智能挖掘机视觉系统中图像处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着陆地资源紧张程度的加剧,人类正向着海洋、太空等更广阔的领域迈进。无论是在水下进行挖掘作业还是在太空进行资源开采,其环境都是十分复杂、恶劣的,甚至有辐射或放射性污染,操作者若直接介入,人身安全得不到保证,而通过智能挖掘机代替人完成这些危险工作是一个理想的方案。因此,智能挖掘机的研究工作具有很重要的理论价值和工程意义。而视觉系统作为实现智能挖掘机所必须的一部分,其重要性不言而喻。
     本文从挖掘机的应用角度出发,针对视觉系统中图像处理的几个关键技术性问题做了系统、深入的理论分析,提出了相应的改进算法,并针对挖掘机工作中的典型步骤,分析了改进算法的应用情况。本文的主要工作有以下几方面:
     (1)分析了传统Chan Vese分割算法不能同时平滑噪声和保护弱边缘信息的原因,提出基于各向异性平滑的图像分割算法。分割模型中引入各向异性平滑项,并利用梯度信息对初始轮廓线进行设置。实验结果显示,改进的分割算法可以在平滑噪声的同时保护弱边缘信息,提高对弱边缘的捕捉能力,且利用梯度信息设置初始轮廓线可以大人减少不必要的运算量。
     (2)针对现有全局轮廓匹配方法无法匹配受遮挡目标的不足,提出基于分段轮廓曲率的局部轮廓匹配算法。以曲率极值点为分段点进行轮廓分段处理,用每段轮廓上各点的曲率构造特征向量,采用微分进化算法处理寻优问题。实验结果显示,利用分段轮廓曲率特征进行匹配可以正确匹配受遮挡的目标,采用微分进化算法处理寻优问题,可以提高寻优速度,并保证获得全局最优解。
     (3)分析了现有遮挡区域检测方法精度低的原因,提出基于联合特征的遮挡区域检测算法。利用图像中的颜色信息和运动信息进行遮挡区域检测,并采用双边滤波方法,处理遮挡区域的运动不连续问题。实验结果显示,利用颜色信息和运动信息进行联合判定,可提高遮挡区域检测的精度。
     (4)针对标准Mean Shift跟踪算法特征表述没有引入像素点空域信息的不足,提出基于空域一颜色域特征表述的跟踪算法。把模板和目标区域分为重叠的子块,分别估计每个子块内像素点的空域一颜色域分布,从而引入空域信息。实验结果显示,引入像素点空域信息后,可以克服传统加权颜色直方图模型表述能力差的缺陷,提高跟踪精度。
     (5)以挖掘机回转卸载过程为例,详细分析了本文改进算法在实际工作中的应用情况,用实验手段验证了本文改进的图像处理算法的可行性,最后讨论了智能挖掘机系统的信息融合问题。
With the lack of terrestrial resources as well as the continuous advancement of technology, human beings exploit into a wider area such as the sea and space. Due to restrictions of the environmental conditions, underwater operations and space development are very difficult to achieve manually. Furthermore, with the complexity of handling radioactive substances in the poor and dangerous environment, the operator intervention is inconvenience or the safety for the operator can not be guaranteed, so the intelligent excavator is a substitute to complete these complex and dangerous works. Therefore, the research on intelligent excavator has important theoretical value and engineering significance. The visual system as a necessary to achieve intelligent excavator, its importance is self-evident.
     This paper makes a systematic and in-depth theoretical analysis for several image processing technical of the visual system to the application of an intelligent excavator, some improved algorithms have been proposed, at the same time, the application of the visual system has been expounded aimed at the concrete excavator's work. The main works in this paper are as follows:
     (1) Analyzing the traditional Chan Vese image segmentation model which can not smooth the noise and preserve the weak edge at the same time, an improved segmentation algorithm is proposed. It introduces the anisotropic smoothing term to the segmentation model, and uses of edge detection operator to mount the initial contour. The experiments results show that, the noise is filtered and the weak edges are preserved at the same time. The capability to capture the outline on the target is enhanced. Meanwhile the initial contour mount method can speed up the operation speed.
     (2) Aiming at the current global contour matching method which can not match under the occluded case, a local contour matching algorithm is proposed which is based on section contour curvature. First, compute the curvature of each point on the contour, and choose the candidate points which meet the threshold condition. After that segment the contour based on the points. The feature vectors are constructed by using these sub-contours. The variance is used for measuring the similarity between the model contour and the target contour. The differential evolution algorithm is adopted to deal with the issue of optimization. The experiments results show that, the improved method can cope with that the global contour metching method can not obtain the metching result when the contour is occluded, and using the differential evolution algorithm can speed up the operation, meanwhile the optimal result can be obtained.
