用户名: 密码: 验证码:
输电线路积分型行波方向纵联保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国对电力负荷需求的强劲增长,西电东送、南北互供、全国联网工程的实施,一个超大规模互联电网正逐步形成。大容量远距离输电、大规模互联电网的安全保障和防御体系是电力工作者当前面临的新挑战。作为骨干网架的超、特高压输电线路,对继电保护的快速性、可靠性和灵敏性等指标提出了更高的要求。在基于工频量的继电保护其动作速度已接近极限的情况下,行波保护由于具有极快的故障检测能力而备受关注,但其低可靠性的缺点始终制约着保护装置的研发。为此,本课题旨在保持行波保护快速的故障检测能力的同时,提出了一种高可靠性的积分型行波方向保护原理并围绕该原理保护进行了相关技术的研究。论文所做主要工作如下:
     (1)提出了一种积分型行波方向保护判据。该原理判据利用故障发生后正反向行波在一定时间内的恒定关系,构造积分判据,并以二者比值大小作为识别故障方向的依据。500kV和1000kV两种电压等级的仿真数据表明该原理保护能够适用任何线路或母线结构,故障初始条件对保护判据的性能几乎没有任何影响,解决了只利用初始行波波头的极性或幅值关系而导致传统行波方向保护低可靠性和灵敏度不足问题。对于中短距离的输电线路,保护具有极快的故障方向判别速度。而对于远距离的输电线路,由于积分窗口的加大,判别速度有所降低。分析表明对于远距离输电线,可通过调整积分时间,提高判别速度。仿真结果验证了利用一半的时间窗,保护判据的性能不受影响。
     (2)在分析雷击未造成故障、雷击造成故障和一般短路故障暂态波形特征的基础上,提出了一种基于暂态电流波形积分的雷击干扰与故障的识别判据。针对不同的雷击情形和故障条件,仿真分析表明该判据能够快速、正确地识别雷击干扰和短路故障,是一种简单、易行的识别方法。另外,论文分析了断路器合闸和分闸操作产生行波信号的机理,并根据高压输电线路电压互感器一般安装于线路侧的现状,提出可利用积分型行波幅值比较式方向判据对扰动源的方向进行判别。对开关操作的仿真结果表明,积分型方向识别判据能够正确判定开关操作的方向。
     (3)针对电容式电压互感器(CVT)不能有效传变暂态高频电压信号的缺陷,利用CVT套管末屏电容设计出串、并联谐振回路,进而提取电压行波信号。利用仿真模型检验了提取电路对不同频率信号、不同故障接地电阻、不同故障初始角的输出响应。理论分析和仿真结果表明该方法能够有效地抑制工频分量,正确地反应暂态电压行波信号,解决了行波保护和行波故障定位中电压行波信号提取的技术难题。
     (4)基于以上研究,设计了一套积分型行波方向纵联保护的构成方案。对方案中的重要组成部分,如启动元件、故障选相元件、故障方向判别元件、主判据、雷击和开关操作识别以及通信通道的选择等,进行了理论分析和部分仿真。
     理论分析和仿真数据表明:本文所提出的积分型行波方向保护原理不受故障初始条件的影响,对线路长度和母线结构有较好的适应性,极大的提高了行波方向保护的鲁棒性、可靠性和灵敏性;所提雷击干扰与故障信号的识别判据能够正确判别各种非故障性雷击干扰;积分型行波方向判据能够正确识别开关操作;所设计的电压行波提取电路能够正确有效的提取故障暂态电压行波信号。
With the rapid growth of power load,power transmitted from western district to eastern district,power supplied by south and north mutual and implementing of power grid interlink project,an extra-huge scale power grid is forming gradually. For the staffs engaging in power field,the safity and stability of power transmitting with high capacity and remote distance in a huge scale power grid is a challenge.For extra / ultra high voltage transmission lines,the protective relay should has a more excellent performance,such as operation speed,reliability and sensitivity and so on. In the condition of operation speed approaching limit of the relay based on power frequency,travelling wave protections had been focused on owing to it has an ability of finding fault rapidly,but the shortcoming of lower reliability had always restricted development of device.Therefore,a high reliable travelling wave directional protection scheme is proposed,as well as retaining the ability of detecting fault rapidly.In the studying process,main results obtained are following:
     (1) A novel integral based travelling wave directional protection is proposed.After fault occurred,using the constant relationship of forward and backward travelling wave during a special period,the waveforms of forward and backward travelling wave are integrated respectively.According to their ratio,the direction of fault is discriminated.Simulation results from 500kV and 1000kV transmission lines show that the presented directional criterion can completely adapt any constructions of line or busbar,and conditions of fault do not have any influence on performances of criterion.Therefore,the lower reliability and sensibility of traditional travelling wave protection only detecting the polarity or complitude of initial travelling wave are solved.In addition,for these transmission lines of medium or short distance, protection has quick discrimination speed of fault direction.For long distance transmission lines,as a long integral window,discrimination speed is relative slow. Analysis verifies,for the romote distance lines,that discrimination speed can be improved through adjusting time-window(such as using half integral time). Simultaion results clarify protective criterion has not been affected using half integral time.
