based fatigue reliability analysis[J]. Reliability Engineering and System Safety.2000,70:205-213.
    [109]YX Zhao. Interaction and evolution of short fatigue cracks[J]. Blackwell Sdence Ltd. Fatigue Fract Engng Mater Struct.1999,22:459-467.
    [110]顾怡,吕海波.结构元件疲劳可靠性分析的累积损伤模型[J].机械强度.2000,22(3):228-230.
    [11 1]邱志平,王晓军,马智博.结构疲劳寿命估计的集合理论模型[J].固体力学学报.2006,27(1):94-97.
    [112]刘克格,阎楚良,张书明.模糊数学在疲劳寿命估算中的应用[J].航空学报,2006.27(20):94-97.
    [113]高金华.机翼全尺寸延寿试验及可靠性分析[J].实验力学,1998.13(2):237-240.
    [114]熊峻江,高镇同.稳态循环载荷下疲劳/断裂可靠性寿命估算[J].应用力学学报,1997.14(3):14-18.
    [115]倪侃,高镇同.疲劳可靠性二维概率MINER准则[J].固体力学学报,1996.17(4):366-371.
    [116]彭培英,王立彬.工程机械金属机构疲劳可靠性分析的响应面法[J].机械,2004.31(8):20-23.
    [117]刘长虹,刘渭祈.桥式起重机主梁疲劳失效概率的预估[J].起重运输机械,1994(3):25-27.
    [118]刘长虹,刘渭祈.同时考虑模糊性时桥式起重机主梁疲劳失效概率的分析方法[J].机械强度,1994.16(1):69-71.
    [119]易当祥,吕国志.基于神经网络的材料非稳态疲劳损伤可靠性研究[J].海军工程大学学报,2005.
    [120]平安.结构疲劳可靠性分析智能仿真方法[J].中国机械工程.1998.(1):58-60
    [121]纪冬梅,胡毓仁.基于小波神经网络和疲劳曲线的结构疲劳寿命及可靠度预测[J].船舶力学,2006.10(5)
    [122]冯胜,程燕平,赵亚丽等.,线性疲劳损伤累积理论的研究[J].哈尔滨工业大学学报,2003(5)
    [123]F Yin, A Fatemi. Fatigue behavior and life predictions of case-hardened steels[J]. Fatigue Fract Eng Mater Struct,2009;32 (3):197-213.
    [124]A Britten. Fatigue life calculation of surface-strengthened components based on finite element (FE) results:application of the local strain approach on a two layer model[J]. VDI Berichte,1994, (1153):61-72.
    [125]A Tjernberg. Fatigue lives for induction hardened shafts with subsurface crack initiation[J].Eng Fail Anal,2002,9:45-61.
    [126]RP Kaufman. Static mean stress effects in multiaxial fatigue and their implication on fatigue life predictions of induction hardened shafts cycled in pure torsion[D]. Dissertation, Department of Mechanical Engineering, University of Waterloo, Canada; 2002.
    [127]G Marquis, DF Socie. Long-life torsion fatigue with normal mean stresses[J]. Fatigue Fract Eng Mater Struct,2000,23:293-300.
    [128]Y Murakami. Effects of small defects and nonmetallic inclusions on the fatigue strength of metals[J]. JSME Int J, Ser I,1989;32 (2):167-80.
    [129]WE Duckworth, E Ineson. The effect of externally introduced alumina particles on the fatigue life of EN 24 steel, clean steel[R]. Iron Steel Inst,1963:77-87.
    [130]T Itoh, T Yang.Material dependence of multiaxial low cycle fatigue lives under non-proportional loading [J]. International Journal of Fatigue,2011,33 (8) 1025-1031.
    [131]KS Kim, X Chen, C Han. Estimation methods for fatigue properties of steels under axial and torsional loading[J]. Int J Fatigue,2002,24:783-93.
    [132]U Muralidharan, SS Manson. Modified universal slopes equation for estimation of fatigue characteristics[J]. J Eng Mater Techno, ASME Trans,1988,110:55-8.
    [133]ML Roessle, A Fatemi. Strain-controlled fatigue properties of steels and some simple approximations[J]. Int J Fatigue,2000,22:495-511.
    [134]ASTM Standard E2207-02. Standard practice for strain-controlled axialtorsional testing with thin walled tube specimens[J]. Annual book of ASTM standards, 2006,3 (1):1252-1259.