     (3) After analyzing the problem of the large errors in optical flow estimation which is caused by low detection precision on occluded regions, the improved occlusion detection algorithm is put forward, and use for optical flow estimation. Use the joint features in the image, to detect the occluded regions, and to cope with the motion discontinuity by bilateral filtering. The results show that, the improved optical flow estimation algorithm can enhance the accuracy and robustness of the estimation on occluded regions, and can acquire the more precision optical flow information.
     (4) Aiming at the the problem of easily locate the error position by the classic Mean Shift which is caused by no the pixels' space information in the feature space representation when there are similar colors in the background around the tracking object, an improved object tracking algorithm is proposed. At first, the target model region is segmented into overlapped square, and their spatial histograms are computed which has introduced pixels'spatial information into. So the weakness of the weighted color histograms is overcomed and the accuracy is enhanced. The experiment results show that the improved algorithm can track the object more robust, accurately and quickly.
     (5) At the last, aiming at the turn and unload procedure of the excavator, the application of the improved slgorithms is discussed in the actual work. Meanwhile, the feasibility is testeland verifiaiby the experiment. And the issue for fusing the visual signals in intelligent control system on the intelligent excavator is discussed.
引文
1. 吕超,杨裕丰,吴香君.挖掘机市场分析与发展趋势[J],建筑机械化,2008,11:37-40.
    2. 谢习,华周亮,张大庆.液压挖掘机技术研究的发展现状[J],工程机械,2007,38:54-57.
    3. Peyret F, Jurasz J. The Computer Integrated Road Construction project[J], Automation in Construction,2000,9:62-72.
    4. Singh S, Cannon H. Multi-Resolution Planning for Earth moving[C], Proceedings International Conference on Robotics and Automation, Leuven, Belgium,1998:1211-1219.
    5. Nguyen Q H, Ha Q P, Rye D C, etc. Force/position tracking for electrohydraulic systems of a robotic excavator[C], Proceeding of the 39th IEEE Conference on Decision and Control, Sydney, 2000:5224-5229.
    6. David A B, Derek W S. The Development, Control and Operation of an Autonomous Robotic Excavator[J], Journal of Intelligent and Robotic Systems,1998,21:73-75.
    7. 张强.挖掘机器人规划控制方法与技术的研究[D],杭州:浙江大学,2002
    8. 戴炬.智能机器人基于作业子空间划分的自学习自适应控制方法[J],机器人,1990,12(6):39-43.
    9. 张大庆,何清华,郝鹏等.液压挖掘机铲斗轨迹跟踪控制[J],吉林大学学报(工学版),2005,5:54-59.
    10. 陈洪,杨毅,冯培恩,高宁.采掘机器人远程无线遥控系统的设计[J],机电工程,1998,2:37-39.
    11. 黄柏圣,许家栋.基于特征点的合成孔径雷达复图像自动配准算法[J],计算机测量与控制,2009,17(2):399-401,409.
    12. 李永尧,郑陈婷,王晓明.基于数字图像的天气系统识别[J],福建师范大学学报(自然科学版),2009,25(2):24-27.
    13. 王小燕,许建荣.图像分割技术在血管图像中的应用[J], 中国介入影像与治疗学,2009,6(1):91-94.
    14. 张颖新,范东启,杨迪,杨灿.车型自动识别系统研究[J],交通与运输(学术版),2006,1:62-68.
    15. 郭捷,施鹏飞.基于颜色和纹理分析的车牌定位方法[J],中国图像图形学报,2002,7A(5):472-476
    16. 李学勇,路长厚,李建美.基于重构误差的单类子空间压印凹凸字符识别[J],机械工程学报,2008,44(5):181-185
    17. 杨文杉.指纹识别技术的现状与发展[J],软件导刊,2008,7(10):187-188.
    18. 杜文正,黄先祥,谢建,程洪杰.导弹发射筒超声自动探伤系统设计[J],中国图像图形学报,2002,7A(5):211-215.
    19. 刘光灿,白廷柱,刘简达.电视制导序列图像快速分割及目标特征提取[J],光电工程,2008, 35(2):16-20.
    20. Milan Sonka, Vaclav Hlavac, Roger Boyle著,艾海舟,武勃等译.图像处理分析与机器视觉[M],北京:人民邮电出版社,2003.9
    21. Cho S, Haralick R, Yi S. Improvement of Kittler and Iliingwarth's minimum error thresholding[J], Pattern Recognition,1989,22(5):609-617.
    22. Glasbey C A. An analysis of histogram-based threshholding algorithms[J], CVGIP:Graphical models and image processing,1993,55:532-537.
    23. Kittler J V, Illingworth J. On threshold selection using clustering criteria[J], IEEE Transactions on systems, Man and cybernetics,1985,15(5):652-655.