     (2) On the basis of analyzing transient waveform characteristics of lightning stroke without leading to fault,lightning stroke with resulting in fault and general short-circuit fault,a discrimination criterion of lightning stroke and fault based on waveform integral of current travelling wave is proposed.For different lightning strokes and faults,lots of simulations have been carried out.Simulation and analysis demonstrate that the criterion can quickly and correctly determined fault or lightning stroke,and it is a simple and liable discrimination method.In addition,the paper analyzes mechanism of travelling wave generated by breaker switching.According to the fact of PT located at the side of line in high voltage transmission system,a method determining direction of disturbance is proposed using the integral based travelling wave amplitude comparison directional criterion,at the same time, simulation of breaker switching is carried out.Simulation results verify that the criterion can accurately discriminate the direction of disturbance source.
     (3) Aming at the shortcoming that CVT can not effectively transduce transient high frequency signals,a method extracting voltage travelling wave signal is proposed.Using tap capacitance of capacitance transducer,series and shunt resonance circuit is designed.Using simulation model,output responses of extraction circuit to different frequency signals and different fault ground resistances and different fault inception angles are checked and analyzed respectively.Theoretic analysis and simulation results demonstrate that the method can effectively restrain power frequency signals,accurately reflect transient voltage travelling wave signals, and thus solve technical problem extracting voltage travelling wave for travelling wave protection.
     (4) A set of integral based travelling wave directional unit protection scheme is designed.The main components,such as fault start-up component,faulted phase selection component,fault direction discrimination component and lightning stroke and breaker switching and so on,are analyzed and simulated.
     Analysis of principle and simulation results demonstrate that the integral criterion do not be affected by conditions of fault and for the length and structure of line,it has a good applicability;the applicability and reliability and sensibility of travelling directional protection are enormously improved;lightning stroke criterion can accurately discriminate general line fault from other disturbances;direction of various breaker switching can also be correctly determined by integral critertion and the designed circuit can obtain transient voltage travelling wave correctly and effectively.
引文
[1]葛耀中.新型继电保护和故障测距的原理与技术(第2版).西安:西安交通大学出版社,2007.7
    [2]朱声石.高压电网继电保护原理与技术.北京:中国电力出版社,1995.
    [3]邹贵彬,高厚磊.输电线路行波保护原理与研究现状[J].继电器,2007,35(20):1-6.
    [4]董新洲,葛耀中,贺家李,等.输电线路行波保护的现状与展望[J].电力系统自动化,2000,24(10):56-61.
    [5]鲁春燕,郑涛,邵宇,等.EHV输电线路暂态量保护的发展和应用[J].电力自动化设备,2004,24(4):78-83.