    [135]P Kurath, Y Jiang. Analysis of residual stresses and cyclic deformation for induction hardened components [J]. SAE Technical Paper,1995,950707: 337-351.
    [136]A Fatemi, DF Socie. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. J Fatigue Fract Eng Mater Struct 1988,11(3): 149-165.
    [137]R Neugebauer, B Lorenz, M Kolbe. Hollow drive shafts-innovation by forming technology [J]. SAE Technical Paper,2002-01-1004.
    [138]M Endoa, AJ McEvily. Prediction of the behavior of small fatigue cracks[J]. Materials Science and Engineering,2007,(468-470):51-58.
    [139]赵少汴,王忠保,抗疲劳设计-方法与数据[M].1997,北京:机械工业出版社.
    [140]徐格宁,左斌,起重机结构疲劳剩余寿命评估方法研究[J].中国安全科学学报,2007(3):126-130
    [141]美国研究委员会运输研究局.带有焊接胫板和附件的钢梁疲劳强度[R].研究 大纲报告No.147,1974.
    [142]王德俊,平安,徐灏.疲劳载荷谱编制准则[J].机械强度,1993,15(4):37-40.
    [143]J.H.Yan, X.L.Zheng, K.Zhao.Experimental investigation on the small-load-omitting criterion[J]. International Journal of Fatigue.2001,23 (5) 403-415.
    [144]Dijk GM, Jong JB. Introduction to a fighter aircraft loading standard for fatigue evaluation[R], "FALSTAFF". NLR MP 705176U, The Netherlangds,1975.
    [145]Wang Z, Chen ZW.Inflence of small load cycle omission on fatigue damage accumulation[C]. In:Fatigue'99-Proceedings of the 7th International Fatigue Congress (2), Beijing (China), June,1999:1113-1118.
    [146]Heuler P.Seeger T. a criterion for omission of variable amplitude loading[J]. International Journal of Fatigue.1986,8 (4):225-230.
    [147]赵少汴.损伤容限设计方法和设计数据[J].机械设计,2000,17(5):4-7.
    [148]S.J. Hudak, R.C. Jr.-McClung, M.L.Bartlett,etc. A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies[R]. Contractor Report,1990, 4318, Washington, NASA.
    [149]W Marshall. An Assessment of the Integrity of PWR Vessels[R]. H.M.Stationery Office, London,1976.
    [150]GT Jiao. Reliability Analysis of Crack Growth under Random Loading Considering Model Updating[D].Norwegian Institute of Technology, Trondheim, Norway,1989.
    [151]徐格宁,范小宁,陆风仪等.起重机焊接箱形梁疲劳可靠性及初始裂纹的蒙特卡罗仿真[J].机械工程学报,2011,47(20):41-44.
    [152]Z Kala.Sensitivity Analysis of Fatigue Behaviour of Steel Structure under In-Plane Bending[J]. Nonlinear Analysis:Modelling and Control.2006,11 (1):33-45.
    [153]赵章焰,吕运斌,孙国正.J积分法测量低碳钢Q235的断裂韧性KIC[J].武汉理工大学学报,2002,24(4):111-112.
    [154]DNV. Fatigue Strength Analysis of Mobile Offshore Units. Det Norske Veritas[S], H_vik, Norway,1984.
    [155]British Standards Institution (BS 7910). Guidance on Methods for Assessing the Acceptability of Flaws in Fusion Welded Structures[S]. Published Documents, London:1999.
    [156]赵章焰,雷新华,孙国正.Q235钢裂纹扩展参数的实验测定[J].武汉理工大学学报,2003,(1):49-51.
    [157]GB/T 3811-2008.起重机设计规范[S].北京:中国标准出版社,2008.
    [158]Melchers R E.Search-based importance sampling[J].Structural Safety,1990, 9(2):117-128.
    [159]Melchers R E.Importance sampling in structural system[J].Structural Safety, 1989,6(1):3-10.
    [160]Bauwensa L,Bosb C S,Dijkc H K,et al.Adaptive radial-based direction sampling:some flexible and robust Monte Carlo integration methods [J].Journal of Econometrics,2004,123(2):201-225.
    [161]Wu Y T.Computational methods for efficient structural reliability and reliability sensitivity analysis[J].American Institute of Aeronautics and Astronautics Journal,1994,32(4):634-637.
    [162]Melchers R E,Ahammed M.A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability [J].Computers& structures,2004,82(1):55-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700