    24. Kittler J V, Illingworth J. Minimum error thresholding[J], Pattern Recognition,1986,19:41-47.
    25. Ramesh N, Yoo J H, sethi I K. Thresholding based on histogram approximations[J], IEEE Proceedings Vision, Image and Signal Processing,1995,142:271-279.
    26. Reddi S S, Rudin S F, Keshavan H R. An optimal multiple threshold scheme for image segmentation[J], IEEE Transactions on systems, Man and cybernetics,1984,14:661-665.
    27. Ridler T W, Calvard S. Picture thresholding using an iterative selection method[J], IEEE Transactions on systems, Man and cybernetics,1978,8(8):630-632.
    28. Sahoo P K, Soltani S, Wnng A K C, Chen Y C.Survey of thresholding techniques[J], Computer vision, Graphics and image Processing,1988,41 (2):233-260.
    29. Bomana M, Hohne K K, Tiede U, liieme M.3-D segmentation of MR images of the head for 3-D display[J], IEEE Transactions on Medical Imaging,1990,9:177-183.
    30. Bergholm F. Edge focusing[J], IEEE Transactions on Pattern Analysis and Machine intelligence, 1987,9(9):726-741.
    31. 应骏,叶秀清,顾伟康.一个基于知识的边沿提取算法[J],中国图像图形学报,1999,4A(3):239-242.
    32. Michael H F, Wilkinson. Optimizing Edge Detectors for Robust Automatic Threshold Selection: Coping with Edge Curvature and Noise[J], Graphical Models and Image Processing,1998, 60:385-401.
    33. Bhabatosh Chanda, Malay K Kundu, Padmaja Y V. A Multi-Scale Morphologic Edge Detector[J], Pattern Recognition,1998,31(10):1469-1478.
    34. Ziou D, Tabbone S. A multi-scale edge detector[J], Pattern Recognition,1993,26(9):1305-1314.
    35. Brown M A, Blackwell K T, Khalak H G, et al. Multi-scale edge detection and feature Binding: An Integrated approach[J], Pattern Recognition,1998,31(10):1479-1490.
    36. Hall L O, Bensaid A M, Clarke L P, Velthuizen R P, et al. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain[J], IEEE Transactions on Neural Networks,1992,3(5):672-681.
    37. Lin J S, Cheng K S and Mao C W. A Fuzzy Hopfield Neural Network for Medical Image Segmentation[J], IEEE Transactions on Neural Science,1996,43(4):2389-2398.
    38. Lin J S, Lee S U. On the Color Image Segmentation Algorithm Based On the Thresholding and the Fuzzy C-Means Techniques[J], Pattern Recognition,1990,23(9):935-952.
    39. Sang H P, Dong Yun, Sang U L. Color Image Segmentation Based on 3-D Claustering: Morphological Approach[J], Pattern Recognition,1998,31(8):1061-1076.
    40. Philippe Schmid.Segmentation of Digitized Dermatoscopic Images by Two Dimensional Color Clustering[J], IEEE Transactions on Medical Imaging,1999,18(2):164-171.
    41. 陈燕新,戚飞虎.基于竞争Hopfield网络的自动聚类图像分割方法[J],模式识别与人工智能,1998,11(2):215-221.
    42. 胡世英,周源华.模糊选择多分辨率Kohonen聚类网络用于灰度图像分割[J],电子学报,1999,27(10):34-37.
    43. Tremeau A, Borel N A. Region Growing and Merging Algorithm to Color Segmentation[J], Pattern Recognition,1997,30:1191-1203.
    44. Sandor T, Metcalf D, Kim Y J.Segmentation of Brain CT Images Using the Concept of Region Growing[J], J. Biomed. Compute,1991,29:133-147.
    45. Adams R, Bischof L.Seeded region growing[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16:641-647.
    46. 全红艳,张田文,董宇欣.一种基于区域分割的几何模型简化方法[J],计算机学报,2006,29(10):1834-1842.
    47. Wang J P. Stochastic Relaxation on Partitions with Connected Components and its Application to Image Segmentation[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1998, 20(8):619-636.
    48. Peleg S. A New Probabilistic Relaxation scheme[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1980,2:362-369.
    49. 戴剑彬,张大力.图像分析中的松弛标记法[J],中国图像图形学报,1998,3A(2):96-99.
    50. 林忠.基于一致性测度的图像分割算法研究[D],南京:南京理工大学,2006
    51. Kass M, Witkin A, Terzopoulos D.Snakes:Active contour models[J], International Journal of Computer Vision,1987,1(4):321-331.
    52. Vicent Caselles, Francine Catte, Tome Coll, Francoise Dibos. A geometric model for active contours in image processing[J], Numerische Mathematik,1993,66(1):1-31.
    53. Osher S, Sethian J. Fronts Propagating with Curvature Dependent Speed:Algorithms Based on the Hamilton-Jacobi Formulation[J], Journal of Computational Physics,1988,79(1):12-49.