    [6]吕延洁,张保会,哈恒旭.基于暂态量超高速线路保护的发展和展望[J].电力系统自动化,2001,25(5):56-61.
    [7]R.F.Stevens,T.E.Stringfield.A Transmission Line Fault Locator Using Fault-generated Surges.AIEE Trans.,Vol.67,pp.1168-1179,1948.
    [8]G.W.Swift.The Spectra of Fault induced Transients.IEEE Trans.on Power Apparatus and Systems.Vol.98,No.3,pp.940-947,1979.
    [9]T.Takagi,T.Baba,K.Uemura,T.Sakagushi.Fault Protection Based on Travelling Wave Theory:Part Ⅰ Theory.IEEE PES Summer Meeting.Mexico City:1977.
    [10]T.Takagi,T.Baba,K.Uemura,T.Sakagushi.Fault Protection Based on Travelling Wave Theory:Part Ⅱ Sensitivity Analysis and Laboratory Test.IEEE PES Winter Meeting.New York:1978.
    [11]H.W.Dommel,J.M.Michels.High Speed Relay Using Traveling Wave Transient Analysis.IEEE PES Winter Meeting.New York:1978.
    [12]A.T.Johns.New Ultra-high-speed Directional Comparison Technique for the Protection of EHV Transmission Lines.IEE Proc.C,Vol.127,No.4,pp351-357,1980.
    [13]M.Chamia,S.Liberman.Ultra High Speed Relay for EHV/UHV Transmission Lines - Development,Design and Application.IEEE Trans.on PAS,Vol.97,No.6,pp.2104-2116,1978.
    [14]P.A.Crossly,P.G.Mclaren.Distance Protection Based on Travelling Wave.IEEE Trans.on PAS,Vol.102,No.9,pp.2971-2983,1983.
    [15]田又涵.极性比较式行波方向保护的研究.[博士学位论文].西安:西安交通大学,1981.
    [16]葛耀中,田又涵.极性比较式行波方向载波保护的几个问题[J].继电器,1983,3(4):4-8.
    [17]徐丙垠,朱锡贵,马长贵.行波特征鉴别式距离保护原理研究[J].中国电机工程学报,1989,9(3):1-8.
    [18]杨钢,杨军.华中电网500kV进口保护运行分析.华中电管局.
    [19]徐丙垠.利用暂态行波的输电线路故障测距技术.[博士学位论文].西安:西安交通大学,1991.
    [20]董新洲.小波理论应用于输电线路行波故障测距研究.[博士学位论文].西安:西安交通大学,1996.
    [21]董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究[J].中国电机工程学报,1999,19(4):76-80.
    [22]陈平.输电线路现代行波故障测距及其应用研究.[博士学位论文].西安:西安交通大学,2003.
    [23]陈平,徐丙垠,李京,董新洲,葛耀中.现代行波故障测距装置及其运行经验[J].电力系统自动化,2003,27(6):66-69.
    [24]陈平,徐丙垠,葛耀中,等.一种利用暂态电流行波的输电线路故障测距方法[J].电力系统自动化,1999,23(14):29-32.
    [25]陈平,葛耀中,徐丙垠,等.现代行波故障测距原理及其在实测故障分析中的应用[J].继电器,2004,32(2):13-18.
    [26]覃剑,彭丽萍,王和春.基于小波变换技术的输电线路单端行波故障测距[J].电力系统自动化,2005,29(19):62-65.
    [27]陈平,牛燕雄,徐丙垠,等.现代行波故障测距系统的研制[J].电力系统自动化,2003,27(12):81-85.
    [28]曾祥君,尹项根,林福昌,等.基于行波传感器的输电线路故障定位方法研究[J].中国电机工程学报,2002,22(6):42-47.
    [29]曾祥君,尹项根,陈浩,等.新型输电线路故障综合定位系统研究[J].电力系统自动化,2000,24(22):39-44.