    54. Vicent Caselles, Ron Kimmel, Guillermo Sapiro. Geodesic Active Contours[J], International Journal of Computer Vision,1997,22(1):61-79.
    55. Mumford, Shah. Optimal approximations of piecewise smooth functions and associated variational problems[J], International Journal of Computer Vision,1989,12(1):36-42.
    56. 冯志林,尹建伟,陈刚,董金祥Mumford-Shah模型的提花织物图像分割研究[J],浙江大学学报(工学版),2005,39(6):830-834.
    57. 朱峰.医学图像自动分割若干关键技术研究[D],江苏大学,2006
    58. Chan T F, Vese L A. Active contours without edges[J], IEEE Transactions on Image Processing, 2001,10(2):266-277.
    59. Zhao H K, Chan T, B Merriman, Osher S. A variational level set approach to multi phase motion[J], Journal of computational physics,1996,127:179-195.
    60. 李俊,杨新,杨丽.基于Mumford-shah准则的快速Level set图像分割方法及其应用[J],计算机学报,2004,30(1):45-56.
    61. 贾迪野,黄凤岗,文小芳.一种全局优化的水平集图像分割方法[J],中国图像图形学报,2005,10(1):25-30.
    62. 任继军,何明一.一种新的水平集图像分割方法[J],计算机工程与应用,2007,43(19):16-18,52.
    63. 职占江,宋锦萍.基于Chan-Vese模型的医学图像分割算法[J],计算机工程与应用,2008,44(14):190-194.
    64. Liu J, Yang Y H. Multiresolution color image segmentation[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(7):689-700.
    65. Borsotti M, Campadelli P, Schettini R. Quantitative evaluation of color image segmentation results[J], Pattern Recognition Letters archive,1998,19(8):741-747.
    66. BADDELEY A J. An error metric for binary images[J], Robust Computer Vision, Wichmann, Karisruhe,1992,1:59-78.
    67. GOUMEIDANE A, KHAMA DJA M, BELAROUSSI B, et. al. New discrepancy measures for segmentation evaluation[J], Proc. IEEE Internat. Conf. on Image Processing,2003,2:411-414.
    68. HEYDEN F. Evaluation of edge detection algorithms[J], Proc. IEEE Internat. Conf.on Image Processing,1989,2:618-622.
    69. HUANG Q, DOM B. Quantitative methods of evaluating image segmentation[J], Proc. IEEE Internat. Conf. on Image Processing,1995,3:53-56.
    70. Lewis H G, Brown M. A generalized confusion matrix for assessing area estimates from remotely sensed data[J], International Journal of Remote Sensing,2001,22(16):3223-3235.
    71. 戴剑彬,张大力.图像分析中的松弛标记法[J],中国图像图形学报,1998,3(2):96-99.
    72. 侯格贤,毕笃彦.图像分割质量评价方法研究[J],2000,5(1):39-43.
    73. Yao Jianchao.Image registration based on both feature and intensity matching[C], Proceedings of the Acoustics, Speech, and Signal Processing, on IEEE International Conference,2001,3:1693-1696.
    74. Ji Zhou and Jiaoying Shi. A Robust Algorithm for Feature Point Matching[J], Computers & Graphics,2002,26(3):429-436.
    75. YOU J, BHATTACHARYA P. A wavelet-based coarse-to-fine image matching scheme in a parallel virtual machine environment[J], IEEE transactions on image processing,2000,9(9):1547-1559.
    76. Zhaohui Huang, Cohen, F S. Affine-invariant B-spline moments for curve matching[J], IEEE transactions on image processing,1996,5(10):1473-1480.
    77. 方建斌.基于小波变换的图像匹配算法研究[J],江汉大学学报(自然科学版),2006,34(2):45-48.
    78. 熊凌.计算机视觉中的图像匹配综述[J],湖北工业大学学报,2006,21(3):171-173.
    79. 安嵘,王于同,任雪萍.一种基于颜色纹理和相关反馈的图像检索方法[J],计算机工程与应用,2008,44(6):85-87.
    80. 田卉,覃团发,梁琳.综合颜色、纹理、形状和相关反馈的图像检索[J],计算机应用研究,2007,24(11):292-294,314.
    81. Freeman H. On the encoding of arbitrary geometric configurations [J], IRE Trans. on Electron. Comput., EC-10,1961:260-268.
    82. Freeman H. ComParative analysis of line drawing modeling schemes[J], Computer Graphices Image Proeess,1980,12:203-223.
    83. Freeman H. Shape description via the use of critical Points[J], Patten Recognition,1978, 10:159-166.
    84. Freeman H. Computer Processing of line drawing images[J], ACM Computing Surveys,1974, 6:57-97.
    85. 詹文法,梁华国,时峰,黄正峰,欧阳一鸣.一种共游程码的测试数据压缩方案[J],计算机研究与发展,2008,45(10):1646-1653.
    86. 陆克中,丁凤霞,孙宏元,林晓辉.一种基于游程码的并行区域标记算法[J],计算机工程与应用,2008,44(16):49-50,53.
    87. lkebe Y, Miyamoto S. Shape design, representation and restoration with splines[J], Picture Engineering, Springer, Berlin,1982
    88. Cohen F S, Huang Z, Yang Z. Invariant matching and identification of curves using b-splines curve representation [J], IEEE Transactions on Image Processing,1995,7:1-10.
    89. 杜慧茜,郭林楠,梅文博,任彦芳.基于B样条函数的偏微分方程图像去噪[J],兵工学报,2008,29(8):960-964.
    90. 董方敏,贾丹.数字曲线的多边形逼近方法研究进展[J],软件导刊,2009,8(1):172-175.
    91. 丁险峰,吴洪,张宏江,马颂德.形状匹配综述[J],白动化学报,2001,27(5):678-694.
    92. Asada H, Brady M. The curvature primal sketch[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(1):2-14.
    93. Mokhtarian F, Mackworth A. Scale-based description and recognition of planar curves and two dimensional shapes[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1986, 8(1):34-43.
    94. Babaud J, Witkin A P, Baudin M, Duda R O. Uniqueness of the Gaussian kernel for scale-space filtering[J], IEEE Transactions on Pattern Analysis and Machine Intelligenc,1986,8(1):26-33.
    95. Burdea G C, Wolfson H J. Solving Jigsaw Puzzles by a Robot[J], IEEE Transactions on Robotics and Automation,1989,5(6):752-764.
    96. Wolfson H J. On Curve Matching[J], IEEE Transactions On Pattern Analysis and Machine Intelligence,2005,12(5):483-489.
    97. Kong W X, Kimia B B. On solving 2d and 3d puzzles using curve matching[J], Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recgnition, Hawaii,2001, (2):583-590.
    98. 张志刚,周术诚,马君,罗养霞.基于曲率特征的轮廓匹配方法[J],计算机工程与应用,2008,14:36-41.
    99. 陈志宇,高满屯.最大比率圆弧逼近轮廓的匹配方法[J],微型电脑应用,2008,4:54-59.
    100.史锡芬.基于曲率曲线的图形匹配研究[J],微计算机信息,2006,22(9):49-53.
    101.杨新,Truyen B, Cornelis J轮廓匹配的有限差分法[J],中国体视学与图像分析,1996,1(1,21:26-30.
    102.韩逢庆,李红梅,张建勋等.基于遗传算法的轮廓模糊匹配问题研究[J],系统仿真学报,2004,16(4):772-774.
    103.吕科.基于物体轮廓的曲线匹配技术研究[D],西北大学,2003
    104. Nair D, Aggarwal J K. Bayesian Recognition of Targets by Parts in Second Generation Forward Looking Infrared Images[J], Image and Vision Computing (50262-8856),2000,18(10):849-864.
    105.章思亮,臧德彦.基于转向角函数的形状匹配算法[J],科技广场,2009,1:118-121.
    106. Manfredo P, Carmo著,田畴等译.曲线与曲面的微分几何[M],北京:机械工业出版社,2005
    107. Williams D J, Shan M. A fast algorithm for active contour and curvature estimation[J], CVGIP:Image Understanding,1992,55(1):14-26.
    108. Mokhtarian F, Mackworth A, A Theory of Multiscale, Curvature-based Shape Representation for Planar Curves[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1992, 14:789-805.
    109. Xunnian Yang, Guozhao Wang. Planar Point Set Fairing and Fitting by Arc Splines[J], Computer-Aided Design(50010-4485),2001,33(1):35-43.
    110. Marji M. On the detection of dominant points on digital planar curves[D], Wayne State University, Detroit, Michigan,2003
    111. Simon Hermann, Reinhard Klette. Global Curvature Estimation for Corner Detection[J], CVGIP:Image Understanding,1991,12(3):28-32.
    112. Coeurjolly D, Miguet S, Tougne L. Discrete curvature based on osculation circle estimation[J], Proc. Int. Workshop Visual Form, LNCS 2059, Springer, Berlin,2001:300-312.
    113. Rosenfeld A, Weszka J S. An improved method of angle detection on digital curves[J], IEEE Trans. Computers,1975,24:940-941.
    114. Donald D, Hoffman, Manish Singh. Salience of Visual Parts [J], Cognition.1997,63(1):29-78.
    115.彭铁根.基于负曲率极值点零件识别与检测技术研究[J],中国机械工程,2004,15(17):1511-1515.
    116. Singly M, Seyranian G D, Hoffman D D. Parsing Silhouettes:the Short-Cut Rule[J], Perception and Psychophysics,1999,64(4):636-660.