    [30]覃剑.小波变换应用于输电线路行波故障测距的研究.[博士学位论文].北京:中国电力科学研究院,2001.
    [31]曾祥君.高中低压电网故障检测、定位及安全监控新技术研究.华中科技大学、许继集团博士后研究工作报告,2004.
    [32]董杏丽,葛耀中,董新洲等.基于小波变换的行波测距式距离保护原理的研究[J].电网技术,2001,25(7):11-26.
    [33]葛耀中,董新洲,董杏丽.测距式行波保护的研究(一)—理论与实现技术[J].电力系统自动化,2002,26(6):34-40.
    [34]葛耀中,董新洲,董杏丽.测距式行波保护的研究(二)—原理方案与仿真试验[J].电力系统自动化,2002,26(9):53-58.
    [35]张举,张晓东,林涛.基于小波变换的行波电流极性比较式方向保护[J].电网技术,2004,28(4):51-54.
    [36]董杏丽,葛耀中,董新洲.基于小波变换的无通道全线速动行波保护[J].电力系统自动化,2001,25(10):18-22.
    [37]董杏丽,葛耀中,董新洲.基于小波变换的比率式行波方向继电器的研究[J].西安交通大学学报,2002,36(8):771-775.
    [38]苏斌,董新洲,孙元章.基于小波变换的行波差动保护[J].电力系统自动化,2004,28(18):25-29,35.
    [39]董杏丽,董新洲,等.基于小波变换的行波极性比较式方向保护原理研究[J].电力系统自动化,2000,24(14):11-15.
    [40]董杏丽,葛耀中,董新洲,等.基于小波变换的行波幅值比较式方向保护[J].电力系统自动化,2000,24(17):11-15,64
    [41]Zou Gui-bin,Gao Hou-lei.Algorithm for ultra high speed travelling wave protection with accurate fault location.IEEE PES General Meeting,Pittsburgh,USA,2008.
    [42]葛耀中,董杏丽,董新洲.基于小波变换的电流行波母线保护的研究(一)—原理与判据[J].电工技术学报,2003,18(2):95-99.
    [43]董杏丽,葛耀中,董新洲.基于小波变换的电流行波母线保护的研究(二) -保护方案与仿真[J].电工技术学报,2003,18(3):98-101.
    [44]林湘宁,刘沛,杨春明等.基于小波分析的超高压输电线路无通道全线速动保护方案[J].中国电机工程学报,2001,21(6):10-15.
    [45]何正友,钱清泉.利用小波分析实现EHV输电线路暂态保护初探[J].继电器,2000,28(8):1-5.
    [46]董新洲.小波理论应用于输电线路行波保护研究.天津大学博士后出站报告,1999.
    [47]董杏丽.基于小波变换的高压电网行波保护原理与技术的研究.[博士学位论文].西安:西安交通大学,2002.
    [48]董新洲,葛耀中,贺家李.波阻抗方向继电器的基本原理[J].电力系统自动化,2001,25(9):15-18.
    [49]董新洲,葛耀中,贺家李。波阻抗方向继电器的算法研究[J].电力系统自动化,2001,25(10):14-17.
    [50]董新洲,葛耀中,贺家李.波阻抗方向继电器的性能分析[J].电力系统自动化,2001,25(1):24-27.
    [51]董新洲,葛耀中,贺家李.波阻抗方向继电器的实现方案[J].电力系统自动化,2001,25(12):20-23.
    [52]Guibin Zou,Houlei Gao,Wenbo Su,Dapeng Wang.Identification of Lightning Stroke and Fault in the Travelling Wave Protection[J].Journal of Electromagnetic Aanlysis and Applications,2009,1(1):31-35.
    [53]王钢,李海锋,赵建仓,等.基于小波多尺度分析的输电线路直击雷暂态识别[J].中国电机工程学报,2004,24(4):139-144.
    [54]司大军,束洪春,陈学允,等.输电线路雷击的电磁暂态特征分析及其识别方法研究[J].中国电机工程学报,2005,,25(7):64-69.