    117. Huttenlocher D P, Klandeman G A, Rucklidge W J. Comparing images using the Haudorff distance[J], IEEE Trans. Pattren Analysis Machine Intelligence,1993,15(1):850-863.
    118. Alt H, Brab P, Godau M, Knauer C, Wenk C. Computing the Hausdorff distance of geometric patterns and shapes[R], Technical Report B 01-07, Freie University Berlin, Fachbereich Mathematik und Informatik,2001
    119. Leitao H C G, Stolfi J. A multiscale method for the reassembly of Two dimensional fragmented objects[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24:1239-1251.
    120.朱延娟,周来水,张丽艳等.基于Hausdorff距离的多尺度轮廓匹配算法[J],中国机械工程,2004,15(17):1553-1556,1561.
    121.周志强,汪渤.一种基于鲁棒Hausdorff距离的目标匹配算法[J],计算机应用,2009,29(1):86-88.
    122.王文成,李晓伟,智佳,赵彦发.基于Hausdorff距离的轮廓线匹配[J],西安邮电学院学报,2007,12(3):91-94.
    123.鹿艳品,马苗.基于灰色遗传算法的快速图像匹配方法研究[J],计算机工程与应用,2008,44(32):169-172.
    124.姜楠,张春森.遗传算法在图像模板匹配中的应用[J],红外与激光工程2008,37:324-327.
    125. Storn R, Price K. Differential Evolution-a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J], Journal of Global Optimization, Kluwer Academic Publishers,1997, 11:341-359.
    126.赵光权.基于贪婪策略的微分进化算法及其应用研究[D],哈尔滨工业大学,2007
    127. Collins R et.al. A system for video surveillance and monitoring:VSAM final report. Carnegie Mellon University, Technical Report: CMU-RI-TR-00-12,2000
    128. Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video[J], Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ,1998,6:8-14.
    129. Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[C], Computer Vision and Pattern Recognition, IEEE Computer Society Conference on,1999,2:246-252.
    130. Horprasert T, Harwood D, Davis L S A. A statistical approach for real-time robust background subtraction and shadow detection[C], proceedings of IEEE ICCV'99 Frame-Rate Workshop, Kerkyra,1999:1-19.
    131.朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J],计算机测量与控制,2005,13(3):215-217.
    132.潘翔鹤,赵曙光,柳宗浦,王媛.一种基于梯度图像帧间差分和背景差分的运动目标检测新方法[J],光电子技术,2009,29(1):34-36,41.
    133. Altunbasak Y, Eren P, Tekalp A. Region-based affine motion segmentation using color information. In:Proceedings of International Conference on Acoustic, Speech, and Signal Processing,1997,4:3005-3008.
    134. Hennebert C, Rebuffel V, Bouthemy P. A hierarchical approach for scene segmentation based on 2d motion[C], Proceedings of International Conference on Pattern Recognition,1996,1:218-22.
    135. Ninomiya Y, Matsuda S, Ohta M, Harata Y. A real-time vision for intelligent vehicles[J], Proceedings of IEEE Intelligent Vehicle Symposium,1996,315-320.
    136. Altunbasak Y, Tekalp A, Bozdagi G. Simultaneous motion-disparity estimation and segmentation from stereo[C], Proceedings of IEEE International Conference on Image Processing,1994:73-77.
    137. Jehan B S, Barlaud M, Aubert G. Region-based active contours for video object segmentation with camera compensation[C], Proceedings of IEEE International Conference on Image Processing, 2001,2:61-64.
    138. Smith S, Brady J. Asset-2:real-time motion segmentation and shape tracking[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):814-820.
    139. Lin Y, Chen Y, Kung S. Object-based scene segmentation combining motion and image cues. In: Proceedings of IEEE International Conference on Image Processing,1996,1:957-60.
    140. Cucchiara R, Prati A, Vezzani R. Real-time motion segmentation from moving cameras[J], Real-Time Imaging,2004,10:127-143.
    141. Gelgon M, Bouthemy P. A region-level motion-based graph representation and labeling for tracking a spatial image partition[J], Pattern Recognition,2000,33:725-40.
    142. Lin Y, Chen Y, Kung S. Object-based scene segmentation combining motion and image cues[J], Proceedings of IEEE International Conference on Image Processing,1996,1:957-960.
    143. Horn B K, Schunck B G. Determine Optical Flow[J], Artificial Intelligence,1981,17(1-3):185-204.
    144. Lucas B D, Kanade T. An Iterative Image Registration Technique with an Application to Stereo Vision[J], IJCAI,1981,:674-679.
    145. Bruhn A, Weichert J. Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods[J], International Journal of Computer Vision,2005,61(3):211-231.
    146. Fleet D J, Langley K. Toward real time Optical flow[J], Proc. Vision Interface, Toronto, 1983,:116-124.
    147. Brox T, Bruhn A, Papenberg N, Weickert J. High Accuracy Optical Flow Estimation Based on a Theory for Wrapping[J], Proc.8th European Conference on Computer Vision, Springer LNCS 3024, Prague, Czech Republic,2004,4:25-36.
    148. Baron J L, Fleet D J, Beauchemin S S. Performance of Optical Flow Technique[J], IJCV,1994, 12(1):43-77.
    149. Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C], International Conference on Computer Vision,1998,:839-846.
    150. Xiao J, Shah M. Motion layer extraction in the presence of occlusion using graph cuts[J], TPAMI, 2005,27(10):1644-1659.
    151. Sargin M E, Bertelli L, Manjunath B S, Rose K. Probabilistic Occlusion Boundary Detection on Spatio-Temporal Lattices[C],12th IEEE International Conference on Computer Vision, Kyoto, Japan,2009.
    152. Alvarez L, Deriche R, Papadopoulo T, Sanchez J. Symmetrical dense optical flow estimation with occlusion detection[C], European Conference on Computer Vision, Springer,2002:721-735.
    153. Strecha C, Fransens R, Van Gool L. A probabilistic approach to large displacement optical flow and occlusion detection[J], Workshop on Statistical Methods in Video Processing,2004:71-82.
    154. M. J. Black and D. J. Fleet. Probabilistic detection and tracking of motion discontinuities. IJCV, 38(3):231-245,2000.
    155. Hoiem D, Stein A N, Efros A A, Hebert M. Recovering occlusion boundaries from a single image[J], ICCV,2007,:1-8.
    156. Lim K P, Das A, Chong M N. Estimation of occlusion and dense motion fields in a bidirectional Bayesianframework[J], TPAMI,2002,24(5):712-718.
    157. Martin D, Fowlkes C, Malik J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J], TPAMI,2004,26(5):530-549.
    158. Sahoo P K, Soltani S, Wong A K C. A survey of thresholding techniques[J], Comput. Vision Graphics Image Process,1988,41:230-260.
    159. Salaoda S, Shisikui Y, Tanaka Y, Yuyama I. Image segmentation by integration approach using initial dependence of k-means algorithm[J], Proc. Picture Coding Symp,'97 Berlin, Germany, 1997:265-269.
    160. Adams R, Bischof L. Seeded region growing[J], IEEE Trans.Pattern Anal. Mach. Intelligence, 1994,16(6):641-647.
    161. Haralick R M, Shapiro L G. Image segmentation techniques[J], Comput. Vision Graphics Image Process,1985,29:100-132.
    162. Horowitz S L, Pavlidis T. Picture segmentation by a directed split-and-merge procedure[C], Proc. 2nd. Int. Joint Conf. on Pattern Recognition,1974:424-433.
    163. Shaohua Kevin Zhou, Chellappa R, Moghaddam B. Visual tracking and recognition using appearance-adaptive models in particle filters [J], Image Processing, IEEE Transactions on,2004, 13(11):1491-1506.
    164. Francois G, Meyer P B. Region-based tracking using affine motion models in long image sequences[J], CVGIP:Image Understanding,1994,60(2):119-140.
    165. Bascle B, Deriche R. Region tracking through image sequences[J], Computer Vision, Proceedings, Fifth International Conference on,1995:302-307.
    166. Gregory D, Hager, Peter N, Belhumeur. Efficient Region Tracking With Parametric Models of Geometry and Illumination[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(10):1025-1039.
    167. Jepson A D, Fleet D J, ElMaraghi T R. Robust online appearance models for visual tracking [J], Computer Vision and Pattern Recognition, CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on,2001,1:1-415-1-422.
    168. Matthews L, Ishikawa T, Baker S. The template update problem[J], Pattern Analysis and Machine Intelligence, IEEE Transactions on,2004,28(6):810-815.
    169. Black M J, Jepson A D. EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation[J], International Journal of Computer Vision,1998, 26(1):63-84.
    170. Kaneko T, Hori O. Feature selection for reliable tracking using template matching[J], Computer Vision and Pattern Recognition, Proceedings.IEEE Computer Society Conference on,2003,1:1-796-1-802.
    171. MItra P, Murthy C, Pal S. Unsupervised feature selection using feature similarity[J], IEEE Transactions on Pattern Analysis and Machine,2002,24(3):301-312.
    172. Nickels K, Hutchinson S. Estimating uncertainty in SSD-based feature tracking[J], Image and Vision Computing,2002,20(1):47-58.
    173. Jain A K, Lakshmsnan Z Y. Object matching using deformable templates[J], IEEE Transactions on Pattern Analyaia and Machine Intelligence,1996,18(3):267-278.