    [55]李海锋,王钢,赵建仓.输电线路感应雷击暂态特征分析及其识别方法[J].中国电机工程学报,2004,,24(3):114-119.
    [56]段建东,张保会,郝治国,等.超高压线路暂态保护中雷电干扰与短路故障的识别[J].电力系统自动化,2004,,28(18):30-35.
    [57]董杏丽,葛耀中,董新洲.行波保护中雷电干扰问题的对策[J].中国电机工程学报,2002,,22(9):74-78.
    [58]REN Jin-feng,DUAN Jian-dong,ZHANG Bao-hui,et al.Identification of lightning disturbance in ultra-high-speed transmission line protection[C].The 2~(nd) IEEE/PES Transmission and Distribution Conference,Dalian,China,August 14-18,2005.
    [59]段建东,任晋峰,张保会,等.超高速保护中雷电干扰识别的暂态法研究[J].中国电机工程学报,2006,26(23):7-13.
    [60]哈恒旭,张保会.输电线路边界保护中雷电冲击与故障的识别[J].继电器,2003,31(4):1-5.
    [61]张言苍,董新洲,董杏丽,等.DSP及其在行波保护中的应用[J].电力自动化设备,2000,20(2):4-6.
    [62]董杏丽,葛耀中,董新洲.行波保护中合闸到故障线路的检测方法[J].中国电机工程学报,2002,,22(10):77-80.
    [63]覃剑,陈祥训,郑建超.行波在输电线路上传播的色散研究[J].中国电机工程学报,1999,19(9):27-30.
    [64]段建东,张保会.行波启动算法的研究[J].中国电机工程学报,2004,24(9):30-36.
    [65]董新洲,贺家李,葛耀中,徐丙垠.基于小波变换的行波故障选相研究,第1部分理论基础[J].电力系统自动化,1998,22(12):24-26.
    [66]董新洲,贺家李,葛耀中,徐丙垠.基于小波变换的行波故障选相研究,第2部分 仿真试验结果[J].电力系统自动化,1999,23(1):20-22.
    [67]董新洲,刘建政,余学文.输电线路暂态电压行波的故障特征及其小波分析[J].电工技术学报,2001,16(3):57-61.
    [68]董新洲,葛耀中,徐丙垠.输电线路暂态电流行波的故障特征及其小波分析[J].电工技术学报,1999,14(1):59-62.
    [69]董新洲,耿中行,葛耀中,张伏生,徐丙垠.小波变换应用于电力系统故障信号分析初探[J].中国电机工程学报,1997,17(6):421-424.
    [70]邹贵彬,高厚磊,许明,徐丙垠.一种高压电网电压行波的提取方法[J].电力系统自动化,2009,33(2):71-74.
    [71]V.Pathirana,E.Dirks,P.G.Mclaren.Using Impedance Measurement to Improve the Reliability of Travelling-wave Distance Protection[A].Proc IEEE Power Engineering Society General Meeting[C].Toronto,Canada,2003.
    [72]V.Pathirana,P.G.Mclaren.A Hybrid Algorithm for High Speed Transmission Line Protection[J].IEEE Trans on Power Delivery,2005,20(4):2422-2427.
    [73]Zou Gui-bin,Gao Hou-lei.The current differential and travelling wave based algorithm for ultra high speed hybrid protection.DRPT,Nanjing,China,2008.
    [74]P.A.Crossley,P.G.Maclaren.Feasibility Study for a Current Differential Carrier Relay System Based on Travelling Theory.IEE Conference Publication No.302 Developments in Power System Protection[C].London:1989.
    [75]苏斌,董新洲,孙元章.串联电容补偿线路行波差动保护研究[J].清华大学学报(自然科学版),2005,45(1):137-140.
    [76]苏斌,董新洲,孙元章.特高压带并联电抗器线路的行波差动保护[J].电力系统自动化,2004,28(23):41-44,70.