    174. Cootes T F, Taylor C J, Lanitis A. Active shape models: Evaluation of a multi-resolution method for improving image search[J], Proc. British Machine Vision Conf.,1994,1:327-336.
    175. Freedman, D. Tao Zhang. Active Contours for tracking distributions[J], IEEE Transactions on Image Processing,2004,18(4):518-526
    176. Koller D, Daniilidis K, Nagel H. Model-based object tracking in monocular image sequences of road trafficscene[J], International Journal of Computer Vision,1993,10(3):257-281.
    177. Jurie F. Tracking objects with a recognition algorithm[J], Pattern Recognition Letters,1998, 19(3-4):331-340.
    178. Drummond T, Cipolla R. Real-time visual tracking of complex structures[J], IEEE Tansactions on Pattern Analysis and Machine Intelligence,2002,24(7):932-946.
    179. Gerard P, Gagalowicz A. Three dimensional model-based tracking using texture learning and matching[J], Pattern Recognition Letters,2000,21(13-14):1095-1103.
    180. Jung S K, Wohn K Y. A model-based 3-D tracking of rigid objects from a sequence of multiple perspective views[J], Pattern Recognition Letters,1998,19(5-6):499-512.
    181.侯志强,韩崇昭.视觉跟踪技术综述[J],自动化学报,2006,32(4):603-617.
    182. Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[J], Computer Vision and Pattern Recognition, Proceedings. IEEE Conference on,2000,2:142-149.
    183. Emanuel Parzen. On Estimation of a Probability Density Function and Mode [J], Ann. Math. Statist, 1962,33(3):1065-1076.
    184. Fukunaga K, Hostetler L. The estimation of the gradient of a density function, with applications in pattern recognition[J], Information Theory, IEEE Transactions on,1975,21(1):32-40.
    185.卢晓鹏.视频序列中目标跟踪技术研究[D],中国科学院研究生院,2007
    186. Xu D, Wang Y, An J. Applying a new spatial color histogram in mean-shift based tracking algorithm[J], Proceedings of the Image and Vision Computing New Zealand(IVCNZ'05), University of Otago, Dunedin, New Zealand, November,2005
    187. An K H, Chung M J. Mean Shift Based Object Tracking with New Feature Representation[J], The 3rd International Conference on Ubiquitous Robots and Ambient Intelligence, Seoul, Korea, 2006:15-17.
    188. Birchfield S D, Rangarajan S. Spatiograms Versus Histograms for Region-Based Tracking[J], Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2005,2:1158-1163.
    189. Aibing Rao, Srihari R K, Zhongfei Zhang. Spatial Color Histograms for Content-Based Image Retrieval[J],11th IEEE International Conference on Tools with Artificial Intelligence, 1999:183-186.
    190. Lucena M J, Fuertes J M, Blanca. Spatially constrained model for mean shift[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,2b(10):1296-1311.
    191. Noriega P, Bernier O, Bascle B. Local kernel color histograms for background subtraction[J], INSTICC Press, VISAPP'06, Portugal, Setubal,2006,1:213-219.
    192. Gargi U, Kasturi R. Image database querying using a multi-scale localized color representation [J], Content-Based Access of Image and Video Libraries, (CBAIVL'99) Proceedings. IEEE Workshop on,1999:28-32.
    193. Mason M, Duric Z. Using histograms to detect and track objects in color video[J], Applied Imagery Pattern Recognition Workshop, AIPR,30th,2001:154-159.
    194. Thomas M C, Thomas J A. Elements of Information Theory[M], Second Ed.John Wiley and Sons., New York,1991
    195. Fukunaga K.Introduction to Statistical Patern Recognition[M], Second Ed., Academic Press, Boston,1990
    196. Bhattacharyya A. On a measure of divergence between two statistical populations defined by their probability distributions[J], Bulletin of the Calcutta Mathematical Society,1943,35:99-109.
    197. Edward L W, James L.Multisensor Data Fusion[M], Artech House publish,1990.
    198.何友,王国宏,陆大金,彭应宁.多传感器信息融合及应用[M],电子工业出版社,2000
    199.周芳,韩立岩.多传感器信息融合技术综述[J],遥测遥控,2006,27(3):1-7.
    200. Valet L, Mauris G, et al. A Statistical Overview of Recent Literature in Information Fusion[G], ISIF2000:MoC3-22-Moc3-2.
    201. Bayes Thomas. An Essay towards solving a Problem in the Doctrine of Chances[J], Philosophical Transactions of the Royal Society of London,1763,53:370-418.
    202. Dempster, Arthur P. A generalization of Bayesian inference[J], Journal of the Royal Statistical Society, Series B,1968,30:20-247.
    203. Shafer G. A Mathematical Theory of Evidence[M], Princeton University Press,1976:133-185.
    204. Lotfi Asker Zadeh. Fuzzy sets[J], Information and Control,1965,8:338-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700