    [77]张武军,何奔腾,张波.行波差动保护线路参数不确定性影响[J].电力系统自动化,2008,32(3):42-47.
    [78]张武军,何奔腾.行波差动保护不平衡差流分析及实用方案[J].电力系统自动化,2007,31(20):49-55.
    [79]张武军,何奔腾,沈冰.特高压带并联电抗器线路的行波差动保护[J].中国电机工程学报,2007,27(10):56-61.
    [80]张武军,王慧芳,何奔腾.T接线路行波差动保护[J].电力系统自动化,2007,31(3):61-66.
    [81]白嘉,徐玉琴,田彬,等.基于形态综合算法的行波差动保护方案[J].电网技术,2006,30(9):98-102.
    [82]O.E.Lanz,F.Engler,M.Haenggli,et al.LR91-An Ultra-High-Speed Directional Comparison Relay for Protection of High-Voltage Transmission Lines[J].BBC Brown Bovril Reviews,1985,72(1):32-36.
    [83]Bo Z.Q.,A.T.Johns,R.K.Aggarwal.A New Approach to Transmission Protection Using Fault Generated High Frequency Current Signals.Proceedings of the 12~(th) Power Systems Computation Conference[C].Dresden,German,1996.
    [84]Vazquez-Martinez,Emesto.A travelling wave distance protection using principal component analysis[J].International Journal of Electrical Power and Energy Systems,2003,25(6):471-479.
    [85]Vazquez,E.,Castruita,J.,Chacon,O.L.,Conde,A.A new approach traveling-wave distance protection - Part Ⅰ:Algorithm.IEEE Transaction on Power Delivery,2007,22(2):795-800.
    [86]K.V.Desikachar,L.P.Singh.Digital Travelling-Wave Protection of Transmission Lines[J].Electric Power Systems Research,1984,7:19-28.
    [87]A.T.Johns,A.Barker,M.A.Martin,et al.Design and Engineering of a New Digital Direction Comparison Line Protection.IEE Conference Publication Third International Conference on Developments in Power System Protection[C].London,1985.
    [88]哈恒旭,张保会,吕延洁,吕志来.超高压输电线单端暂态量保护的新原理探讨[J].电工技术学报,2001,16(6):65-70.
    [89]陈茂英,杨明玉,张新国,胡臣.基于小波变换的EHV输电线路单端暂态电压保护算法的探讨[J].继电器,2005,33(2):17-20.
    [90]段建东,张保会,李鹏,罗四倍,等.超高压输电线路新单端暂态量保护元件的实用算法[J].中国电机工程学报,2007,27(7):45-51.
    [91]陈茂英,杨明玉,张新国,胡臣.一种超高压输电线路暂态电压保护算法的研究[J].电力科学与工程,2004,3:19-22.
    [92]Sweetana A.Transient response characteristics of capacitive potential devices.IEEE Trans.on PAS,1970,89(6):1989-1997.
    [93]Lee H,Mousa A.M.GPS travelling wave fault location systems:Investigation into the Anomalous measurements related to lightning strikes[J].IEEE Trans on Power Delivery,1996,11(3):1214-1223.
    [94]A.T.Johns,P.Agrawal.New approach to power line protection based upon the detection of fault induced high frequency signals,lEE Proceedings-C,1990,137(4):307-313.
    [95]A.T.Johns,R.Agrawal.K,Bo Z.Q.No-unit protection technique for EHV transmission systems based on fault-generated noise.Part 1:Signal measurement[J].IEE Pro.-Gener.Transm.Distrib.,1994,141(2):133-140.
    [96]刘晔,王采堂,等.电力系统适应光学电流互感器的研究新进展[J].电力系统自动化,2000,24(17):60-64.
    [97]邹建龙,刘晔,王采堂,等.电力系统适用光学电压互感器的研究新进展[J].电力系统自动化,2001,25(9):64-67.
    [98]J.D.P.Hrabliuk.Interfacing optical current sensors in a substation.IEEE PES Summer Power Meeting,2001.
    [99]Branislav Djokic,Eddy So.Calibration system for electronic instrument transformers with digital output.IEEE Trans on Instrumentation and Measurement,2005,54(2):479-482.
    [100]W.F.Ray,C.R.Heswon.High performance rogowski current transducers.IEEE Industry Application Conference,Roma,Italy,2000.
    [101]袁季修,盛和乐,吴聚业.保护用电流互感器应用指南.北京:中国电力出版社,2004.
    [102]沈兰荪.高速数据采集系统的原理与应用.北京:人民邮电出版社,1995.
    [103]徐丙垠,李桂义,李京,等.接受GPS卫星信号的电力系统同步时钟[J].电力系统自动化,1995,19(3):44-47.
    [104]高厚磊,贺家李,江世芳.基于GPS的同步采样及其在保护与控制中的应用[J].电网技术,1995,19(7):30-32.
    [105]高厚磊,徐丙垠.GPS及其在电力系统中的应用[J].电力系统自动化,1995,19(9):41-44.
    [106]高厚磊,贺家李.GPS时间同步技术及其在数字电流差动保护中应用的研究[J].电力自动化学报,1996,8(3):37-41.
    [107]Houlei Gao,Jiali He,Shifang,Jiang.GPS synchronized digital current differential protection for transmission lines[J].Electric Power Research.62(2002):29-61
    [108]吴青华,张东江.形态滤波技术及其在继电保护中的应用[J].电力系统自动化,2003,27(7):45-49.
    [109]Wu Q H,Zhang J F,Zhang D J.Ultra-high-speed directional protection of transmission lines using mathematical morphology[J].IEEE Trans.on Power Delivery,2003,18(4):1127-1133.
    [110]林湘宁,刘沛,刘世明,杨春明.电力系统超高速保护的形态学-小波综合滤波算法[J].中国电机工程学报,2002,22(9):19-24.
    [111]邹力,刘沛,赵青春.级联形态梯度变换及其在继电保护中的应用[J].中国电机工程学报,2004,24(12):113-118.
    [112]林湘宁,刘沛,高艳.基于故障暂态和数学形态学的超高速线路方向保护[J].中国电机工程学报,2005,25(4):13-18.
    [113]林湘宁,刘沛,高艳.基于数学形态学的电流互感器饱和识别判据[J].中国电机工程学报,2005,25(5):44-48.
    [114]邹力,赵青春,林湘宁,刘沛.基于数学形态学的电力系统振荡中故障识别和改进的选相方法[J].中国电机工程学报,2006,26(13):37-42
    [115]曾祥君,尹项根,陈浩,张哲,等.电力系统暂态过程同步记录的研究[J].电力系统及其自动化学报,2001,13(1):1-4.
    [116]邹贵彬,高厚磊,江世芳,徐丙垠.新型暂态行波幅值比较式超高速方向保护[J].中国电机工程学报,2009,29(7):84-90
    [117]Sluis,L.著.王一宇,周于邦,等译.电力系统暂态.北京:中国电力出版社,2003.
    [118]哈恒旭,张保会,吕志来.边界保护的理论基础[J].继电器,2002,30(10):1-5.
    [119]张武军,何奔腾,沈冰.特高压输电线路空载合闸于故障保护的研究[J].中国电机工程学报,2008,28(16):65-71.
    [120]丘毓昌,施围,张文元.高电压工程.西安:西安交通大学出版社,1995.
    [121]围列夏金,吴维韩.俄罗斯超高压和特高压输电线路防雷运行经验分析[J].高电压技术,1998,24(2):76-79.
    [122]古定燮,周沛洪,戴敏,等.1000kV交流输电工程防雷保护研究[J].高电压技术,2006,32(12):40-44.
    [123]贺家李,宋从矩.电力系统继电保护原理.北京:中国电力出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700